
try
{

// Convert input values to numeric and assign to
quantityInteger = int.Parse(quantityTextBox.Text)
try
{

priceDecimal = decimal.Parse(priceTextBox.Tex
// Calculate values.
extendedPriceDecimal = quantityInteger * pric
discountDecimal = Decimal.Round(

(extendedPriceDecimal * DISCOUNT_RATE_Deci
amountDueDecimal = extendedPriceDecimal - dis
totalAmountDecimal += amountDueDecimal;
numberTransactionsInteger++;
// Format and display answers.
extendedPriceTextBox.Text = extendedPriceDeci

C H A P T E R

1
Introduction to
Programming and
Visual C# 2005

at the completion of this chapter, you will be able to . . .

1. Describe the process of visual program design and development.

2. Explain the term object-oriented programming.

3. Explain the concepts of classes, objects, properties, methods, and events.

4. List and describe the three steps for writing a C# program.

5. Describe the various files that make up a C# project.

6. Identify the elements in the Visual Studio environment.

7. Define design time, run time, and debug time.

8. Write, run, save, print, and modify your first C# program.

9. Identify syntax errors, run-time errors, and logic errors.

10. Look up C# topics in Help.

bra17186_ch01_001-064 03:16:2007 20:33 Page 1 pinnacle Mac OS IX:Desktop Folder:Bradley:

2 V I S U A L C# Introduction to Programming and Visual C# 2005

F i g u r e 1 . 1

Graphical user interfaces for
application programs designed
with C# and Windows Forms.

Using this text, you will learn to write computer programs that run in the
Microsoft Windows environment. Your projects will look and act like standard
Windows programs. You will use the tools in C# (C sharp) and Windows Forms
to create windows with familiar elements such as labels, text boxes, buttons,
radio buttons, check boxes, list boxes, menus, and scroll bars. Figure 1.1 shows
some sample Windows user interfaces.

Writing Windows Applications with Visual C#

Beginning in Chapter 9 you will create programs using Web Forms and
Visual Web Developer. You can run Web applications in a browser such as
Internet Explorer, on the Internet, or on a company intranet. Figure 1.2 shows
a Web Form application.

The Windows Graphical User Interface

Microsoft Windows uses a graphical user interface, or GUI (pronounced
“gooey”). The Windows GUI defines how the various elements look and
function. As a C# programmer, you have available a toolbox of these ele-
ments. You will create new windows, called forms. Then you will use the

ButtonsPicture
box

Labels

Check box

Labels

Radio
buttons

Text boxes

List
box

Drop-down list
Group
box

Menu bar

bra17186_ch01_001-064 03:16:2007 20:33 Page 2 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 3

There are literally hundreds of programming languages. Each was developed to
solve a particular type of problem. Most traditional languages, such as BASIC,
C, COBOL, FORTRAN, PL/1, and Pascal, are considered procedural lan-
guages. That is, the program specifies the exact sequence of all operations.
Program logic determines the next instruction to execute in response to condi-
tions and user requests.

The newer programming languages such as C#, J#, Java, and Visual Basic
(VB) 2005 use a different approach: object-oriented programming (OOP).

In the OOP model, programs are no longer procedural. They do not follow
a sequential logic. You, as the programmer, do not take control and determine
the sequence of execution. Instead, the user can press keys and click various
buttons and boxes in a window. Each user action can cause an event to occur,
which triggers a method (a set of programming statements) that you have writ-
ten. For example, the user clicks on a button labeled Calculate. The clicking
causes the button’s Click event to occur, and the program automatically jumps
to a method you have written to do the calculation.

The Object Model

In C# you will work with objects, which have properties, methods, and events.
Each object is based on a class.

Programming Languages—Procedural,
Event Driven, and Object Oriented

toolbox to add the various elements, called controls. The projects that you
will write follow a programming technique called object-oriented pro-
gramming (OOP).

F i g u r e 1 . 2

A Web Forms application
running in a browser.

bra17186_ch01_001-064 03:16:2007 20:33 Page 3 pinnacle Mac OS IX:Desktop Folder:Bradley:

Objects
Think of an object as a thing, or a noun. Examples of objects are forms and
controls. Forms are the windows and dialog boxes you place on the screen;
controls are the components you place inside a form, such as text boxes, but-
tons, and list boxes.

Properties
Properties tell something about or control the behavior of an object such as its
name, color, size, or location. You can think of properties as adjectives that
describe objects.

When you refer to a property, you first name the object, add a period,
and then name the property. For example, refer to the Text property of
a form called SalesForm as SalesForm.Text (pronounced “sales form dot
text”).

Methods
Actions associated with objects are called methods. Methods are the verbs
of object-oriented programming. Some typical methods are Close, Show, and
Clear. Each of the predefined objects has a set of methods that you can
use. You will learn to write additional methods to perform actions in your
programs.

You refer to methods as Object.Method (“object dot method”). For exam-
ple, a Show method can apply to different objects: BillingForm.Show shows
the form object called BillingForm; exitButton.Show shows the button object
called exitButton.

Events
You can write methods that execute when a particular event occurs. An
event occurs when the user takes an action such as clicking a button, press-
ing a key, scrolling, or closing a window. Events also can be triggered by
actions of other objects, such as repainting a form or a timer reaching a pre-
set point.

Classes
A class is a template or blueprint used to create a new object. Classes contain
the definition of all available properties, methods, and events.

Each time that you create a new object, it must be based on a class. For
example, you may decide to place three buttons on your form. Each button is
based on the Button class and is considered one object, called an instance of
the class. Each button (or instance) has its own set of properties, methods, and
events. One button may be labeled “OK”, one “Cancel”, and one “Exit”.
When the user clicks the OK button, that button’s Click event occurs; if the
user clicks on the Exit button, that button’s Click event occurs. And, of
course, you have written different program instructions for each of the button’s
Click events.

An Analogy
If the concepts of classes, objects, properties, methods, and events are still a
little unclear, maybe an analogy will help. Consider an Automobile class.
When we say automobile, we are not referring to a particular auto, but we know

4 V I S U A L C# Introduction to Programming and Visual C# 2005

TIP
The term members is used to refer to
both properties and methods.

bra17186_ch01_001-064 03:16:2007 20:33 Page 4 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 5

that an automobile has a make and model, a color, an engine, and a number of
doors. These elements are the properties of the Automobile class.

Each individual auto is an object, or an instance of the Automobile class.
Each Automobile object has its own settings for the available properties. For
example, each object has a Color property, such as myAuto.Color � Blue and
yourAuto.Color � Red.

The methods, or actions, of the Automobile class might be Start,
SpeedUp, SlowDown, and Stop. To refer to the methods of a specific object of
the class, use myAuto.Start and yourAuto.Stop.

The events of an Automobile class could be Arrive or Crash. In a C# pro-
gram, you write event-handling methods that specify the actions you want to
take when a particular event occurs for an object. For example, you might write
a method to handle the yourAuto.Crash event.

Note: Chapter 12 presents object-oriented programming in greater depth.

Microsoft’s Visual Studio .NET

The latest version of Microsoft’s Visual Studio, called Visual Studio 2005, includes
C#, Visual C��, Visual Basic, J# (J sharp), and the .NET 2.0 Framework.

The .NET Framework
The programming languages in Visual Studio run in the .NET Framework. The
Framework provides for easier development of Web-based and Windows-based
applications, allows objects from different languages to operate together, and
standardizes how the languages refer to data and objects. Several third-party
vendors have announced or released versions of other programming languages
to run in the .NET Framework, including .NET versions of APL by Dyalog,
FORTRAN by Lahey Computer Systems, COBOL by Fujitsu Software
Corporation, Pascal by the Queensland University of Technology (free),
PERL by ActiveState, RPG by ASNA, and Java, known as IKVM.NET. See
http://www.gotdotnet.com/team/lang/ for the latest details.

The .NET languages all compile to (are translated to) a common machine
language, called Microsoft Intermediate Language (MSIL). The MSIL code,
called managed code, runs in the Common Language Runtime (CLR), which is
part of the .NET Framework.

C#
Microsoft C# comes with Visual Studio. You also can purchase C# by itself (with-
out the other languages but with the .NET Framework). C# is available in an
Express Edition, a Standard Edition, a Professional Edition, and a Team
System (see http://msdn.microsoft.com/vstudio/products/compare/). Anyone plan-
ning to do professional application development that includes the advanced fea-
tures of database management should use the Professional Edition or the Team
System version. The trial version packaged with this book is the 180-day trial
version of the Professional Edition. The full Professional Edition is available to
educational institutions through the Microsoft Academic Alliance program and is
the best possible deal. When a campus department purchases the Academic Al-
liance, the school can install Visual Studio on all classroom and lab computers
and provide the software to all students and faculty at no additional charge.

This text is based on C# 2005, the current version. You cannot run the
projects in this text in any earlier version of C#.

bra17186_ch01_001-064 03:16:2007 20:33 Page 5 pinnacle Mac OS IX:Desktop Folder:Bradley:

6 V I S U A L C# Introduction to Programming and Visual C# 2005

When you write a C# application, you follow a three-step process for planning
the project and then repeat the process for creating the project. The three steps
involve setting up the user interface, defining the properties, and then creating
the code.

The Three-Step Process

Planning
1. Design the user interface. When you plan the user interface, you

draw a sketch of the screens the user will see when running your
project. On your sketch, show the forms and all the controls that you
plan to use. Indicate the names that you plan to give the form and
each of the objects on the form. Refer to Figure 1.1 for examples of
user interfaces.

Before you proceed with any more steps, consult with your user and
make sure that you both agree on the look and feel of the project.

2. Plan the properties. For each object, write down the properties that you
plan to set or change during the design of the form.

3. Plan the C# code. In this step you plan the classes and methods that
will execute when your project runs. You will determine which events
require action to be taken and then make a step-by-step plan for
those actions.

Later, when you actually write the C# code, you must follow the
language syntax rules. But during the planning stage, you will write
out the actions using pseudocode, which is an English expression
or comment that describes the action. For example, you must
plan for the event that occurs when the user clicks on the Exit but-
ton. The pseudocode for the event could be End the project or Quit.

Programming
After you have completed the planning steps and have approval from your user,
you are ready to begin the actual construction of the project. Use the same
three-step process that you used for planning.

1. Define the user interface. When you define the user interface, you create
the forms and controls that you designed in the planning stage.

Think of this step as defining the objects you will use in your
application.

2. Set the properties. When you set the properties of the objects, you give
each object a name and define such attributes as the contents of a label,
the size of the text, and the words that appear on top of a button and in
the form’s title bar.

You might think of this step as describing each object.
3. Write the code. You will use C# programming statements (called C#

code) to carry out the actions needed by your program. You will be sur-
prised and pleased by how few statements you need to create a powerful
Windows program.

You can think of this third step as defining the actions of your program.

Writing C# Programs

bra17186_ch01_001-064 03:16:2007 20:33 Page 6 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 7

C# Application Files

A C# application, called a solution, can consist of one or more projects. Since
all of the solutions in this text have only one project, you can think of one
solution � one project. Each project can contain one or more form files. In
Chapters 1 through 5, all projects have only one form, so you can think of one
project � one form. Starting in Chapter 6, your projects will contain multiple
forms and additional files. As an example, the HelloWorld application that you
will create later in this chapter creates the following files:

HelloWorld.sln The solution file. A text file that holds infor-
mation about the solution and the projects
it contains. This is the primary file for the
solution—the one that you open to work on or
run your project.

HelloWorld.suo Solution user options file. Stores information
about the state of the IDE, so that all cus-
tomizations can be restored each time you
open the solution.

HelloForm.cs A .cs (C#) file. Holds the code methods
that you write for a form. This is a text file that
you can open in any editor. Warning: You
should not modify this file unless you are using
the editor in the Visual Studio environment.

