## Building Conceptual Understanding

## Chapter Opening Outline

At the beginning of each chapter is an outline presenting the section heads within the chapter. The outline also includes the titles of the Examples and Solved Problems found in the chapter. At a quick glance, you will know if a desired topic, example, or problem is in the chapter.

## What We Will Learn / What We Have Learned

Each chapter of University Physics is organized like a good research seminar. It was once said, "Tell them what you will tell them, then tell them, and then tell them what you told them!" Each chapter starts with What We Will Learn-a quick summary of the main points, without any equations. And at the end of each chapter, What We Have Learned/Exam Study Guide contains key concepts, including major equations.


## WHAT WE WILL LEARN

- An electric field represents the electric force at different points in space.
- Electric field lines represent the net force vectors exerted on a unit positive electric charge. They originate on positive charges and terminate on negative charges.
- The electric field of a point charge is radial, proportional to the charge, and inversely proportional to the square of the distance from the charge.
- An electric dipole consists of a positive charge and a negative charge of equal magnitude.
- The electric flux is the electric field component normal to an area times the area.
- Gauss's Law states that the electric flux through a closed surface is proportional to the net electric charge


FIGURE $\mathbf{2 5 . 2 5}$ Current as a function of potential difference for a resistor (red) and a diode (blue).
enclosed within the surface. This law provides simple ways to solve seemingly complicated electric field problems.

- The electric field inside a conductor is zero.
- The magnitude of the electric field due to a uniformly charged, infinitely long wire varies as the inverse of the perpendicular distance from the wire.
- The electric field due to an infinite sheet of charge does not depend on the distance from the sheet.
- The electric field outside a spherical distribution of charge is the same as the field of a point charge with the same total charge located at the sphere's center.



## Concept Check 18.4

If you double the temperature (measured in kelvins) of an object, the thermal energy transferred away from it per unit time will
a) decrease by a factor of 2 .
b) stay the same.
c) increase by a factor of 2 .
d) increase by a factor of 4 .
e) will change by an amount that cannot be determined without knowing the temperature of the object's surroundings.

