CHAPTER 27

Radii of the Bohr Orbits

An electron of mass m_{e} in a circular orbit of radius r at speed v has rotational inertia $I=m_{\mathrm{e}} r^{2}$ [Eq. (8-2)] and angular momentum $L=I \omega$ [Eq. (8-14)]:

$$
L=I \omega=m_{\mathrm{e}} r^{2} \omega=m_{\mathrm{e}} v r
$$

since $\omega=v / r$. Then the Bohr condition on angular momentum [Eq. (27-18)] becomes

$$
\begin{equation*}
m_{\mathrm{e}} v r_{n}=n \hbar \quad(n=1,2,3, \ldots) \tag{27-27}
\end{equation*}
$$

where r_{n} is the radius of the orbit with angular momentum $n \hbar$ Using Newton's second law $(\Sigma \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}})$ applied to an electron held in circular orbit by the Coulomb force (see Problem 86), Bohr showed that the only orbital radii that satisfy Eq. (27-27) are

$$
\begin{equation*}
r_{n}=\frac{n^{2} \hbar^{2}}{m_{\mathrm{e}} k e^{2}} \quad(n=1,2,3, \ldots) \tag{27-28}
\end{equation*}
$$

Problems

86. An electron orbits a proton at constant speed in a circle of radius r. (a) Using Coulomb's law, write an expression for the magnitude of the electric force on the electron in terms of r, the elementary charge e, and the Coulomb constant k. (b) Apply Newton's second law to the electron and use it to show that the electron's speed is

$$
v=\sqrt{\frac{k e^{2}}{m_{\mathrm{e}} r}}
$$

[Hint: The electron is in uniform circular motion.] (c) Use the Bohr assumption about the electron's angular momentum, Eq. (27-27), to show that the radius of the $n^{\text {th }}$ Bohr orbit is

$$
\begin{equation*}
r_{n}=\frac{n^{2} \hbar^{2}}{m_{\mathrm{e}} k e^{2}} \tag{27-28}
\end{equation*}
$$

87. An electron orbits a proton at constant speed in a circle of radius r. (a) What is the electron's kinetic energy in terms of k, e, and r ? Use the expression for the electron's speed found in Problem 86. (b) What is the electron's electric potential energy in terms of k, e, and r ? (Assume $U=0$ when $r=\infty$.) (c) Show that the electron's mechanical energy ($K+U$) is $E=-k e^{2} /(2 r)$. (d) Use Eq. (27-19) to show that the energy of the $n^{\text {th }}$ Bohr orbit is

$$
\begin{equation*}
E_{n}=\frac{m_{e} k^{2} e^{4}}{2 n^{2} \hbar^{2}} \tag{27-22}
\end{equation*}
$$

88. According to the Bohr model, the speed of the electron in the ground state of singly ionized helium $\left(\mathrm{He}^{+}\right.$, with $Z=2$) is $4.4 \times 10^{6} \mathrm{~m} / \mathrm{s}$. Use this information to find the speed of an electron in the first excited state of triply ionized beryllium (Be^{3+} with $Z=4$).
