
xi

P r e f a c e

This book is an introduction to object-oriented programming using the Java
programming language. We use the object-first approach where objects are used
from the first sample program. Object-oriented thinking is emphasized and pro-
moted from the beginning. Students learn how to use objects first and then learn
how to define their own objects.

Key Changes in the 5th Edition
The key differences between this edition and the fourth edition are as follows:

1. More Discussion on Java 5.0 Features and Java 6.0 Compatibility. Many
of the new Java 5.0 features are explained and used in the sample programs.
They include the enumerator type, the for-each loop construct, auto boxing
and unboxing, and the generics.

2. Exclusive Use of Console Input and Output. All the GUI related topics,
including the JOptionPane class, are moved to Chapter 14. Sample programs
before Chapter 14 use the standard console input (Scanner) and output
(System.out). Those who want to use JOptionPane for simple input and output
can do so easily by covering Section 14.1 before Chapter 3.

3. More Examples from Natural Sciences. In several key chapters, we illus-
trate concepts using examples from biology and chemistry. For example, in
Chapter 4, we use the elements in the periodic table to illustrate the concept of
programmer-defined classes. In Chapter 9, we demonstrate how the string
processing techniques are applied to implement DNA sequencing and other
common DNA operations.

4. Level-by-level Organization for Programming Exercises. Programming
exercises at the end of chapters are organized into three levels of difficulties.
The one-star level exercises require the basic understanding of the materials
covered in the chapter. The two-star level exercises require some additional
thinking beyond the basic understanding. The three-star level exercises are

wu23305_fm.qxd 1/30/09 1:50 PM Page xi Confirming Pages

xii Preface

most difficult and require significant effort. For some of the three-star exer-
cises, students must find or study additional information beyond those pre-
sented in the book. Please keep in mind that the level of difficulties is only a
general guideline. One student may find some level-three exercises much eas-
ier than level-two exercises, for example.

Book Organization
There are 16 chapters in this book, numbered from 0 to 15. The first 11 chapters
cover the core topics that provide the fundamentals of programming. Chapters 11 to
15 cover intermediate-level topics such as sorting, searching, recursion, inheritance,
polymorphism, and file I/O. There are more than enough topics for one semester.
After the first 11 chapters (Ch 0 to Ch 10), instructors can mix and match materials
from Chapters 11 to 15 to suit their needs. We first show the dependency relation-
ships among the chapters and then provide a brief summary of each chapter.

Chapter Dependency
For the most part, chapters should be read in sequence, but some variations are
possible, especially with the optional chapters. Here’s a simplified dependency
graph:

0

1

2

3

4

5

6

7

8 9 10

1514*131211
*Note: Some examples use arrays,
 but the use of arrays is not an
 integral part of the examples.
 These examples can be modified
 to those that do not use arrays.
 Many topics from the early part
 of the chapter can be introduced
 as early as after Chapter 2.

wu23305_fm.qxd 1/30/09 1:50 PM Page xii Confirming Pages

Preface xiii

Brief Chapter Summary
Here is a short description of each chapter:

• Chapter 0 is an optional chapter. We provide background information on
computers and programming languages. This chapter can be skipped or as-
signed as an outside reading if you wish to start with object-oriented pro-
gramming concepts.

• Chapter 1 provides a conceptual foundation of object-oriented programming.
We describe the key components of object-oriented programming and illus-
trate each concept with a diagrammatic notation using UML.

• Chapter 2 covers the basics of Java programming and the process of editing,
compiling, and running a program. From the first sample program presented in
this chapter, we emphasize object-orientation. We will introduce the standard
classes String, Date, and SimpleDateFormat so we can reinforce the notion of
object declaration, creation, and usage. Moreover, by using these standard
classes, students can immediately start writing practical programs. We describe
and illustrate console input with System.in and the Scanner class and output with
System.out.