HelloForm.Designer.cs A .cs (C#) file. Holds the definition of the form
and its controls. You should not modify the
statements in this designer-generated code
file, but instead make any desired changes
using the form designer.

HelloForm.resx A resource file for the form. This text file
defines all resources used by the form, includ-
ing strings of text, numbers, and any graphics.

HelloWorld.csproj A project file. A text file that describes the
project and lists the files that are included in
the project.

Program.cs A .cs (C#) file. Contains automatically gener-
ated code that runs first when you execute
your application.

Note: You can display file extensions using My Computer. In the My Computer
Tools menu, select Folder Options and the View tab. Deselect the check box for
Hide extensions for known file types.

After you run your project, you will find several more files created by the
system. The only file that you open directly is the .sln, or solution file.

The Visual Studio environment is where you create and test your projects. A de-
velopment environment such as Visual Studio is called an integrated develop-
ment environment (IDE). The IDE consists of various tools, including a form
designer, which allows you to visually create a form; an editor, for entering and

The Visual Studio Environment

bra17186_ch01_001-064 03:16:2007 20:33 Page 7 pinnacle Mac OS IX:Desktop Folder:Bradley:

8 V I S U A L C# Introduction to Programming and Visual C# 2005

modifying program code; a compiler, for translating the C# statements into the
intermediate machine code; a debugger, to help locate and correct program
errors; an object browser, to view the available classes, objects, properties,
methods, and events; and a Help facility.

In versions of Visual Studio prior to .NET, each language had its own IDE.
For example, to create a Visual Basic project you would use the Visual Basic IDE
and to create a C�� project you would use the C�� IDE. But in Visual Studio,
you use the one IDE to create projects in any of the supported languages.

Default Environment Settings

Visual Studio 2005 provides a new option that allows the programmer to select the
default profile for the IDE. The first time you open Visual Studio, you are presented
with the Choose Default Environment Settings dialog box (Figure 1.3), where you can
choose Visual C# Development Settings. This text uses the Visual C# settings.

F i g u r e 1 . 3

The first time you open the
Visual Studio IDE, you must
select the default environment
settings for Visual C#
development.

Note: If you plan to develop in more than one language, such as VB and
C#, you can save each group of settings and switch back and forth between the
two. Select Tools / Import and Export Settings and choose to Reset all settings.

The IDE Initial Screen

When you open the Visual Studio IDE, you generally see an empty environment
with a Start Page (Figure 1.4). However, it’s easy to customize the environment,
so you may see a different view. In the step-by-step exercise later in this chap-
ter, you will learn to reset the IDE layout to its default view.

The contents of the Start Page vary, depending on whether you are
connected to the Internet. Microsoft has included links that can be updated,
so you may find new and interesting information on the Start Page each time you
open it. To display or hide the Start Page, select View /Other Windows / Start Page.

You can open an existing project or begin a new project using the Start
Page or the File menu. The examples in this text use the menus.

bra17186_ch01_001-064 03:16:2007 20:33 Page 8 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 9

F i g u r e 1 . 4

The Visual Studio IDE with the Start Page open, as it first appears in Windows XP, without an open project. You can close
the Start Page by clicking on its Close button.

The New Project Dialog

You will create your first C# projects by selecting File / New Project, which
opens the New Project dialog (Figure 1.5). In the New Project dialog, you may
need to expand the node for Other Languages, depending on your installation.
Under Visual C#, select Windows, and in the Templates pane, select Windows
Application. You also give the project a name in this dialog. (Note that the proj-
ect is saved in a temporary location at this time; you do not supply the path.
Later, when you choose to save the project, you choose the location.)

The IDE Main Window

Figure 1.6 shows the Visual Studio environment’s main window and its various
child windows. Note that each window can be moved, resized, opened, closed,
and customized. Some windows have tabs that allow you to display different
contents. Your screen may not look exactly like Figure 1.6; in all likelihood,
you will want to customize the placement of the various windows.

The windows in the IDE are considered either document windows or tool
windows. The tool windows are listed under the View menu; document windows

Close button for
Start page

bra17186_ch01_001-064 03:16:2007 20:33 Page 9 pinnacle Mac OS IX:Desktop Folder:Bradley:

10 V I S U A L C# Introduction to Programming and Visual C# 2005

F i g u r e 1 . 5

Begin a new C# Windows proj-
ect using the Windows Applica-
tion template.

Select the Windows Application template

Select Visual C# Windows

Enter the project name

F i g u r e 1 . 6

The Visual Studio environment. Each window can be moved, resized, closed, or customized.

bra17186_ch01_001-064 03:16:2007 20:33 Page 10 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 11

are generally docked together in the center of the IDE, but the locations and
the docking behavior are all customizable.

The IDE main window holds the Visual Studio menu bar and the toolbars.

The Toolbars

You can use the buttons on the toolbars as shortcuts for frequently used oper-
ations. Each button represents a command that also can be selected from a
menu. Figure 1.7a shows the toolbar buttons on the Standard toolbar, which
displays in the main window of the IDE; Figure 1.7b shows the Layout toolbar,
which displays in the Form Designer; and Figure 1.7c shows the Text Editor
toolbar, which appears when the Editor window is displayed. Select View /
Toolbars to display or hide these and other toolbars.

F i g u r e 1 . 7

The Visual Studio toolbars contain buttons that are shortcuts for menu commands. You can display or hide each of the toolbars:
a. the Standard toolbar; b. the Layout toolbar; and c. the Text Editor toolbar.

New Project

New Web Site

Open File

Add Item

Save Current File

Save All

Cut
Copy

Paste
Find

Uncomment the Selected Lines

Comment Out the Selected Lines

Undo
Redo

Start
Break All

Stop Debugging

Step Into

Step Over

Step Out

Solution Explorer

Properties W
indow

Object Browser

Tool Box

Error List

Other W
indows

Align to Grid

Align Lefts

Align Middles

Align Bottoms

Make Same W
idth

Make Same Height

Make Same Size

Size To Grid

Make Horizontal Spacing Equal

Increase Horizontal Spacing

Decrease Horizontal Spacing

Remove Horizontal Spacing

Make Vertical Spacing Equal

Increase Vertical Spacing

Decrease Vertical Spacing

Remove Vertical Spacing

Center Horizontally

Center Vertically

Bring To Front

Send To Back

Merge Cells

Tab Order

Align Centers

Align Rights

Align Tops

Display Object Member List

Display Parameter Info

Display Quick Info

Display Word Completion

Decrease Indent

Increase Indent

Toggle Bookmark

Move To Previous Bookmark

Move To Next Bookmark

Move To Previous Bookmark in Current Folder

Move To Next Bookmark in Current Folder

Move To Previous Bookmark in Current Document

Move To Next Bookmark in Current Document

Clear Bookmarks

a.

b.

c.

bra17186_ch01_001-064 03:16:2007 20:33 Page 11 pinnacle Mac OS IX:Desktop Folder:Bradley:

TIP
You can sort the properties in the
window either alphabetically or by
categories. Use the buttons on the
Properties window.

The Document Window

The largest window in the center of the screen is the Document window.
Notice the tabs across the top of the window, which allow you to switch between
open documents. The items that display in the Document window include the
Form Designer, the Code Editor, the Project Designer, and the Object Browser.

You can switch from one tab to another, or close any of the documents us-
ing its Close button.

The Form Designer

The Form Designer is where you design a form that makes up your user inter-
face. In Figure 1.6, the Form Designer for Form1 is currently displaying. You can
drag the form’s sizing handles or selection border to change the size of the form.

When you begin a new C# Windows project, a new form is added to the
project with the default name Form1. In the step-by-step exercise later in the
chapter, you will learn to change the form’s name.

The Solution Explorer Window

The Solution Explorer window holds the filenames for the files included in your
project and a list of the classes it references. The Solution Explorer window and
the environment’s title bar hold the name of your solution (.sln) file, which is
WindowsApplication1 by default unless you give it a new value in the New
Project dialog box. In Figure 1.6, the name of the solution is MyFirstProject.

The Properties Window

You use the Properties window to set the properties for the objects in your
project. See “Set Properties” later in this chapter for instructions on chang-
ing properties.

The Toolbox

The toolbox holds the tools you use to place controls on a form. You may
have more or different tools in your toolbox, depending on the edition of C#
you are using (Express, Standard, Professional, or Team System). Figure 1.8
shows the toolbox.

Help

Visual Studio has an extensive Help feature that is greatly expanded for the
2005 version. Help includes the Microsoft Developer Network library (MSDN),
which contains reference materials for C#, C��, VB, and Visual Studio;
several books; technical articles; and the Microsoft Knowledge Base, a database
of frequently asked questions and their answers.

Help includes the entire reference manual, as well as many coding exam-
ples. See the topic “Visual Studio Help” later in this chapter for help on Help.

When you make a selection from the Help menu, the requested item ap-
pears in a new window that floats on top of the IDE window (Figure 1.9), so
you can keep both open at the same time. It’s a good idea to set the Filtered By
entry to Visual C#.

12 V I S U A L C# Introduction to Programming and Visual C# 2005

TIP
Use Ctrl � Tab to cycle through the
open documents in the Document
window.

bra17186_ch01_001-064 03:16:2007 20:33 Page 12 pinnacle Mac OS IX:Desktop Folder:Bradley:

TIP
You can sort the tools in the tool-
box: Right-click the toolbox and
select Sort Items Alphabetically
from the context menu (the shortcut
menu).

C H A P T E R 1 13

Help with Specific Tasks

Selected Topic
Help Search

Help Index
Help Contents

Help Favorites Index Results

Filter

F i g u r e 1 . 8

The toolbox for Visual Studio
Windows Forms. Your toolbox
may have more or fewer tools,
depending on the edition you
are using.

Common
Controls for
Windows Forms

Scroll to see
more controls

F i g u r e 1 . 9

Help displays in a new window, independent of the Visual Studio IDE window.

bra17186_ch01_001-064 03:16:2007 20:33 Page 13 pinnacle Mac OS IX:Desktop Folder:Bradley:

14 V I S U A L C# Introduction to Programming and Visual C# 2005

Design Time, Run Time, and Debug Time

C# has three distinct modes. While you are designing the user interface and
writing code, you are in design time. When you are testing and running your
project, you are in run time. If you get a run-time error or pause project execu-
tion, you are in debug time. The IDE window title bar indicates (Running) or
(Debugging) to indicate that a project is no longer in design time.

Writing Your First C# Project
For your first C# project, you will create a form with three controls (see
Figure 1.10). This simple project will display the message “Hello World” in a
label when the user clicks the Display button and will terminate when the user
clicks the Exit button.

F i g u r e 1 . 1 0

The Hello World form. The
“Hello World” message will
appear in a label when the user
clicks on the Display button.
The label does not appear until
the button is pressed.

Set Up Your Workspace

Before you can begin a project, you must open the Visual Studio IDE. You also
may need to customize your workspace.

Run Visual Studio
These instructions assume that Visual Studio 2005 is installed in the default lo-
cation. If you are running in a classroom or lab, the program may be installed
in an alternate location, such as directly on the desktop.

STEP 1: Click the Windows Start button and move the mouse pointer to All
Programs.

STEP 2: Locate Microsoft Visual Studio 2005.
STEP 3: In the submenu that pops up, select Microsoft Visual Studio 2005.

Visual Studio will start and display the Start Page (refer to Figure 1.4).

Note: The VS IDE can be customized to not show the Start Page when it opens.

bra17186_ch01_001-064 03:16:2007 20:33 Page 14 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 15

Start a New Project
STEP 1: Select File / New Project ; the New Project dialog box opens (refer to

Figure 1.5). Make sure that Visual C# and Windows are selected for
Project types and Windows Application is selected for the template. If you
are using Visual C# Express, the dialog box differs slightly, but you
can still choose a Windows Application.

