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CHAPTER 15

 Entropy and Statistics

Thermodynamic systems are collections of huge numbers of atoms or molecules. How 
these atoms or molecules behave statistically determines the disorder in the system. In 
other words, the second law of thermodynamics is based on the statistics of systems 
with extremely large numbers of atoms or molecules. 

As an analogy, suppose we take four identical coins, number them, and toss them. 
We could report the outcome in two different ways: either by specifying the outcome of 
each coin toss individually (e.g., coin 1 is heads, coin 2 is tails, coin 3 is heads, and coin 
4 is heads), or just by reporting the overall outcome as the number of heads. 

Specifying the outcome of each coin toss individually is analogous to describing 
the microstate of a thermodynamic system. A microstate specifies the state of each 
constituent particle. For instance, in a monatomic ideal gas with N atoms, a microstate 
is specified by the position and velocity of each of the N atoms. As the atoms move 
about and collide, the system changes from one microstate to another. The total number 
of heads for coin tossing is analogous to a macrostate of a thermodynamic system. A 
macrostate of an ideal gas is determined by the values of the macroscopic state vari-
ables (the pressure, volume, temperature, and internal energy). 

 In the four-coin model, each of the microstates is equally likely to occur on any 
toss. Each of the coins has equal probability of landing heads or tails. Since each of 
4 coins has 2 possible outcomes, there are 2 4   =  16 different but equally probable micro-
states. There are only five macrostates: the number of heads can range from zero to four. 
The macrostates are  not  equally likely. A good guess would be that 2 heads is much 
more likely than 4 heads. To find the probability of a macrostate, we count up the num-
ber of microstates corresponding to that macrostate and divide by the total number of 
microstates for all the possible macrostates. From  Table 15.3 , the probability of the 
most likely macrostate (2 heads) is 6/16  =  0.375. The probability of 4 heads is only 
1/16  =  0.0625.             

  probability of macrostate =   
number of microstates corresponding to the macrostate

     _____________________________________________     
total number of microstates for all possible macrostates

  

        

Table 15.3 Possible Results of Tossing Four Coins

  Number of  Probability
Macrostate Microstates Microstates of Macrostate

4 heads HHHH 1   1 __ 16  

3 heads HHHT HHTH HTHH THHH 4   4 __ 16  

2 heads HHTT HTHT HTTH THHT THTH TTHH 6   6 __ 16  

1 head HTTT THTT TTHT TTTH 4   4 __ 16  

0 heads TTTT 1   1 __ 16  

 Total number of microstates = 16

PHYSICS AT HOME

Repeatedly toss a collection of 10 identical coins. After each toss, count and 
record the number of heads. After a large number of tosses, are your results 
similar to the results of a statistical analysis (see Fig. 15.20)? Why are your 
results not exactly the same?
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 Unlike our four-coin model, thermodynamic systems have huge numbers of parti-
cles (for instance, there are 6  ×  10 23  particles in one mole). What happens to the coin-
tossing problem if the number of coins gets large? In Fig. 15.20, we have graphed the 
number of microstates for the various macrostates for systems with  N   =  4 coins, 10 coins, 
100 coins, and 1 mole of coins. The horizontal axes for the four graphs specify the mac-
rostate as the  fractional  number of heads, which ranges from 0 to 1. The probability of 
obtaining any macrostate is proportional to the number of microstates since the micro-
states are equally likely. 

 Notice what happens to the probability peak: as  N  gets large, the probability of 
obtaining a macrostate having a number of heads significantly different (say, more than 
0.01%) from   1 _ 2      N   gets smaller and smaller. With 4, 10, or 100 coins, it is possible to toss 
the coins and observe a decrease in entropy—that is, the observed macrostate after the 
toss can be one that is less probable than the macrostate before the toss. What if there 
were 6  ×  10 23  coins? The probability of getting anything more than 0.01% away from 
3  ×  10 23  heads is so small that we can call it zero—it is impossible. 

This kind of statistical analysis is the basis for the second law of thermodynamics. 
The entropy S of a macrostate is proportional to the number of microstates Ω that corre-
spond to that macrostate: 

 S = k ln Ω (15-22) 

where k is Boltzrnann’s constant. 
The relationship between S and Ω has to be logarithmic because entropy is addi-

tive: if system 1 has entropy S1 and system 2 has entropy S2, then the total entropy is 
S1 + S2. However, the number of microstates is multiplicative. Think of dice: if die 1 has 
6 microstates and die 2 also has 6, the total number of microstates is not 12, but 6 × 6 = 36. 
The entropy is additive since ln 6 + ln 6 = ln 36. 

Entropy never decreases because the macrostate with the highest entropy is the one 
with the greatest number of microstates, and thus the highest probability. (Recall that 
since the microstates are equally likely, the probability of a macrostate is proportional 
to Ω.) The probability peak is so sharp and narrow in thermodynamic systems that the 
probability of finding a macrostate not in that peak is effectively zero. The equilibrium 
macrostate is the one with the largest number of microstates. Since the macrostate with 
the highest probability has the highest entropy, a system will always evolve toward the 
highest entropy.