• Chapter 3 introduces variables, constants, and expressions for manipulating
numerical data. We explain the standard Math class from java.lang and
introduce more standard classes (GregorianCalendar and DecimalFormat) to
continually reinforce the notion of object-orientation. We describe additional
methods of the Scanner class to input numerical values. Random number
generation is introduced in this chapter. The optional section explains how the
numerical values are represented in memory space.

• Chapter 4 teaches the basics of creating programmer-defined classes. We
keep the chapter accessible by introducting only the fundamentals with illus-
trative examples. The key topics covered in this chapter are constructors, vis-
ibility modifiers (public and private), local variables, and passing data to
methods. We provide easy-to-grasp illustrations that capture the essence of
the topics so the students will have a clear understanding of them.

• Chapter 5 explains the selection statements if and switch. We cover boolean
expressions and nested-if statements. We explain how objects are compared
by using equivalence (==) and equality (the equals and compareTo methods).
We use the String and the programmer-defined Fraction classes to make the
distinction between the equivalence and equality clear. Drawing 2-D graphics
is introduced, and a screensaver sample development program is developed.
We describe the Java 5.0 feature called enumerated type in this chapter.

• Chapter 6 explains the repetition statements while, do–while, and for. Pitfalls
in writing repetition statements are explained. One of the pitfalls to avoid is
the use of float or double for the data type of a counter variable. We illustrate
this pitfall by showing a code that will result in infinite loop. Finding the great-
est common divisor of two integers is used as an example of a nontrivial loop
statement. We show the difference between the straightforward (brute-force)
and the clever (Euclid’s) solutions. We introduce the Formatter class and show

wu23305_fm.qxd 1/30/09 1:50 PM Page xiii Confirming Pages

xiv Preface

how the output can be aligned nicely. The optional last section of the chapter
introduces recursion as another technique for repetition. The recursive version
of a method that finds the greatest common divisor of two integers is given.

• Chapter 7 is the second part of creating programmer-defined classes. We
introduce new topics related to the creation of programmer-defined classes
and also repeat some of the topics covered in Chapter 4 in more depth. The
key topics covered in this chapter are method overloading, the reserved
word this, class methods and variables, returning an object from a method,
and pass-by-value parameter passing. As in Chapter 4, we provide many
lucid illustrations to make these topics accessible to beginners. We use the
Fraction class to illustrate many of these topics, such as the use of this and
class methods. The complete definition of the Fraction class is presented in
this chapter.

• Chapter 8 teaches exception handling and assertions. The focus of this chap-
ter is the construction of reliable programs. We provide a detailed coverage of
exception handling in this chapter. We introduce an assertion and show how it
can be used to improve the reliability of finished products by catching logical
errors early in the development.

• Chapter 9 covers nonnumerical data types: characters and strings. Both the
String and StringBuffer classes are explained in the chapter. Another string
class named StringBuilder is briefly explained in this chapter. An important ap-
plication of string processing is pattern matching. We describe pattern match-
ing and regular expression in this chapter. We introduce the Pattern and
Matcher classes and show how they are used in pattern matching. One section
is added to discuss the application of string processing in bioinformatics.

• Chapter 10 teaches arrays. We cover arrays of primitive data types and of ob-
jects. An array is a reference data type in Java, and we show how arrays are
passed to methods. We describe how to process two-dimensional arrays and
explain that a two-dimensional array is really an array of arrays in Java. Lists
and maps are introduced as a more general and flexible way to maintain a col-
lection of data. The use of ArrayList and HashMap classes from the java.util
package is shown in the sample programs. Also, we show how the WordList
helper class used in Chapter 9 sample development program is implemented
with another map class called TreeMap.

• Chapter 11 presents searching and sorting algorithms. Both N2 and Nlog2N
sorting algorithms are covered. The mathematical analysis of searching and
sorting algorithms can be omitted depending on the students’ background.