STEP 2: Enter “HelloWorld” (without the quotes) for the name of the new proj-
ect (Figure 1.11) and click the OK button. The new project opens
(Figure 1.12). At this point, your project is stored in a temporary
directory. You specify the location for the project later when you save it.

Note: Your screen may look significantly different from the figure since the
environment can be customized.

F i g u r e 1 . 1 1

Enter the name for the new project.

Set Up Your Environment
In this section, you will customize the environment. For more information on
customizing windows, floating and docking windows, and altering the location
and contents of the various windows, see Appendix C.

STEP 1: Reset the IDE’s default layout by choosing Window / Reset Window
Layout and responding Yes. The IDE should now match Figure 1.12.

Note: If the Data Sources window appears on top of the Solution Ex-
plorer window, click on the Solution Explorer tab to make it appear on top.

STEP 2: Point to the icon for the toolbox at the left of the IDE window. The
Toolbox window pops open. Notice the pushpin icon at the top of the
window (Figure 1.13); clicking this icon makes the window remain on
the screen rather than Auto Hide.

STEP 3: Click the Auto Hide pushpin icon for the Toolbox window; the toolbox
will remain open.

bra17186_ch01_001-064 03:16:2007 20:33 Page 15 pinnacle Mac OS IX:Desktop Folder:Bradley:

16 V I S U A L C# Introduction to Programming and Visual C# 2005

F i g u r e 1 . 1 3

The Toolbox window.Pushpin icon

Toolbox
icon

Solution Explorer

Properties window

Document window

Toolbox

F i g u r e 1 . 1 2

The Visual Studio IDE with the new HelloWorld C# project.

STEP 4: Optional: Select Tools / Options. In the Options dialog box, make sure that
Show all settings is selected, select Startup under Environment, drop down
the At startup list and select Show empty environment (Figure 1.14), and
click OK. This selection causes the Start Page to not appear and will
make your environment match the illustrations in this text. Note that you
can show the Start Page at any time by selecting View / Start Page.

bra17186_ch01_001-064 03:16:2007 20:33 Page 16 pinnacle Mac OS IX:Desktop Folder:Bradley:

Plan the Project

The first step in planning is to design the user interface. Figure 1.15 shows a
sketch of the form that includes a label and two buttons. You will refer to the
sketch as you create the project.

C H A P T E R 1 17

Display

Exit

messageLabelHelloForm

displayButton

exitButton

Set this option so that the Start Page does not
appear at startup.

Select this option.

F i g u r e 1 . 1 4

Select Show empty environment for the environment’s startup option in the Options dialog box.

F i g u r e 1 . 1 5

A sketch of the Hello World form for planning.

bra17186_ch01_001-064 03:16:2007 20:33 Page 17 pinnacle Mac OS IX:Desktop Folder:Bradley:

Place Controls on the Form
You are going to place three controls on the form: a Label and two Buttons.

STEP 1: Point to the Label tool in the toolbox and double-click; a Label
control appears on the form. Move the label to the desired location
(Figure 1.17). Later you will adjust the label’s size.

As long as the label is selected, you can press the Delete key to
delete it, or drag it to a new location.

You can tell that a label is selected; it has a black border, as shown
in Figure 1.17, when the AutoSize property is true (the default) or
sizing handles if you set the AutoSize property to false.

STEP 2: Draw a button on the form: Click on the Button tool in the toolbox,
position the crosshair pointer for one corner of the button, and drag to
the diagonally opposite corner (Figure 1.18). When you release the
mouse button, the new button should appear selected and have

18 V I S U A L C# Introduction to Programming and Visual C# 2005

The next two steps, planning the properties and the code, have already
been done for this first sample project. You will be given the values in the steps
that follow.

Define the User Interface

Set Up the Form
Notice that the new form in the Document window has all the standard Windows
features, such as a title bar, maximize and minimize buttons, and a close button.

STEP 1: Resize the form in the Document window: Drag the handle in the
lower-right corner down and to the right (Figure 1.16).

F i g u r e 1 . 1 6

Make the form larger by
dragging its lower-right
handle diagonally. The handles
disappear as you drag the
corner of the form.

Drag handle to enlarge form

bra17186_ch01_001-064 03:16:2007 20:33 Page 18 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 19

Double-click the Label tool.

F i g u r e 1 . 1 7

The newly created label appears outlined, indicating that it is selected. Notice that the contents of the label are set to the
control’s name (label1) by default.

resizing handles. The blue lines that appear are called snap lines,
which can help you align your controls.

While a control is selected, you can delete it or move it. If it has
resizing handles, you also can resize it. Refer to Table 1.1 for
instructions for selecting, deleting, moving, and resizing controls.
Click outside of a control to deselect it.

Snap line

Draw the Button
control using the
crosshair pointer.

F i g u r e 1 . 1 8

Select the Button tool and drag
diagonally to create a new
Button control. The blue snap
lines help to align controls.

bra17186_ch01_001-064 03:16:2007 20:33 Page 19 pinnacle Mac OS IX:Desktop Folder:Bradley:

20 V I S U A L C# Introduction to Programming and Visual C# 2005

STEP 3: While the first button is still selected, point to the Button tool in the
toolbox and double-click. A new button of the default size will appear
on top of the last-drawn control (Figure 1.19).

T a b l e 1 . 1

Select a control Click on the control.

Delete a control Select the control and then press the Delete key on the keyboard.

Move a control Select the control, point inside the control (not on a handle),
press the mouse button, and drag it to a new location.

Resize a control Make sure the control is selected and has resizing handles; then
either point to one of the handles, press the mouse button, and
drag the handle; or drag the form’s bottom border to change the
height or the side border to change the width. Note that the
default format for Labels does not allow resizing.

F i g u r e 1 . 1 9

Place a new button on the form
by double-clicking the Button
tool in the toolbox. The new
button appears on top of the
previously selected control.

Selecting, Deleting, Moving, and Resizing Controls on a Form.

STEP 4: Keep the new button selected, point anywhere inside the button (not on
a handle), and drag the button below your first button (Figure 1.20).

STEP 5: Select each control and move and resize the controls as necessary.
Make the two buttons the same size and line them up. Use the snap
lines to help with the size and alignment. Note that you can move but
not resize the label.

At this point you have designed the user interface and are ready to set the
properties.

Set Properties

Set the Name and Text Properties for the Label

STEP 1: Click on the label you placed on the form; an outline appears around
the control. Next, click on the title bar of the Properties window to
make it the active window (Figure 1.21).

bra17186_ch01_001-064 03:16:2007 20:33 Page 20 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 21

F i g u r e 1 . 2 1

The currently selected control is shown in the Properties window.

TIP
If no control is selected when you
double-click a tool, the new control
is added to the upper-left corner of
the form.

Properties
window
Namespace
and class of
selected object

Settings box

Object box

Name of selected object

F i g u r e 1 . 2 0

Drag the new button (button2)
below button1.

Notice that the Object box at the top of the Properties window is
showing label1 (the name of the object) and System.Windows.Forms.
Label as the class of the object. The actual class is Label; System.
Windows.Forms is called the namespace, or the hierarchy used to
locate the class.

TIP
If the Properties window is not visi-
ble, you can choose View / Prop-
erties Window or press the F4 key
to show it.

bra17186_ch01_001-064 03:16:2007 20:33 Page 21 pinnacle Mac OS IX:Desktop Folder:Bradley:

STEP 2: In the Properties window, click on the Alphabetical button to make
sure the properties are sorted in alphabetic order. Then select the
Name property, which appears near the top of the list. Click on (Name)
and notice that the Settings box shows label1, the default name of the
label (Figure 1.22).

22 V I S U A L C# Introduction to Programming and Visual C# 2005

F i g u r e 1 . 2 2

The Properties window. Click
on the Name property to
change the value in the
Settings box.

Alphabetical
button

Settings
box

STEP 4: Select the AutoSize property and change the value to False. You
can easily change a property from True to False in several ways:
(1) Click in the word “True” and type only the letter “f”, the value
changes automatically; (2) Double-click on either the property name
(AutoSize) or the property value (True), the value toggles each time you

F i g u r e 1 . 2 3

Type “messageLabel” into the
Settings box for the Name
property.

Sort the
Properties list
alphabetically

The new
name appears
in the
Settings box.

STEP 3: Type “messageLabel” (without the quotation marks). See Figure 1.23.
As a shortcut, you may wish to delete the “1” from the end of “label1”,
press the Home key to get to the beginning of the word, and then type
“message”. Change the “l” for Label to uppercase.

After you change the name of the control and press Enter or Tab,
you can see the new name in the Object box’s drop-down list.

bra17186_ch01_001-064 03:16:2007 20:33 Page 22 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 23

double-click; or (3) Click on either the property name or the property
value and a drop-down arrow appears at the right end of the Settings
box. Drop down the list and make your selection from the possible
values (True or False, in this case).

STEP 5: Click on the Text property to select it. (Scroll the list if necessary.)
The Text property of a control determines what will be displayed

on the form. Because nothing should display when the program begins,
you must delete the value of the Text property (as described in the next
two steps).

STEP 6: Double-click on label1 in the Settings box; the entry should appear
selected (highlighted). See Figure 1.24.

STEP 7: Press the Delete key to delete the value of the Text property. Then
press Enter and notice that the label on the form appears empty.
Changes do not appear until you press Enter or move to another prop-
erty or control.

As an alternate technique, you can double-click on the property
name, which automatically selects the entry in the Settings box.
Then you can press the Delete key or just begin typing to change
the entry.

All you see is a very small selection border (Figure 1.25), and if
you click anywhere else on the form, which deselects the label, you
cannot see it at all.

If you need to select the label after deselecting it, you can click in
the approximate spot on the form or use the Properties window: Drop
down the Object list at the top of the window; you can see a list of all
controls on the form and can make a selection (Figure 1.26).

Lock the Controls
STEP 1: Point anywhere on the form and click the right mouse button to display

a context menu. On the context menu, select Lock Controls (Figure 1.27).
Locking prevents you from accidentally moving the controls. When your

Name of control

Value in
Settings
box is
selected

F i g u r e 1 . 2 4

Double-click in the Settings
box to select the entry.

TIP
Don’t confuse the Name property
with the Text property. You will use
the Name property to refer to the
control in your C# code. The Text
property determines what the user
will see on the form. C# sets both
of these properties to the same
value by default and it is easy to
confuse them.

bra17186_ch01_001-064 03:16:2007 20:33 Page 23 pinnacle Mac OS IX:Desktop Folder:Bradley:

24 V I S U A L C# Introduction to Programming and Visual C# 2005

F i g u r e 1 . 2 6

Drop down the Object box in
the Properties window to select
any control on the form.

Label is empty and selected

Text deleted from the
Settings box

F i g u r e 1 . 2 5

Delete the value for the Text property from the Settings box; the label on the form also appears empty.

controls are locked, a selected control has a small lock icon in the upper-
left corner instead of resizing handles (Figure 1.28).

Note: You can unlock the controls at any time if you wish to redesign
the form. Just click again on Lock Controls on the context menu to
deselect it.

bra17186_ch01_001-064 03:16:2007 20:33 Page 24 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 25

F i g u r e 1 . 2 7

After the controls are placed
into the desired location, lock
them in place by selecting
Lock Controls from the context
menu. Remember that context
menus differ depending on
the current operation and
system setup.

F i g u r e 1 . 2 8

After you lock the controls
on a form, a selected control
has a lock icon instead of
resizing handles.

Set the Name and Text Properties for the First Button
STEP 1: Click on the first button (button1) to select it and then look at the

Properties window. The Object box should show the name (button1) and
class (System.Windows.Forms.Button) of the button (Figure 1.29).