 Entropy never decreases because the macrostate with the highest entropy is the one 
with the greatest number of microstates, and thus the highest probability. (The microstates 
are equally likely, so the probability of a macrostate is proportional to  Ω .) The probability 
peak is so sharp and narrow in thermodynamic systems that the probability of finding a 
macrostate not in that peak is effectively zero. The equilibrium macrostate is the one with 
the largest number of microstates. Since the macrostate with the highest probability has 
the highest entropy, a system will always evolve toward the highest entropy.       
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Figure 15.20 Graphs of the num-
ber of microstates versus n/N (n = 0, 
1, . . . , N), where n = number of 
heads for N = 4 coins, 10 coins, 100 
coins, 6 × 1023 coins.
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Since ln 2N = N ln 2,

  
 Ω  f  ___  Ω  i 

   =  2 N 

Discussion To get an idea of how large the increase in the 
number of microstates is, let N = NA (1 mol of gas). To write 
the number 2N in ordinary base 10 notation, we would need 
2 × 1023 digits.

The temperature is the same before and after, so the num-
ber of velocity states, rotational states, and vibrational states 
before and after is the same. But each molecule has twice as 
much volume in which it can be found, so the number of 
microstates is multiplied by 2 for each molecule, or by 2N 
overall.

Practice Problem 15.11 Change in Entropy for 10 
Coins

What is the change in entropy (expressed as a multiple of the 
Boltzmann constant) if a box of 10 coins starts with 8 heads 
showing and then is shaken until 4 heads are showing? [Hint: 
See Fig. 15.20.]

Example 15.11

Increased Number of Microstates in Free 
Expansion

Refer to the free expansion of an ideal gas (Example 15.9). 
How does the number of microstates change when the vol-
ume of the gas (containing N molecules) is doubled?

Strategy Since in Example 15.9 we found the entropy 
change for this process, we can now use the entropy change 
to find how the number of microstates changes. Since the 
relationship between S and Ω is logarithmic, an increase in S 
will tell us by what factor Ω increases.

Solution The entropy change for n moles was found 
to be

ΔS = −nR ln   1 _ 2   = nR ln 2

Since nR = Nk, the entropy increase can be written in terms 
of N:

ΔS = Nk ln 2

If Ωi and Ωf are the initial and final number of microstates, 
then

ΔS = k ln  Ω  f  − k ln  Ω  i  = k (ln  Ω  f  − ln  Ω  i ) = k ln   
 Ω  f  ___  Ω  i 

  

Equating these last two expressions for ΔS, we find

N ln 2 = ln   
 Ω  f  ___  Ω  i 

  

            Problems

       81. Suppose there are four balls in a box; three balls are 
yellow and one is blue. The blue ball is marked with 
the number 1. The yellow balls are numbered 2, 3, 
and 4. You are blindfolded and choose two balls from 
the box, removing them one at a time. (a) List all 
possible combinations of choosing two balls such 
that one is blue and one yellow. (b) What is the num-
ber of microstates for the system of one blue and one 
yellow ball? (c) List all possible combinations of 
choosing two balls such that both are yellow. (d) 
What is the number of microstates for the system of 
two yellow balls? (e) Of the two possible macrostates 
(blue and yellow, yellow and yellow), is one more 
probable than the other?  

82. Suppose the macrostate of a system of 100 identical 
coins is specified by the number of heads. What is the 
entropy of the state with one head (in terms of 
Boltzmann’s constant,  k )?  

   83. For a system composed of two identical dice, let the 
macrostate be defined by the sum of the numbers show-
ing on the top faces. What is the maximum entropy of 
this system in units of Boltzmann’s constant,  k?   

84. (a) What is the number of ways that five identical coins 
can be arranged so one of them shows heads? (b) What 
is the entropy of this state in units of Boltzmann’s con-
stant,  k?  (c) Repeat parts (a) and (b) for five identical 
coins with two showing heads.  

85. Two identical dice are thrown. A macrostate is specified 
by the sum of the two numbers that come up on the dice. 
(a) How is a microstate specified for this system? 

✦✦

✦✦
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(b) How many different microstates are there? (c) How 
many different macrostates are there? (d) What is the 
most probable macrostate? (e) What is the probability 
of getting this result? (f) What is the probability of roll-
ing “snake eyes” (two 1s)?  

86. Six identical coins are tossed simultaneously. The mac-
rostate is specified by the number of “heads.” (a) What 
is/are the most probable macrostate(s)? (b) What is/are 
the least probable macrostate(s)? (c) What is the proba-
bility of obtaining the most probable macrostate?  

   87. If 1.0 g of ice at 0.0 ° C melts into liquid water at 0.0 ° C, by 
what factor has the number of microstates increased?  

   88. If the number of microstates for a thermodynamic system 
doubles, how much has the system’s entropy increased?  

     89. Four indistinguishable marbles must be placed into two 
distinguishable boxes. (a) How many microstates are 

✦✦

there? (b) How many macrostates? (c) What is the most 
probable macrostate? (d) What is the entropy of that mac-
rostate? (e) What is the least probable macrostate? 
(f) What is the entropy of the least probable macrostate?

90. What is the change in entropy when a collection of eight 
identical coins, arranged to show four heads and four 
tails, is changed to all eight showing heads? If the 
entropy of the coins decreases, how can the entropy of 
the universe increase in this process?  

91. List these in order of increasing entropy: (a) 1000 He 
atoms moving at random velocities with an average 
speed of 400 m/s; (b) 1000 He atoms all moving at 
400 m/s in the same direction; (c) 1000 He atoms all 
moving at 400 m/s in random directions.  

Answers to Practice Problems   

      15.11      k ln   210 ____ 
45

   ≈ +1.54k        

✦
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