• Chapter 12 explains the file I/O. Standard classes such as File and JFile-
Chooser are explained. We cover all types of file I/O, from a low-level byte
I/O to a high-level object I/O. We show how the file I/O techniques are used
to implement the helper classes—Dorm and FileManager—in Chapter 8 and 9
sample development programs. The use of the Scanner class for inputting data
from a textfile is also illustrated in this chapter.

wu23305_fm.qxd 1/30/09 1:50 PM Page xiv Confirming Pages

Preface xv

• Chapter 13 discusses inheritance and polymorphism and how to use them ef-
fectively in program design. The effect of inheritance for member accessibil-
ity and constructors is explained. We also explain the purpose of abstract
classes and abstract methods.

• Chapter 14 covers GUI and event-driven programming. Only the Swing-
based GUI components are covered in this chapter. We show how to use the
JOptionPane class for a very simple GUI-based input and output. GUI com-
ponents introduced in this chapter include JButton, JLabel, ImageIcon,
JTextField, JTextArea, and menu-related classes. We describe the effective use
of nested panels and layout managers. Handling of mouse events is described
and illustrated in the sample programs. Those who do not teach GUI can skip
this chapter altogether. Those who teach GUI can introduce the beginning part
of the chapter as early as after Chapter 2.

• Chapter 15 covers recursion. Because we want to show the examples where
the use of recursion really shines, we did not include any recursive algorithm
(other than those used for explanation purposes) that really should be written
nonrecursively.

wu23305_fm.qxd 1/30/09 1:50 PM Page xv Confirming Pages

xvi Preface

Development Exercises
give students an opportunity
to practice incremental
development.

Level-by-level Organization for
Programming Exercises

Hallmark Features of the Text

Problem Solving

Printing the Initials

Now that we have acquired a basic understanding of Java application programs, let’s
write a new application.We will go through the design, coding, and testing phases of the
software life cycle to illustrate the development process. Since the program we develop
here is very simple, we can write it without really going through the phases. However, it is
extremely important for you to get into a habit of developing a program by following the
software life cycle stages. Small programs can be developed in a haphazard manner, but
not large programs.We will teach you the development process with small programs first,
so you will be ready to use it to create large programs later.

We will develop this program by using an incremental development technique,
which will develop the program in small incremental steps. We start out with a bare-
bones program and gradually build up the program by adding more and more code to
it. At each incremental step, we design, code, and test the program before moving on
to the next step. This methodical development of a program allows us to focus our at-
tention on a single task at each step, and this reduces the chance of introducing errors
into the program.

Problem Statement

We start our development with a problem statement. The problem statement for our
sample programs will be short, ranging from a sentence to a paragraph, but the problem
statement for complex and advanced applications may contain many pages. Here’s the
problem statement for this sample development exercise:

Write an application that asks for the user’s first, middle, and last names and
replies with the user’s initials.

Overall Plan

Our first task is to map out the overall plan for development. We will identify classes nec-
essary for the program and the steps we will follow to implement the program.We begin
with the outline of program logic. For a simple program such as this one, it is kind of obvi-
ous; but to practice the incremental development, let’s put down the outline of program
flow explicitly.We can express the program flow as having three tasks:

1. Get the user’s first, middle, and last names.

2. Extract the initials to formulate the monogram.

3. Output the monogram.

Having identified the three major tasks of the program, we will now identify the
classes we can use to implement the three tasks. First, we need an object to handle
the input. At this point, we have learned about only the Scanner class, so we will use it
here. Second, we need an object to display the result. Again, we will use System.out, as
it is the only one we know at this point for displaying a string value. For the string

Sample Development2.5 Sample Development

program
tasks

Sample Development Programs
Most chapters include a sample development
section that describes the process of
incremental development.

Level 1 Programming Exercises ★

5. In the RollDice program, we created three Die objects and rolled them once.
Rewrite the program so you will create only one Die object and roll it three
times.