Problem? If you should double-click and code appears in the Doc-
ument window, simply click on the Form1.cs [Design] tab at the top of
the window.

STEP 2: Change the Name property of the button to “displayButton” (without
the quotation marks).

Although the project would work fine without this step, we prefer to
give this button a meaningful name, rather than use button1, its default
name. The guidelines for naming controls appear later in this chapter
in the section “Naming Rules and Conventions for Objects.”

The Button
control is
selected
and locked

bra17186_ch01_001-064 03:16:2007 20:33 Page 25 pinnacle Mac OS IX:Desktop Folder:Bradley:

26 V I S U A L C# Introduction to Programming and Visual C# 2005

STEP 3: Change the Text property to “Display” (without the quotation
marks). This step changes the words that appear on top of the
button.

Set the Name and Text Properties for the Second Button
STEP 1: Select button2 and change its Name property to “exitButton.”
STEP 2: Change the Text property to “Exit.”

Change Properties of the Form
STEP 1: Click anywhere on the form, except on a control. The Properties window

Object box should now show the form as the selected object (Form1 as
the object’s name and System.Windows.Forms.Form as its class).

STEP 2: Change the Text property to “Hello World by Your Name” (again, no
quotation marks and use your own name).

The Text property of a form determines the text to appear in the title
bar. Your screen should now look like Figure 1.30.

F i g u r e 1 . 2 9

Change the properties of the
first button.

Object
box

Enter a
new Text
property
value

TIP
Always set the Name property of con-
trols before writing code. Although
the program will still work if you
reverse the order, the method names
won’t match the control names, which
can cause confusion.

F i g u r e 1 . 3 0

Change the form’s Text
property to set the text that
appears in the form’s title bar.

The form’s Text property
appears in the title bar

bra17186_ch01_001-064 03:16:2007 20:33 Page 26 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 27

STEP 3: Click on the StartPosition property and notice the arrow on the prop-
erty setting, indicating a drop-down list. Drop down the list and select
CenterScreen. This will make your form appear in the center of the
screen when the program runs.

STEP 4: In the Solution Explorer, right-click on Form1.cs and choose Rename
from the context menu. Change the file name to “HelloForm.cs”, mak-
ing sure to retain the .cs extension. Press Enter when finished. This
changes the name of the file that saves to disk as well as the name of
the class (Figure 1.31).

F i g u r e 1 . 3 1

The Properties window shows
the file’s properties with the
new name for the file. You can
change the filename in the
Properties window or the
Solution Explorer.

Properties
of the file

STEP 5: Click on the form in the Document window, anywhere except on a
control. The name of the file appears on the tab at the top of the Designer
window and the Properties window shows properties for the form’s class,
not the file. The C# designer changed the name of the form’s class to
match the name of the file (Figure 1.32).

Write Code

C# Events
While your project is running, the user can do many things, such as move the
mouse around; click either button; move, resize, or close your form’s window; or
jump to another application. Each action by the user causes an event to occur
in your C# project. Some events (like clicking on a button) you care about, and

bra17186_ch01_001-064 03:16:2007 20:33 Page 27 pinnacle Mac OS IX:Desktop Folder:Bradley:

28 V I S U A L C# Introduction to Programming and Visual C# 2005

some events (like moving the mouse and resizing the window) you do not care
about. If you write code for a particular event, then C# will respond to the event
and automatically execute your method. C# ignores events for which no methods
are written.

C# Event Handlers
You write code in C# in methods. For now, each method will begin with the words
private void and the code will be enclosed in opening and closing braces { }.

C# automatically names your event-handling methods (also called event
handlers). The name consists of the object name, an underscore (_), and the
name of the event. For example, the Click event for your button called display-
Button will be displayButton_Click. For the sample project you are writing, you
will have a displayButton_Click method and an exitButton_Click method.

C# Code Statements

This first project requires two C# statements: the comment and the assignment
statement. You also will execute a method of an object.

The Comment Statement
Comment statements, sometimes called remarks, are used for project docu-
mentation only. They are not considered “executable” and have no effect when

The form is selected and locked

File name

Name of the form class

Name of the form’s file

F i g u r e 1 . 3 2

The Properties window for the form. The form’s class name now matches the name of the form’s file.

TIP
If you change the form’s file name
before changing the form’s class
name, the IDE automatically changes
the form’s class name to match the file
name. It does not make the change if
you have changed the form’s class
name yourself.

bra17186_ch01_001-064 03:16:2007 20:33 Page 28 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 29

the program runs. The purpose of comments is to make the project more
readable and understandable by the people who read it.

Good programming practices dictate that programmers include comments
to clarify their projects. Every method should begin with a comment that
describes its purpose. Every project should have comments that explain the
purpose of the program and provide identifying information such as the name
of the programmer and the date the program was written and/or modified. In
addition, it is a good idea to place comments within the logic of a project,
especially if the purpose of any statements might be unclear.

When you try to read someone else’s code or your own after a period of
time, you will appreciate the generous use of comments.

C# comments begin with slashes. Most of the time, your comments will be
on a separate line. You also can add slashes and a comment to the right end of
a line of code.

The Comment Statement—Examples

// This project was written by Jonathon Edwards.
// Exit the project.
messageLabel.Text = "Hello World"; // Assign the message to the Text property.

E
xam

ples

Multiline Comments You also can create multiline comments by placing /* at
the beginning and */ at the end. The enclosing symbols can be on lines by
themselves or on existing lines. As you type additional lines between the
beginning and ending symbols, the editor adds an asterisk at the start of each
line, indicating that it is a comment line. However, you do not need the * at the
beginning of each line. When you want to turn multiple lines of code into com-
ments, just add the opening /* and ending */.

/*
* Project: Ch01HandsOn
* Programmer: Bradley/Millspaugh
* Date: June 2007
* Description: This project displays a Hello World message
* using labels and buttons.
* */

/*Project: Ch01HandsOn
Programmer: Bradley/Millspaugh
Date: June 2007
Description: This project displays a Hello World message

using labels and buttons. */

Ending a Statement
Most C# statements must be terminated by a semicolon (;). Comments and a
few other statements (which you will learn about later) do not end with a semi-
colon. A C# statement may extend over multiple lines; the semicolon indicates
that the statement is complete.

The Assignment Statement
The assignment statement assigns a value to a property or variable (you learn
about variables in Chapter 3). Assignment statements operate from right to left;

bra17186_ch01_001-064 03:16:2007 20:33 Page 29 pinnacle Mac OS IX:Desktop Folder:Bradley:

30 V I S U A L C# Introduction to Programming and Visual C# 2005

The value named on the right side of the equal sign is assigned to (or placed
into) the property named on the left.

The Assignment Statement—Examples

that is, the value that appears on the right side of the equal sign is assigned to
the property named on the left of the equal sign. It is often helpful to read the
equal sign as “is replaced by.” For example, the following assignment state-
ment would read “messageLabel.Text is replaced by Hello World.”

titleLabel.Text = "A Snazzy Program";
addressLabel.Text = "1234 South North Street";
messageLabel.AutoSize = true;
numberInteger = 12;

E
xam

ples
G

eneral
F

orm

Object.Property = value;

messageLabel.Text = "Hello World";

The Assignment Statement—General Form

Object.Method();

Notice that methods always have parentheses. Although this might seem like a
bother, it’s helpful to distinguish between properties and methods: Methods
always have parentheses; properties don’t.

Examples

helloButton.Hide();
messageLabel.Show();

To execute a method of the current form, you use the this keyword for the
object. And the method that closes the form and terminates the project
execution is Close.

Notice that when the value to assign is some actual text (called a literal), it is
enclosed in quotation marks. This convention allows you to type any combina-
tion of alpha and numeric characters. If the value is numeric, do not enclose it
in quotation marks. And do not place quotation marks around the terms true
and false, which C# recognizes as special key terms.

Ending a Program by Executing a Method
To execute a method of an object, you write

bra17186_ch01_001-064 03:16:2007 20:33 Page 30 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 31

In most cases, you will include this.Close() in the event-handling
method for an Exit button or an Exit menu choice.

Note: Remember, the keyword this refers to the current object. You
can omit this, since a method without an object reference defaults to the
current object.

Code the Event-Handling Methods for Hello World

Code the Click Event Handler for the Display Button

STEP 1: Double-click the Display button. The Visual Studio editor opens with
the header line of your method already in place, with the insertion
point indented inside the opening and closing braces (Figure 1.33).

this.Close();

F i g u r e 1 . 3 3

The Editor window, showing the first line of the displayButton_Click event handler with the insertion point between the
opening and closing braces.

STEP 2: Type this comment statement:

Notice that the editor automatically displays comments in green
(unless you or someone else has changed the color with an Environ-
ment option).

Follow good coding conventions and indent all lines between the
opening and closing braces. The smart editor attempts to help you

// Display the Hello World message.

bra17186_ch01_001-064 03:16:2007 20:33 Page 31 pinnacle Mac OS IX:Desktop Folder:Bradley:

follow this convention. Also, always leave a blank line after the com-
ments at the top of a method.

STEP 3: Press Enter twice and then type this assignment statement:

32 V I S U A L C# Introduction to Programming and Visual C# 2005

messageLabel.Text = "Hello World";

Note: When you start typing the first letters of messageLabel, Intel-
liSense pops up. Although you can type the entire word, you can allow
IntelliSense to help you. As soon as you type the m, the list automatically
scrolls to the first word that begins with m. Type the next letter, e, and the
property messageLabel appears highlighted. You can press the period to
select the word and an IntelliSense list pops up showing the properties
and methods available for a Label control. After typing “Te” or selecting
Text from the list, you can press the spacebar to complete the word.

This assignment statement assigns the literal “Hello World” to the
Text property of the control called messageLabel. Compare your screen
to Figure 1.34.

STEP 4: Return to the form designer (Figure 1.32) by clicking on the HelloForm.cs
[Design] tab on the Document window (refer to Figure 1.34).

// Exit the project.

TIP
Allow the Editor and IntelliSense to
help you. If the IntelliSense list does
not pop up, likely you misspelled the
name of the control.

Comment statement

Assignment statement

Editor tab Form Designer tab

F i g u r e 1 . 3 4

Type the comment and assignment statement for the displayButton_Click event handler.

Code the Click Event Handler for the Exit Button

STEP 1: Double-click the Exit button to open the editor for the exitButton_
Click event handler.

STEP 2: Type this comment:

bra17186_ch01_001-064 03:16:2007 20:33 Page 32 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 33

STEP 4: Make sure your code looks like the code shown in Figure 1.35.

this.Close();

Run the Project

After you have finished writing the code, you are ready to run the project. Use
one of these three techniques:

1. Open the Debug menu and choose Start Debugging.
2. Press the Start Debugging button on the toolbar.
3. Press F5, the shortcut key for the Start Debugging command.

Start the Project Running
STEP 1: Choose one of the three methods previously listed to start your proj-

ect running.
Problems? See “Finding and Fixing Errors” later in this chapter.

You must correct any errors and restart the program.
If all went well, the form appears and the Visual Studio title bar now

indicates that you are in run time (Figure 1.36).

Click the Display Button
STEP 1: Click the Display button. Your “Hello World” message appears in the

label (Figure 1.37).

STEP 3: Press Enter twice and type this C# statement:

Asterisk indicates unsaved changes

F i g u r e 1 . 3 5

Type the code for the exitButton_Click event handler. Notice that an asterisk appears on the tab at the top of the window,
indicating that there are unsaved changes in the file.

TIP
Accept an entry from the IntelliSense
popup list by typing the punctuation
that follows the entry, by pressing
the spacebar, or by pressing the
Enter key. You also can scroll the list
and select with your mouse.

TIP
If your form disappears during run
time, click its button on the Windows
task bar.

bra17186_ch01_001-064 03:16:2007 20:33 Page 33 pinnacle Mac OS IX:Desktop Folder:Bradley:

Click the Exit Button
STEP 1: Click the Exit button. Your project terminates, and you return to

design time.

Save Your Work

Of course, you must always save your work often. Except for a very small proj-
ect such as this one, you will usually save your work as you go along. Unless

34 V I S U A L C# Introduction to Programming and Visual C# 2005

F i g u r e 1 . 3 7

Click the Display button and
“Hello World” appears in the
label.

IDE Title bar indicates that the program is in run time

Form for the running application

F i g u r e 1 . 3 6

The form of the running application.

bra17186_ch01_001-064 03:16:2007 20:33 Page 34 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 35

you (or someone else) have changed the setting in the IDE’s Options dialog box,
your files are automatically saved in a temporary location each time you build
(compile) or execute (run) your project. After you have performed a save to a
different location, files are automatically resaved each time you compile or run.
You also can save the files as you work.

Save the Files
STEP 1: Open the Visual Studio File menu and choose Save All. This option will

save the current form, project, and solution files.
STEP 2: In the Save Project dialog box (Figure 1.38), the project name that you

chose earlier appears. Browse to the folder where you want to save your
project. Make sure that the Create directory for solution check box is not
checked. By default, Visual Studio creates a new folder to hold your
project files. If you choose the option to create another directory, you
will have one folder inside another folder, both with the same name.

F i g u r e 1 . 3 8

In the Save Project dialog box, browse to select the folder in which to save the project; do not select the option to create
another directory for the solution.

To Save or Not to Save As you learned earlier, by default Visual Studio saves
a new project in a temporary location. Each time you compile or run, VS re-
saves the project files. You do not have to save the project in a more perma-
nent location unless you want to, which can be handy when you just want to
test something and don’t want to keep it. If you choose File / Close Solution,
begin a new project, or close the IDE, you will be given the choice to either
save or discard the temporary project.

Note: When saving a project, do not attempt to save a modified version by
giving the project a new name. If you want to move or rename the project, it
must be closed. See Appendix C for help.

Close the Project

STEP 1: Open the File menu and choose Close Solution. If you haven’t saved
since your last change, you will be prompted to save.

Open the Project

Now is the time to test your save operation by opening the project from disk.
You can choose one of three ways to open a saved project:

TIP
Click the Save All toolbar button to
quickly save all of your work.

bra17186_ch01_001-064 03:16:2007 20:33 Page 35 pinnacle Mac OS IX:Desktop Folder:Bradley:

36 V I S U A L C# Introduction to Programming and Visual C# 2005

• Select Open Project from the Visual Studio File menu and browse to find
your .sln file.

• Choose the project from the Files / Recent Projects menu item.

• Choose the project from Recent Projects (if available) on the Start Page
(View / Other Windows / Start Page).

Open the Project File
STEP 1: Open your project by choosing one of the previously listed methods.

Remember that the file to open is the .sln file.
If you do not see your form on the screen, check the Solution Ex-

plorer window—it should say HelloWorld for the project. Select the icon
for your form: HelloForm.cs. You can double-click the icon or single-
click and click on the View Designer button at the top of the Solution
Explorer (Figure 1.39); your form will appear in the Designer window.
Notice that you also can click on the View Code button to display your
form’s code in the Editor window.

Modify the Project

Now it’s time to make some changes to the project. We’ll change the size of the
“Hello World” message, display the message in two different languages, and
display the programmer name (that’s you) on the form.

Change the Size and Alignment of the Message

STEP 1: Right-click the form to display the context menu. If your controls are
currently locked, select Lock Controls to unlock the controls so that you
can make changes.

STEP 2: Drop down the Object list at the top of the Properties window and
select messageLabel, which will make the label appear selected.

STEP 3: Scroll to the Font property in the Properties window. The Font prop-
erty is actually a Font object that has a number of properties. To see
the Font properties, click on the small plus sign on the left (Fig-
ure 1.40); the Font properties will appear showing the current values
(Figure 1.41).

F i g u r e 1 . 3 9

To display the form layout,
select the form name and click
on the View Designer button,
or double-click on the form
name. Click on the View
Code button to display the
code in the editor.

View Code button

View Designer button

Select
the form

bra17186_ch01_001-064 03:16:2007 20:33 Page 36 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 37

You can change any of the Font properties in the Properties window,
such as setting the Font’s Size, Bold, or Italic properties. You also can
display the Font dialog box and make changes there.

F i g u r e 1 . 4 0

Click on the Font’s plus sign
to view the properties of the
Font object.

F i g u r e 1 . 4 1

You can change the individual
properties of the Font object.

STEP 4: Click the Properties button for the font (the button with the ellipsis on
top) to display the Font dialog box (Figure 1.42). Select 12 point if it is
available. (If it isn’t available, choose another number larger than the
current setting.) Click OK to close the Font dialog box.

STEP 5: Select the TextAlign property. The Properties button that appears with
the down-pointing arrow indicates a dropdown list of choices. Drop
down the list (Figure 1.43) and choose the center box; the alignment
property changes to MiddleCenter.

Add a New Label for Your Name
STEP 1: Click on the Label tool in the toolbox and create a new label along

the bottom edge of your form (Figure 1.44). (You can resize the form
if necessary.)

STEP 2: Change the label’s Text property to “by Your Name.” (Use your name
and omit the quotation marks.)

Note: You do not need to rename this label because it will never be
referred to in the code.

TIP
When you change a property from
its default value, the property name
appears bolded; you can scan down
the property list and easily identify
the properties that are changed from
their default value.

Click to
expand the
Font list

Settings
box

Font
properties

Properties
button

bra17186_ch01_001-064 03:16:2007 20:33 Page 37 pinnacle Mac OS IX:Desktop Folder:Bradley:

38 V I S U A L C# Introduction to Programming and Visual C# 2005

F i g u r e 1 . 4 2

Choose 12 point on the Font
dialog box.

F i g u r e 1 . 4 3

Select the center box for the
TextAlign property.

TIP
You can change the Font property
of the form, which sets the default
Font for all objects on the form.

Select
12 point

Properties
button

Select
MiddleCenter
alignment

F i g u r e 1 . 4 4

Add a new label for your name
at the bottom of the form.

Enter your name in a label

bra17186_ch01_001-064 03:16:2007 20:33 Page 38 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 39

The Label’s AutoSize Property Earlier you changed the AutoSize Property of
messageLabel to False, a step that allows you to set the size of the label your-
self. When AutoSize is set to True (the default), the label resizes automati-
cally to accommodate the Text property, which can be an advantage when the
text or font size may change. However, if you plan to delete the Text property,
as you did for messageLabel, the label resizes to such a tiny size that it is
difficult to see.

Any time that you want to set the size of a label yourself, change the
AutoSize property to False. This setting also allows you to create taller labels
that allow a long Text property to wrap to multiple lines. If you set the Text
property to a very long value when AutoSize is set to True, the label will re-
size only to the edge of the form and cut off any excess text, but if AutoSize is
set to False and the label has been resized to a taller height, the long Text
property will wrap.

Change the Text of the Display Button
Because we plan to display the message in one of two languages, we’ll change
the text on the Display button to “English” and move the buttons to allow for
another button.

STEP 1: Select the displayButton and change its Text property to “English.”
STEP 2: Move the English button and the Exit button to the right and leave

room for a Spanish button (Figure 1.45).

F i g u r e 1 . 4 5

Move the English and Exit but-
tons and add a Spanish button.

Add a Spanish Button
STEP 1: Add a new button. Move and resize it as necessary, referring to

Figure 1.45.
STEP 2: Change the Name property of the new button to spanishButton.
STEP 3: Change the Text property of the new button to “Spanish.”

TIP
An easy way to create multiple sim-
ilar controls is to copy an existing
control and paste it on the form. You
can paste multiple times to create
multiple controls.

bra17186_ch01_001-064 03:16:2007 20:33 Page 39 pinnacle Mac OS IX:Desktop Folder:Bradley:

STEP 3: Press Enter twice and type the following line of C# code.

messageLabel.Text = "Hola Mundo";

/*
* Project: Hello World
* Programmer: Your Name (Use your own name here.)
* Date: (Fill in today's date.)
* Description: This project will display a "Hello World"
* message in two different languages.
*/

40 V I S U A L C# Introduction to Programming and Visual C# 2005

Add an Event Method for the Spanish Button
STEP 1: Double-click on the Spanish button to open the editor for spanishBut-

ton_Click.
STEP 2: Add a comment:

// Display the Hello World message in Spanish.

STEP 4: Return to design view.

Lock the Controls
STEP 1: When you are satisfied with the placement of the controls on the form,

display the context menu and select Lock Controls again.

Save and Run the Project
STEP 1: Save your project again. You can use the File / Save All menu command

or the Save All toolbar button.
STEP 2: Run your project again. Try clicking on the English button and the

Spanish button.
Problems? See “Finding and Fixing Errors” later in this chapter.

STEP 3: Click the Exit button to end program execution.

Add Comments
Good documentation guidelines require some more comments in the project.
Always begin each method with comments that tell the purpose of the method.
In addition, each project file needs identifying comments at the top.

STEP 1: Display the code in the editor and click in front of the first line
(using System;). Make sure that you have an insertion point; if the
entire first line is selected, press the left arrow to set the insertion
point.

STEP 2: Press Enter to create a blank line.
Warning: If you accidentally deleted the first line, click Undo (or

press Ctrl � Z) and try again.
STEP 3: Move the insertion point up to the blank line and type the following

comments, one per line (Figure 1.46):

TIP
Press Ctrl � Home to quickly move
the insertion point to the top of
the file.

bra17186_ch01_001-064 03:16:2007 20:33 Page 40 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 41

F i g u r e 1 . 4 6

Enter the comments at the top of the form file.

Finish Up
STEP 1: Run the project again. Test each language button multiple times, then

click the Exit button.

Print the Code

Select the Printing Options
STEP 1: Make sure that the Editor window is open, showing your form’s code.

The File / Print command is disabled unless the code is displaying and
its window selected.

STEP 2: Open the File menu and choose Print. Click OK.

View Event Handlers
You also can get to the event-handling methods for a control using the Proper-
ties window in design mode. With a button control selected, click on the Events
button (lightning bolt) in the Properties window; all of the events for that con-
trol display (Figure 1.47). If you’ve already written code for the Click event, the
method name appears bold in the Properties window. When you double-click
on the event, the editor takes you to the method in the code window.

To write an event-handling method for any of the available events of a con-
trol, double-click the event name. You will be transferred to the Code Editor
window with the insertion point inside the template for the new event handler.
You also can click in any event name in the Properties window and then drop
down a list of all previously written methods and select a method to assign as
the event handler.

bra17186_ch01_001-064 03:16:2007 20:33 Page 41 pinnacle Mac OS IX:Desktop Folder:Bradley:

42 V I S U A L C# Introduction to Programming and Visual C# 2005

A Sample Printout
This output is produced when you print the form’s code. An explanation of
some of the features of the code follows the listing.

F i g u r e 1 . 4 7

Click on the Events button to
see the available events for a
selected control. Any event
handlers that are already
written appear in bold. Double-
click an event to jump to the
Editor window inside the event
handler for that method, or
drop down the list to select a
method to assign as the
handler for the event.