6. Write a program that computes the total ticket sales of a concert. There are
three types of seatings: A, B, and C. The program accepts the number of
tickets sold and the price of a ticket for each of the three types of seats. The
total sales are computed as follows:

totalSales = numberOfA_Seats * pricePerA_Seat +

numberOfB_Seats * pricePerB_Seat +
numberOfC_Seats * pricePerC_Seat;

Write this program, using only one class, the main class of the program.

7. Define a new class named Temperature. The class has two accessors—to-
Fahrenheit and toCelsius—that return the temperature in the specified unit
and two mutators—setFahrenheit and setCelsius—that assign the temperature
in the specified unit. Maintain the temperature internally in degrees Fahrenheit.
Using this class, write a program that inputs temperature in degrees
Fahrenheit and outputs the temperature in equivalent degrees Celsius.

Development Exercises
For the following exercises, use the incremental development methodology to
implement the program. For each exercise, identify the program tasks, create
a design document with class descriptions, and draw the program diagram.
Map out the development steps at the start. Present any design alternatives and
justify your selection. Be sure to perform adequate testing at the end of each
development step.

11. In the sample development, we developed the user module of the keyless
entry system. For this exercise, implement the administrative module that
allows the system administrator to add and delete Resident objects and
modify information on existing Resident objects. The module will also allow
the user to open a list from a file and save the list to a file. Is it proper to
implement the administrative module by using one class? Wouldn’t it be
a better design if we used multiple classes with each class doing a single,
well-defined task?

12. Write an application that maintains the membership lists of five social clubs
in a dormitory. The five social clubs are the Computer Science Club, Biology
Club, Billiard Club, No Sleep Club, and Wine Tasting Club. Use the Dorm
class to manage the membership lists. Members of the social clubs are
Resident objects of the dorm. Use a separate file to store the membership
list for each club. Allow the user to add, delete, and modify members of
each club.

wu23305_fm.qxd 1/30/09 1:50 PM Page xvi Confirming Pages

Preface xvii

Object-Oriented Approach
We take the object-first approach to teaching object-oriented programming with emphasis
on proper object-oriented design. The concept of objects is clearly illustrated from the very
first sample program.

/*

Chapter 2 Sample Program: Displaying a Window

File: Ch2Sample1.java

*/

import javax.swing.*;

class Ch2Sample1 {

public static void main(String[] args) {

JFrame myWindow;

myWindow = new JFrame();

myWindow.setSize(300, 200);
myWindow.setTitle("My First Java Program");
myWindow.setVisible(true);

}
}

Dorm

Door

ResidentUser module

Dorm Resident

A helper class
provided to us

A class we
implement

One or more classes
we implement

Administrative
module

Figure 8.8 Program diagrams for the user and administrative modules. Notice the same Dorm and
Resident classes are used in both programs. User and administrative modules will include one or more
classes (at least one is programmer-defined).

Good practices on
object-oriented design
are discussed
throughout the book
and illustrated through
numerous sample
programs.

wu23305_fm.qxd 1/30/09 1:50 PM Page xvii Confirming Pages

xviii Preface

Illustrative Diagrams
Illustrative diagrams are used to explain all key concepts of programming such as the
difference between object declaration and creation, the distinction between the primitive
data type and the reference data type, the call-by-value parameter passing, inheritance, and
many others.

Numerical Data Object

number1 = 237;
number2 = number1;

int number1, number2;

alan = new Professor();
turing = alan;

Professor alan, turing;

number2

number1

turing

alan

number2

number1

turing

alan

number1 = 237;

int number1, number2;

alan = new Professor();

Professor alan, turing;

number2 = number1; turing = alan;

:Professor

:Professor

number2

number1

turing

alan

number1 = 237;

int number1, number2;

alan = new Professor();

Professor alan, turing;

number2 = number1; turing = alan;

237

237

237

Figure 3.3 An effect of assigning the content of one variable to another.