C:\Documents and Settings\…\HelloWorld\HelloForm.cs 1
/*
* Project: Hello World
* Programmer: Your Name (Use your own name here.)
* Date: (Fill in today's date.)
* Description: This project will display a "Hello World"
* message in two different languages.
*/

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace HelloWorld
{

public partial class HelloForm : Form
{

public HelloForm()
{

InitializeComponent();
}

The Events button

Properties
button

Event
handler for
Click event

Selected
control

Selected
event

bra17186_ch01_001-064 03:16:2007 20:33 Page 42 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 43

private void displayButton_Click(object sender, EventArgs e)
{

// Display the Hello World message.

messageLabel.Text = "Hello World";
}

private void exitButton_Click(object sender, EventArgs e)
{

// Exit the project.

this.Close();
}

private void spanishButton_Click(object sender, EventArgs e)
{

// Display the Hello World message in Spanish.

messageLabel.Text = "Hola Mundo";
}

}
}

Automatically Generated Code

In the preceding code listing, you see many statements that you wrote, plus
some more that appeared “automatically.” Although a programmer could begin
a C# program by using a simple text editor and write all of the necessary state-
ments to make the program run, using the development tools of the Visual
Studio IDE is much quicker and more efficient. The IDE adds a group of state-
ments by default and sets up the files for the project to accommodate the
majority of applications. Later, when your programs include database tables,
you will have to write additional using statements.

The Using Statements
The using statements appear at the top of the file after the comments that you
wrote. Using statements provide references to standard groups of classes from the
language library. For example, the statement using System.Windows.Forms;
allows your program to refer to all of the Windows controls that appear in the
toolbox. Without the using statement, each time that you wanted to refer to a
Label control, for example, you would have to specify the complete reference:
System.Windows.Forms.Label.messageLabel. Instead, in the program with
the using statement, you can just refer to messageLabel.

The Namespace Statement
As mentioned earlier, a namespace provides a way to refer to programming
components by location or organization. In the Label example in the preceding
section, “Label” is the class and “System.Windows.Forms” is the namespace,
or library grouping where “Label” is found. You can think of a namespace as
similar to a telephone area code: In any one area code, a single phone number
can appear only once, but that same phone number can appear in any number
of other area codes.

Using the .NET Framework, every program component is required to have
a namespace. The VS IDE automatically adds a Namespace statement to your

bra17186_ch01_001-064 03:16:2007 20:33 Page 43 pinnacle Mac OS IX:Desktop Folder:Bradley:

program. The default namespace is the name of your solution, but you can use
a different name if you wish. Many companies use the namespace to organize
applications such as the company name and functional organization,
LookSharpFitnessCenter.Payroll, for example.

In Visual Studio, one solution can contain multiple projects. All of the so-
lutions in this text contain only one project, so you can think of a solution and
a project as being equal.

The Class Statement
In object-oriented programming, code is organized into classes. A new class
can be based on (inherit from) another class, which gives the new class all of
the properties and methods of the original class (the base class).

When you create a new form, you declare a new class (HelloForm in the
earlier example). The new class inherits from the Form base class, which
makes your new form behave like a standard form, with a title bar, maximize
and minimize buttons, and resizable borders, among other behaviors.

New to VS 2005, a class may be split into multiple files. Using this feature,
VS can place most of the code automatically generated by the form designer in
a separate file that is part of the form’s class.

The automatically generated statement

44 V I S U A L C# Introduction to Programming and Visual C# 2005

public partial class HelloForm : Form

means that this is a new class called HelloForm that inherits from the Form
class. The new class is a partial class, so another file can exist that also con-
tains statements that are part of the HelloForm class. You will learn more about
classes and files in later chapters.

Finding and Fixing Errors
You already may have seen some errors as you entered the first sample project.
Programming errors come in three varieties: syntax errors, run-time errors, and
logic errors.

Syntax Errors

When you break C#’s rules for punctuation, format, or spelling, you generate a
syntax error. Fortunately, the smart editor finds most syntax errors and even
corrects many of them for you. The syntax errors that the editor cannot identify
are found and reported by the compiler as it attempts to convert the code
into intermediate machine language. A compiler-reported syntax error may be
referred to as a compile error.

The editor identifies syntax errors as you move off the offending line. A red
squiggly line appears under the part of the line that the editor cannot interpret.
You can view the error message by pausing the mouse pointer over the error,
which pops up a box that describes the error (Figure 1.48). You also can dis-
play an Error List window, which appears at the bottom of the Editor window
and shows all error messages along with the line number of the statement
that caused the error. You can display line numbers on the source code

bra17186_ch01_001-064 03:16:2007 20:33 Page 44 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 45

(Figure 1.49) with Tools / Options / Text Editor / C# / General / Display / Line Num-
bers. You must select the Show all settings check box at the bottom left of the
dialog box to select this option.

The quickest way to jump to an error line is to point to a message in the
Error List window and double-click. The line in error will display in the Editor
window with the error highlighted (Figure 1.50).

If a syntax error is found by the compiler, you will see the dialog box shown
in Figure 1.51. Click No and return to the editor, correct your errors, and run
the program again.

Run-Time Errors

If your project halts during execution, it is called a run-time error or an
exception. C# displays a dialog box and highlights the statement causing
the problem.

F i g u r e 1 . 4 9

You can display the Error List window and line numbers in the source code to help locate the error lines.

F i g u r e 1 . 4 8

The editor identifies a syntax error with a squiggly red line; you can point to an error to pop up the error message.

bra17186_ch01_001-064 03:16:2007 20:33 Page 45 pinnacle Mac OS IX:Desktop Folder:Bradley:

46 V I S U A L C# Introduction to Programming and Visual C# 2005

F i g u r e 1 . 5 1

When the compiler identifies
syntax errors, it cannot
continue. Click No to return to
the editor and correct the error.

Statements that cannot execute correctly cause run-time errors. The state-
ments are correctly formed C# statements that pass the syntax checking; however,
the statements fail to execute due to some serious issue. You can cause run-time
errors by attempting to do impossible arithmetic operations, such as calculate with
nonnumeric data, divide by zero, or find the square root of a negative number.

In Chapter 3 you will learn to catch exceptions so that the program does not
come to a halt when an error occurs.

Logic Errors

When your program contains logic errors, the program runs but produces in-
correct results. Perhaps the results of a calculation are incorrect or the wrong
text appears or the text is okay but appears in the wrong location.

Beginning programmers often overlook their logic errors. If the project
runs, it must be right—right? All too often, that statement is not correct. You

Double-click anywhere on
this line to jump to the error

F i g u r e 1 . 5 0

Quickly jump to the line in error by double-clicking on the error message in the Error List window.

bra17186_ch01_001-064 03:16:2007 20:33 Page 46 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 47

Project Debugging

If you talk to any computer programmer, you will learn that programs don’t have
errors—programs get “bugs” in them. Finding and fixing these bugs is called
debugging.

For syntax errors and run-time errors, your job is easier. C# displays the
Editor window with the offending line highlighted. However, you must identify
and locate logic errors yourself.

C# also includes a new-to-2005 feature: edit-and-continue. If you are able
to identify the run-time error and fix it, you can continue project execution from
that location by clicking on the Run button, pressing F5, or choosing Debug /
Continue. You also can correct the error and restart from the beginning.

The Visual Studio IDE has some very helpful tools to aid in debugging your
projects. The debugging tools are covered in Chapter 4.

A Clean Compile
When you start executing your program, the first step is called compiling,
which means that the C# statements are converted to Microsoft Intermediate
Language (MSIL). Your goal is to have no errors during the compile process:
a clean compile. Figure 1.52 shows the Error List window for a clean compile:
0 Errors; 0 Warnings; 0 Messages.

TIP
If you get the message “There were
build errors. Continue?” always say
No. If you say Yes, the last cleanly
compiled version runs rather than
the current version.

private void spanishButton_Click(object sender, EventArgs e)
{

// Display the Hello World message in Spanish.

messageLabel.Text = "Hello World";
}

may need to use a calculator to check the output. Check all aspects of the proj-
ect output: computations, text, and spacing.

For example, the Hello World project in this chapter has event-handling
methods for displaying “Hello World” in English and in Spanish. If the contents
of the two methods were switched, the program would work, but the results would
be incorrect.

The following code does not give the proper instructions to display the
message in Spanish:

F i g u r e 1 . 5 2

Zero errors, warnings, and messages means that you have a clean compile.

bra17186_ch01_001-064 03:16:2007 20:33 Page 47 pinnacle Mac OS IX:Desktop Folder:Bradley:

If you delete these lines of code and try to run the program, you receive an
error message that “‘WindowsApplication1.Form1’ does not contain a defini-
tion for ‘Form1_Load’.” If you double-click on the error message, it takes you
to a line in the Form1.Designer.cs file. You can delete the line of code that it
takes you to, which, in this example, is

48 V I S U A L C# Introduction to Programming and Visual C# 2005

Another way to remove the statement that assigns the event handler is to
use the Properties window in the designer. First, make sure to select the form
or control that has the unwanted event handler assigned, then click on the
Events button in the Properties window (Figure 1.53). You will see the event-
handling method’s name for the name of the event. You can select and delete
the name of the method, which removes the assignment statement from the
Designer.cs file, and you will not generate an error message.

this.Load += new System.EventHandler(this.Form1_Load);

Modifying an Event Handler

When you double-click a Button control to begin writing an event-handling
method for the Click event, several things happen. As an example, say that you
have a button on your form called button1. If you double-click button1, the
Editor window opens with a template for the new method:

private void button1_Click(object sender, EventArgs e)
{

}

The insertion point appears between the opening and closing braces, where you
can begin typing your new method. But behind the scenes, VS also adds a line
to the (hidden) FormName.Designer.cs file that assigns this new method to the
Click event of the button.

As long as you keep the name of the button unchanged and don’t delete the
method, all is well. But if you want to rename the button, or perhaps delete the
method (maybe you accidentally double-clicked a label or the form and have a
method that you really don’t want or need), then you will need to take addi-
tional steps.

Deleting a Method
Assume that you have double-clicked the form called Form1 and now have an
extra method that you do not want. If you simply delete the method, your pro-
gram generates an error message due to the extra code that appears in the
Form’s designer.cs file. When you double-click on the form, the extra Form
Load event handler looks like this:

private void Form1_Load(object sender, EventArgs e)
{

}

bra17186_ch01_001-064 03:16:2007 20:33 Page 48 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 49

Another way to change the name of an event handler is to use refactoring,
which allows you to make changes to an existing object. After you change the
name of the control using the designer, switch to the Editor window and right-
click on the name of the event-handling method (button1_Click in this exam-
ple). From the context menu, select Refactor / Rename. The Rename dialog box
shows the current name of the method (Figure 1.55). Enter the new name, mak-
ing sure to include the “_Click.” When you click OK, all references to the old
name are changed to the new one, which corrects the line in the Designer.cs file
that assigns the event handler.

Renaming a Control
You can receive an error if you rename a control after you write the code for its
event. For this example, assume that you add a button that is originally called
button1. You write the code for the button1_Click event handler and then de-
cide to change the button’s name to exitButton. (This scenario occurs quite of-
ten, especially with beginning programmers.)

If you simply change the Name property of button1 to exitButton in the
form designer, your program will still run without an error message. But you
may be surprised to see that the event handler is still named button1_Click. If
you check the events in the Properties window, you will see why (Figure 1.54):
Although the control was renamed, the event handler was not. And if you type
a new name into the Properties window (exitButton_Click, for example), a new
(empty) method template will appear in your code. The code that you wrote in
the button1_Click method is still there and the new exitButton_Click method
is empty. One solution is to just cut-and-paste the code from the old method to
the new one. You can safely delete the empty button1_Click method since it no
longer is assigned as the event handler.

Click the
Events button

Delete the
name of the
event handler

Select
the event

F i g u r e 1 . 5 3

To remove the form’s event
handler, select the form and
click on the Events button in
the Properties window. Then
delete the entry for the event
handler—Form1_Load in
this example.

F i g u r e 1 . 5 4

Even though you rename a
control, the event handler is
not renamed automatically.

Button is
renamed

Event
handler still
has the
old name

bra17186_ch01_001-064 03:16:2007 20:33 Page 49 pinnacle Mac OS IX:Desktop Folder:Bradley:

Naming Rules and Conventions for Objects

Using good consistent names for objects can make a project easier to read and
understand, as well as easier to debug. You must follow the C# rules for naming
objects, methods, and variables. In addition, conscientious programmers also
follow certain naming conventions.

Most professional programming shops have a set of standards that their
programmers must use. Those standards may differ from the ones you find in
this book, but the most important point is this: Good programmers follow stan-
dards. You should have a set of standards and always follow them.

The Naming Rules
When you select a name for an object, C# requires the name to begin with a
letter or an underscore. The name can contain letters, digits, and underscores.
An object name cannot include a space or punctuation mark and cannot be a
reserved word, such as button or Close, but can contain one. For example,
exitButton and closeButton are legal. C# is case sensitive, so exitbutton, Exit-
Button, and exitButton refer to three different objects.

The Naming Conventions
This text follows standard naming conventions, which help make projects more
understandable. When naming controls, use camel casing, which means that
you begin the name with a lowercase character and capitalize each additional
word in the name. Make up a meaningful name and append the full name of the
control’s class. Do not use abbreviations unless it is a commonly used term that
everyone will understand. All names must be meaningful and indicate the pur-
pose of the object.

Examples

messageLabel
exitButton
discountRateLabel

50 V I S U A L C# Introduction to Programming and Visual C# 2005

F i g u r e 1 . 5 5

Change the name of the event-handling method using Refactor / Rename, which changes the name of the method and the
assignment of the event handler in the form’s Designer.cs file.

a. b.

bra17186_ch01_001-064 03:16:2007 20:33 Page 50 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 51

Visual Studio Help
Visual Studio has an extensive Help facility, which contains much more information
than you will ever use. You can look up any C# statement, class, property, method,
or programming concept. Many coding examples are available, and you can copy
and paste the examples into your own project, modifying them if you wish.

The VS Help facility includes all of the Microsoft Developer Network
library (MSDN), which contains several books, technical articles, and the
Microsoft Knowledge Base, a database of frequently asked questions and their

T a b l e 1 . 2

Object Class Example

Form DataEntryForm

Button exitButton

Label totalLabel

TextBox paymentAmountTextBox

RadioButton boldRadioButton

CheckBox printSummaryCheckBox

PictureBox landscapePictureBox

ComboBox bookListComboBox

ListBox ingredientsListBox

SoundPlayer introPageSoundPlayer

Recommended Naming Conventions for C# Objects.

Do not keep the default names assigned by C#, such as button1 and
label3. Also, do not name your objects with numbers. The exception to this
rule is for labels that never change during program execution. These labels
usually hold items such as titles, instructions, and labels for other controls.
Leaving these labels with their default names is perfectly acceptable and is
practiced in this text.

For forms and other classes, capitalize the first letter of the name and all
other words within the name. You will find this style of capitalization referred
to as pascal casing in the MSDN Help files. Always append the word Form to
the end of a form name.

Examples

HelloForm
MainForm
AboutForm

Refer to Table 1.2 for sample object names.

bra17186_ch01_001-064 03:16:2007 20:33 Page 51 pinnacle Mac OS IX:Desktop Folder:Bradley:

52 V I S U A L C# Introduction to Programming and Visual C# 2005

answers. MSDN includes reference materials for the VS IDE, the .NET Frame-
work, C#, Visual Basic, J#, and C��. You will want to filter the information to
display only the Visual C# and related information.

Installing and Running MSDN

You can run MSDN from a hard drive, a network drive, or the Web. Of course,
if you plan to access MSDN from the Web, you must have a live Internet
connection as you work.

When you install Visual Studio, by default MSDN is installed on the hard
drive. If you don’t want to install it there, you must specifically choose this
option. You can access MSDN on the Web at http://msdn.microsoft.com.

The extensive Help is a two-edged sword: You have available a wealth of
materials, but it may take some time to find the topic you want.

Viewing Help Topics

The Help system display is greatly changed and improved in Visual Studio 2005.
You view the Help topics in a separate window from the VS IDE, so you can have

Filter

Index
tab

Contents
tab

Tab for Help topics
Search tab

Favorites tab Index results;
select the desired
topic

Main Document window
shows Help topics

F i g u r e 1 . 5 6

The Help window. The Help topic and Search appear in tabbed windows in the main Document window; Index, Contents,
and Help Favorites appear in tabbed windows docked at the left of the main window.

bra17186_ch01_001-064 03:16:2007 20:33 Page 52 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 53

F i g u r e 1 . 5 7

Filter the Help topics so that
only the C# topics appear.

In the Search window, you can choose additional filter options, such as the
technology and topic type. Drop down a list and select any desired options
(Figure 1.58).

both windows open at the same time. When you choose How Do I, Search,
Contents, Index, or Help Favorites from the Help menu, a new window opens on top
of the IDE window (Figure 1.56). You can switch from one window to the other, or
resize the windows to view both on the screen if your screen is large enough.

You can choose to filter the Help topics so that you don’t have to view topics
for all of the languages when you search for a particular topic. In the Index or
Contents window, drop down the Filtered by list and choose Visual C# (Figure 1.57).

F i g u r e 1 . 5 8

Drop down the Content Type list to make selections for the Search window.

Drop
down list to
select filter

In the Help Index window, you see main topics and subtopics (indented
beneath the main topics). All main topics and some subtopics have multiple
entries available. When you choose a topic that has more than one possible

bra17186_ch01_001-064 03:16:2007 20:33 Page 53 pinnacle Mac OS IX:Desktop Folder:Bradley:

54 V I S U A L C# Introduction to Programming and Visual C# 2005

➤ Feedback 1.1

Note: Answers for Feedback questions appear in Appendix A.

1. Display the Help Index, filter by Visual C#, and type “button control.” In
the Index list, notice multiple entries for button controls, including
HTML, Web Forms, and Windows Forms. Click on the main topic, Button
control (Windows Forms): a small window pops up with multiple subtopics
for the selected entry (you may need to enlarge the window). Double-click
on Introduction to the Windows Forms Button Control and the topic displays
in the Document window. Notice that additional links appear in the text
in the Document window. You can click on a link to view another topic.

2. Display the Editor window of your Hello World project. Click on the
Close method to place the insertion point. Press the F1 key to view
context-sensitive Help.

3. Select each of the options from the VS IDE’s Help menu to see how
they respond.

entry, the Index Results pane opens up below the main Document window
(refer to Figure 1.56). Click on the entry for which you are searching and the
corresponding page appears in the Document window. For most controls, such
as the Label control that appears in Figure 1.56, you will find references for
mobile controls, Web controls, and Windows Forms. For now, always choose
Windows Forms. Chapters 1 to 8 deal with Windows Forms exclusively; Web
Forms are introduced in Chapter 9.

A good way to start using Help is to view the topics that demonstrate how
to look up topics in Help. On the Help Contents tab, select Help on Help (Mi-
crosoft Document Explorer Help). Then choose Microsoft Document Explorer
Overview and What’s New in Document Exploration. Make sure to visit Managing
Help Topics and Windows, which has subtopics describing how to copy topics
and print topics.

Context-Sensitive Help

A quick way to view Help on any topic is to use context-sensitive Help. Select
a C# object, such as a form or a control, or place the insertion point in a word
in the editor and press F1. The Help window pops up with the corresponding
Help topic displayed, if possible, saving you a search. You can display context-
sensitive Help about the environment by clicking in an area of the screen and
pressing Shift � F1.

Managing Windows

At times you may have more windows and tabs open than you want. You can
hide or close any window, or switch to a different window.

• To close a window that is a part of a tabbed window, click the window’s
Close button. Only the top window will close.

• To switch to another window that is part of a tabbed window, click on its tab.

For additional help with the environment, see Appendix C, “Tips and
Shortcuts for Mastering the Visual Studio Environment.”

bra17186_ch01_001-064 03:16:2007 20:33 Page 54 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 55

Plan the Objects and Properties
Plan the property settings for the form and for each control.

Object Property Setting

PromotionForm Name PromotionForm
Text Current Promotions
StartPosition CenterScreen

label1 Text Look Sharp Fitness Hint: Do not
Center change the name

of this label.
Font 18 pt.

label2 Text Your name

Your Hands-On Programming Example
Write a program for the Look Sharp Fitness Center to display the current pro-
motional packages. Include a label for the current special and buttons for each
of the following departments: Clothing, Equipment and Accessories, Juice Bar,
Membership, and Personal Training.

The user interface should also have an exit button and a label with the pro-
grammer’s name. Use appropriate names for all controls. Make sure to change
the Text property of the form.

Planning the Project
Sketch a form (Figure 1.59), which your users sign off as meeting their needs.

Note: Although this step may seem unnecessary, having your users sign off
is standard programming practice and documents that your users have been
involved and have approved the design.

F i g u r e 1 . 5 9

label2

label1Look Sharp Fitness Center

Programmed by Your Name

promotionsLabel

ClothingclothingButton

Equipment/AccessoriesequipmentButton

Juice BarjuiceBarButton

MembershipmembershipButton

Personal TrainingpersonalTrainingButton

ExitexitButton

A planning sketch of the form for the hands-on programming example.

bra17186_ch01_001-064 03:16:2007 20:33 Page 55 pinnacle Mac OS IX:Desktop Folder:Bradley:

56 V I S U A L C# Introduction to Programming and Visual C# 2005

Plan the Event Methods You will need event-handling methods for each button.

Method Actions—Pseudocode

clothingButton_Click Display “Take an extra 30% off the clearance items.” in the label.

equipmentButton_Click Display “Yoga mats––25% off.”

juiceBarButton_Click Display “Try a free serving of our new WheatBerry Shake.”

membershipButton_Click Display “First month personal training included.”

personalTrainingButton_Click Display “3 free sessions with membership renewal.”

exitButton_Click End the project.

Object Property Setting

promotionsLabel Name promotionsLabel
AutoSize True
Text (blank)
TextAlign MiddleLeft
Font 12 pt.

clothingButton Name clothingButton
Text Clothing

equipmentButton Name equipmentButton
Text Equipment/Accessories

juiceBarButton Name juiceBarButton
Text Juice Bar

membershipButton Name membershipButton
Text Membership

personalTrainingButton Name personalTrainingButton
Text Personal Training

exitButton Name exitButton
Text Exit

Write the Project Follow the sketch in Figure 1.59 to create the form. Figure
1.60 shows the completed form.

• Set the properties of each object, as you have planned.
• Working from the pseudocode, write each event-handling method.
• When you complete the code, thoroughly test the project.

bra17186_ch01_001-064 03:16:2007 20:33 Page 56 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 57

F i g u r e 1 . 6 0

The form for the hands-on
programming example.

The Project Coding Solution
/*
* Project: Ch01HandsOn
* Programmer: Bradley/Millspaugh
* Date: Jan 2007
* Description: This project displays current sales for
* each department.
*/

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace Ch01HandsOn
{

public partial class PromotionsForm : Form
{

public Form1()
{

InitializeComponent();
}

private void exitButton_Click(object sender, EventArgs e)
{

// End the project.

this.Close();
}

private void clothingButton_Click(object sender, EventArgs e)
{

// Display current promotion.

promotionsLabel.Text = "Take an extra 30% off the clearance items.";
}

bra17186_ch01_001-064 03:16:2007 20:33 Page 57 pinnacle Mac OS IX:Desktop Folder:Bradley:

58 V I S U A L C# Introduction to Programming and Visual C# 2005

private void equipmentLabel_Click(object sender, EventArgs e)
{

// Display current promotion.

promotionsLabel.Text = "Yoga mats——25% off.";
}

private void juiceBarButton_Click(object sender, EventArgs e)
{

// Display current promotion.

promotionsLabel.Text = "Try a free serving of our new WheatBerry Shake.";
}

private void membershipButton_Click(object sender, EventArgs e)
{

// Display current promotion.

promotionsLabel.Text = "First month personal training included.";
}

private void personalTrainingButton_Click(object sender, EventArgs e)
{

// Display current promotion.

promotionsLabel.Text = "3 free sessions with membership renewal.";
}

}
}

S u m m a r y

1. Visual C# is an object-oriented language used to write application programs
that run in Windows or on the Internet using a graphical user interface (GUI).