A

0 1 2 3

entry

B C D

:Person :Person :Person :Person

0 1 2 3 4 5

temp

Person[] temp;
int newLength = (int) (1.5 * entry.length);

temp = new Person[newLength];

A

0 1 2 3

entry

B C D

:Person :Person :Person :Person

0 1 2 3 4 5

temp

for (int i = 0; i < entry.length; i++) {
 temp[i] = entry[i];
}
entry = temp;

Note: The old array will eventually
get returned to the system via
garbage collection.

Figure 10.16 How a new array that is 150 percent of the original array is created. The size of the
original array is 4.

Lucid diagrams are used effectively to explain
data structures and abstract data types.

wu23305_fm.qxd 1/30/09 1:50 PM Page xviii Confirming Pages

Preface xix

Student Pedagogy

Always define a constructor and initialize data members fully in the
constructor so an object will be created in a valid state.

It is not necessary to create an object for every variable we use. Many novice pro-
grammers often make this mistake. For example, we write

Fraction f1, f2;
f1 = new Fraction(24, 36);
f2 = f1.simplify();

We didn’t write

Fraction f1, f2;
f1 = new Fraction(24, 36);
f2 = new Fraction(1, 1); //not necessary

f2 = f1.simplify();

because it is not necessary.The simplify method returns a Fraction object, and in
the calling program, all we need is a name we can use to refer to this returned
Fraction object. Don’t forget that the object name (variable) and the actual object
instance are two separate things.

We can turn our simulation program into a real one by replacing the Door class
with a class that actually controls the door. Java provides a mechanism called Java
Native Interface (JNI) which can be used to embed a link to a low-level device dri-
ver code, so calling the open method actually unlocks the door.

1. What will be displayed on the console window when the following code is
executed and the user enters abc123 and 14?

Scanner scanner = new Scanner(System.in);
try {

int num1 = scanner.nextInt();

System.out.println("Input 1 accepted");

int num2 = scanner.nextInt();

System.out.println("Input 2 accepted");

} catch (InputMismatchException e) {

System.out.println("Invalid Entry");
}

List the catch blocks in the order of specialized to more general exception classes.
At most one catch block is executed, and all other catch blocks are ignored.

Design Guidelines
provide tips on good
program design.

Things to Remember
boxes provide tips for
students to remember key
concepts.

Tips, Hints, and Pitfalls
provide important points
for which to watch out.

You Might Want to Know
boxes give students
interesting bits of
information.

Quick Check
exercises at the end of
the sections allow
students to test their
comprehension of
topics.

wu23305_fm.qxd 1/30/09 1:50 PM Page xix Confirming Pages

xx Preface

Supplements for Instructors and Students
The book is supported by a rich array of supplements available through the text’s
website located at www.mhhe.com/wu

For Instructors, a complete set of PowerPoints, solutions to the chapter exercises,
and other resources are provided.

For Students, source code for all example programs, answers to Quick Check
exercises, and other resources are provided, as well as the optional galapagos pack-
age, which includes the Turtle class that is necessary in solving various chapter
exercises.

Acknowledgments
I would like to thank my good friends at McGraw-Hill’s editorial and production
departments. Needless to say, without their help, this book would not have seen the
light of the day. I thank especially Raghu Srinivasan and Lorraine Buczek for their
infinite patience.

External reviewers are indispensable in maintaining the accuracy and improv-
ing the quality of presentation. Numerous professors have participated as reviewers
over the course of five editions, and I thank them all again for their comments, sug-
gestions, and encouragement. I especially thank the reviewers of the Comprehen-
sive edition for their valuable input towards the revision of this fifth edition text.

Personal Story
In September, 2001, I changed my name for personal reasons. Prof C. Thomas
Wu is now Prof Thomas W. Otani. To maintain continuity and not to confuse
people, we continue to publish the book under my former name. For those who
care to find out a little about my personal history can do so by visiting
www.mhhe.com/wu

wu23305_fm.qxd 1/30/09 1:50 PM Page xx Confirming Pages