2. In the OOP object model, classes are used to create objects that have
properties, methods, and events.

3. The current release of C# is called Visual C# 2005 and is one part of Visual
Studio. C# is available individually in an Express Edition and a Standard
Edition, or in Visual Studio Professional Edition and Team System version.

4. The .NET Framework provides an environment for the objects from many
languages to interoperate. Each language compiles to Microsoft Intermedi-
ate Language (MSIL) and runs in the Common Language Runtime (CLR).

5. To plan a project, first sketch the user interface and then list the objects
and properties needed. Then plan the necessary event-handling methods.

6. The three steps to creating a C# project are (1) define the user interface,
(2) set the properties, and (3) write the code.

7. A C# application is called a solution. Each solution may contain multiple proj-
ects, and each project may contain multiple forms and additional files. The so-
lution file has an extension of .sln, a project file has an extension of .csproj,
and form files and additional C# files have an extension of .cs. In addition, the
Visual Studio environment and the C# compiler both create several more files.

8. The Visual Studio integrated development environment (IDE) consists of
several tools, including a form designer, an editor, a compiler, a debugger,
an object browser, and a Help facility.

bra17186_ch01_001-064 03:16:2007 20:33 Page 58 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 59

9. C# has three modes: design time, run time, and debug time.
10. You can customize the Visual Studio IDE and reset all customizations back

to their default state.
11. You create the user interface for an application by adding controls from the

toolbox to a form. You can move, resize, and delete the controls.
12. The Name property of a control is used to refer to the control in code. The

Text property holds the words that the user sees on the screen.
13. C# code is written in methods. Methods begin and end with braces { }.
14. Project comments are used for documentation. Good programming practice

requires comments in every method and at the top of a file.
15. Most C# statements must be terminated by a semicolon. A statement may

appear on multiple lines; the semicolon determines the end of the state-
ment. Comments and some other statements do not end with semicolons.

16. Assignment statements assign a value to a property or a variable. Assignment
statements work from right to left, assigning the value on the right side of the
equal sign to the property or variable named on the left side of the equal sign.

17. The this.Close() method terminates program execution.
18. Each event to which you want to respond requires an event-handling

method, also called an event handler.
19. You can print out the C# code for documentation.
20. Three types of errors can occur in a C# project: syntax errors, which violate

the syntax rules of the C# language; run-time errors, which contain a state-
ment that cannot execute properly; and logic errors, which produce
erroneous results.

21. Finding and fixing program errors is called debugging.
22. You must have a clean compile before you run the program.
23. Following good naming conventions can help make a project easier to debug.
24. C# Help has very complete descriptions of all project elements and their uses.

You can use the How Do I, Contents, Index, Search, or context-sensitive Help.

K e y T e r m s

assignment statement 28
Button 18
camel casing 50
class 4
clean compile 47
code 6
comment 28
context menu 23
context-sensitive Help 54
control 3
debug time 14
debugging 47
design time 14
Document window 12
exception 45
Express Edition 5

event 4
event handler 28
event-handling method 28
Form 2
Form Designer 12
graphical user interface (GUI) 2
Help 12
integrated development

environment (IDE) 7
Label 18
logic error 46
method 4
namespace 21
object 4
object-oriented

programming (OOP) 3

bra17186_ch01_001-064 03:16:2007 20:33 Page 59 pinnacle Mac OS IX:Desktop Folder:Bradley:

60 V I S U A L C# Introduction to Programming and Visual C# 2005

pascal casing 51
Professional Edition 5
project file 7
Properties window 12
property 4
pseudocode 6
resizing handle 19
run time 14
run-time error 45
snap lines 19
solution 7

Solution Explorer window 12
solution file 7
Standard Edition 5
syntax error 44
Team System 5
Text property 23
this 30
toolbar 11
toolbox 12
user interface 6
Visual Studio environment 7

R e v i e w Q u e s t i o n s

1. What are objects and properties? How are they related to each other?
2. What are the three steps for planning and creating C# projects? Describe

what happens in each step.
3. What is the purpose of these C# file types: .sln, .suo, and .cs?
4. When is C# in design time? run time? debug time?
5. What is the purpose of the Name property of a control?
6. Which property determines what appears on the form for a Label control?
7. What is the purpose of the Text property of a button? The Text property of

a form?
8. What does displayButton_Click mean? To what does displayButton refer?

To what does Click refer?
9. What is a C# event? Give some examples of events.

10. What property must be set to center text in a label? What should be the
value of the property?

11. Describe the two types of comments in a C# program and tell where each is
generally used.

12. What is meant by the term debugging?
13. What is a syntax error, when does it occur, and what might cause it?
14. What is a run-time error, when does it occur, and what might cause it?
15. What is a logic error, when does it occur, and what might cause it?
16. Tell the class of control and the likely purpose of each of these object names:

addressLabel
exitButton
nameTextBox

17. What does context-sensitive Help mean? How can you use it to see the
Help page for a button?

P r o g r a m m i n g E x e r c i s e s

1.1 For your first C# exercise, you must first complete the Hello World project.
Then add buttons and event-handling methods to display the “Hello
World” message in two more languages. You may substitute any other

bra17186_ch01_001-064 03:16:2007 20:33 Page 60 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 61

languages for those shown. Feel free to modify the user interface to suit
yourself (or your instructor).

Make sure to use meaningful names for your new buttons, following the
naming conventions in Table 1.2. Include comments at the top of every
method and at the top of the file.

“Hello World” in French: Bonjour tout le monde
“Hello World” in Italian: Ciao Mondo

1.2 Create a project that displays the hours for each department on campus. In-
clude buttons for Student Learning, Financial Aid, Counseling, and the
Bookstore. Each button should display the hours for that department in a
label. The interface should have one label for the hours, one label for the
programmer name, buttons for each department, and an exit button.

Make sure to use meaningful names for your new buttons, following the
naming conventions in Table 1.2. Include comments at the top of every
method and at the top of the file.

1.3 Write a project that displays four sayings, such as “The early bird gets the
worm” or “A penny saved is a penny earned.” (You will want to keep the
sayings short, as each must be entered on one line. However, when the say-
ing displays on your form, you can set the label’s properties to allow long
lines to wrap within the label.)

Make a button for each saying with a descriptive Text property for
each, as well as a button to exit the project.

Include a label that holds your name at the bottom of the form. Also,
make sure to change the form’s title bar to something meaningful.

If your sayings are too long to display on one line, set the label’s
AutoSize property to False and resize the height of the label to hold
multiple lines. You may change the Font properties of the label to the font
and size of your choice.

Make sure the buttons are large enough to hold their entire Text
properties.

Follow good naming conventions for object names; include comments
at the top of every method and at the top of the file.

1.4 Write a project to display company contact information. Include buttons
and labels for the contact person, department, and phone. When the user
clicks on one of the buttons, display the contact information in the corre-
sponding label. Include a button to exit.

Include a label that holds your name at the bottom of the form and
change the title bar of the form to something meaningful.

You may change the Font properties of the labels to the font and size of
your choice.

Follow good naming conventions for object names; include comments
at the top of every method and at the top of the file.

1.5 Create a project to display the daily specials for “your” diner. Make up a
name for your diner and display it in a label at the top of the form. Add a
label to display the appropriate special depending on the button that is
pressed. The buttons should be

• Soup of the Day
• Chef’s Special
• Daily Fish

Also include an Exit button.

bra17186_ch01_001-064 03:16:2007 20:33 Page 61 pinnacle Mac OS IX:Desktop Folder:Bradley:

62 V I S U A L C# Introduction to Programming and Visual C# 2005

Christopher’s Car Center

Christopher’s Car Center will meet all of your automo-
bile needs. The center has facilities with everything
for your vehicles including sales and leasing for new
and used cars and RVs, auto service and repair, detail
shop, car wash, and auto parts.

Your first job is to create a project that will display
current notices.

Include four buttons labeled “Auto Sales,”
“Service Center,” “Detail Shop,” and “Employment
Opportunities.” One label will be used to display the
information when the buttons are clicked. Be sure to
include a button for Exit.

Include your name in a label at the bottom of
the form.

Test Data

Button Label Text

Auto Sales Family wagon, immaculate
condition $12,995

Service Center Lube, oil, filter $25.99

Detail Shop Complete detail $79.95 for
most cars

Employment Opportunities Sales position, contact Mr.
Mann 551-2134 x475

Custom Supplies Mail Order

If you don’t have the time to look for all those hard-
to-find items, tell us what you’re looking for. We’ll
send you a catalog from the appropriate company or
order for you.

We can place an order and ship it to you. We also
help with shopping for gifts; your order can be gift
wrapped and sent anywhere you wish.

The company title will be shortened to CS Mail
Order. Include this name on the title bar of the first
form of each project that you create for this case study.

Your first job is to create a project that will display
the name and telephone number for the contact person
for the customer relations, marketing, order process-
ing, and shipping departments.

Include a button for each department. When the
user clicks on the button for a department, display the

name and telephone number for the contact person in
two labels. Also include identifying labels with Text
“Department Contact” and “Telephone Number.”

Be sure to include a button for Exit.
Include a label at the bottom of the form that holds

your name and give the form a meaningful title bar.

Test Data

Department Telephone
Department Contact Number

Customer Relations Tricia Mills 500-1111

Marketing Michelle Rigner 500-2222

Order Processing Kenna DeVoss 500-3333

Shipping Eric Andrews 500-4444

Sample Data: Dorothy’s Diner is offering Tortilla Soup, a California
Cobb Salad, and Hazelnut-Coated Mahi Mahi.

Case Studies

bra17186_ch01_001-064 03:16:2007 20:33 Page 62 pinnacle Mac OS IX:Desktop Folder:Bradley:

C H A P T E R 1 63

Cool Boards

This chain of stores features a full line of clothing and
equipment for snowboard and skateboard enthusiasts.
Management wants a computer application to allow
their employees to display the address and hours for
each of their branches.

Create a form with a button for each store branch.
When the user clicks on a button, display the correct
address and hours.

Include a label that holds your name at the bottom
of the form and change the title bar of the form to
Cool Boards.

You may change the font properties of the labels to
the font and size of your choice.

Follow good programming conventions for object
names; include comments at the top of every method
and at the top of the file.

Store Branches: The three branches are Downtown,
Mall, and Suburbs. Make up hours and locations for
each.

Button Location

Comedy Aisle 1

Drama Aisle 2

Action Aisle 3

Sci-Fi Aisle 4

Horror Aisle 5

New Releases Back Wall

Xtreme Cinema

This neighborhood store is an independently owned
video rental business. The owners would like to allow
their customers to use the computer to look up the
aisle number for movies by category.

Create a form with a button for each category. When
the user clicks on a button, display the corresponding
aisle number in a label. Include a button to exit.

Include a label that holds your name at the bottom
of the form and change the title bar of the form to
Xtreme Cinema.

You may change the font properties of the labels to
the font and size of your choice. Include additional
categories, if you wish.

Follow good programming conventions for object
names; include comments at the top of every method
and at the top of the file.

Test Data

bra17186_ch01_001-064 03:16:2007 20:33 Page 63 pinnacle Mac OS IX:Desktop Folder:Bradley:

bra17186_ch01_001-064 03:16:2007 20:33 Page 64 pinnacle Mac OS IX:Desktop Folder:Bradley:

