
215

Chapter

8
Reusability and
Portability
Learning Objectives
After studying this chapter, you should be able to

• Explain why reuse is so important.
• Appreciate the obstacles to reuse.
• Describe techniques for achieving reuse during the various workfl ows.
• Appreciate the importance of design patterns.
• Discuss the impact of reuse on maintainability.
• Explain why portability is essential.
• Understand the obstacles to achieving portability.
• Develop portable software.

If reinventing the wheel were a criminal offense, many software professionals would today

be languishing in jail. For example, there are tens of thousands (if not hundreds of thou-

sands) of different COBOL payroll programs, all doing essentially the same thing. Surely,

the world needs just one payroll program that can run on a variety of hardware and be

tailored, if necessary, to cater to the specifi c needs of an individual organization. However,

instead of utilizing previously developed payroll programs, myriad organizations all over

the world have built their own payroll program from scratch. In this chapter, we investigate

why software engineers delight in continually reinventing the wheel, and what can be done

to achieve portable software built using reusable components. We begin by distinguishing

between portability and reusability.

As explained in the Preface, the material of this chapter may be taught in parallel with that of Part 2

sch2333x_ch08_215-255.Indd Page 215 5/31/07 8:03:35 PM elhisch2333x_ch08_215-255.Indd Page 215 5/31/07 8:03:35 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

216 Part One Introduction to Object-Oriented Software Engineering

8.1 Reuse Concepts

A product is portable if it is signifi cantly easier to modify the product as a whole to

run it on another compiler–hardware–operating system confi guration than to recode it

from scratch. In contrast, reuse refers to using components of one product to facilitate the

 development of a different product with a different functionality. A reusable component

need not necessarily be a module or a code fragment—it could be a design, a part of a

manual, a set of test data, or a duration and cost estimate. (For a different view on reuse,

see Just in Case You Wanted to Know Box 8.1.)

 There are two types of reuse, opportunistic reuse and deliberate reuse. If the developers

of a new product realize that a component of a previously developed product can be reused

in the new product, then this is opportunistic reuse, sometimes referred to as acciden-
tal reuse. On the other hand, utilization of software components constructed specifi cally

for possible future reuse is systematic reuse or deliberate reuse. A potential advantage

Just in Case You Wanted to Know Box 8.1

Reuse is not restricted to software. For example, lawyers nowadays rarely draft wills from
scratch. Instead, they use a word processor to store wills they have previously drafted, and
then make appropriate changes to an existing will. Other legal documents, like contracts,
are usually drafted in the same way from existing documents.
 Classical composers frequently reused their own music. For example, in 1823 Franz
Schubert wrote an entr’acte for Helmina von Chezy’s play, Rosamunde, Fürstin von Zypern
(Rosamunde, Princess of Cyprus) and the following year he reused that material in the slow
movement of his String Quartet No. 13. Ludwig van Beethoven’s Opus 66, “Variations for
Cello on Mozart’s Ein Mädchen oder Weibchen,” is a good example of one great composer
reusing the music of another great composer; Beethoven simply took the aria “A Girlfriend
or Little Wife” from Scene 22 of Wolfgang Amadeus Mozart’s opera Der Zauberfl öte (The
Magic Flute) and wrote a series of seven variations on that aria for the cello with piano
 accompaniment.
 In my opinion, the greatest reuser of all time was William Shakespeare. His genius lay in
reusing the plots of others—I cannot think of a single story line he made up himself. For ex-
ample, his historical plays heavily reused parts of Raphael Holinshed’s 1577 work, Chronicles
of England, Scotland and Ireland. Then, Shakespeare’s Romeo and Juliet (1594) is borrowed,
on an almost line-for-line basis, from Arthur Brooke’s lengthy poem The Tragicall Historye of
Romeus and Iuliet published in 1562, two years before Shakespeare was born.
 But this reuse saga didn’t begin there. In fact, the earliest known version appeared
around 200 CE in Ephesiaka (Ephesian Tale) by the Greek novelist Xenophon of Ephesus. In
1476, Tommaso Guardati (more commonly known as Masuccio Salernitano) reused Xeno-
phon’s tale in novella 33 in his collection of 50 novellas, Il Novellino. In 1530, Luigi da Porto
reused that story in Historia Novellamente Ritrovata di Due Nobili Amanti (A Newly Found Story
of Two Noble Lovers), for the fi rst time setting it in Verona, Italy. Brooke’s poem reuses parts
of Giulietta e Romeo (1554) by Matteo Bandello, a reuse of da Porto’s version.
 And this reuse saga didn’t end with Romeo and Juliet, either. In 1957, West Side Story opened
on Broadway. The musical, with book by Arthur Laurents, lyrics by Stephen Sondheim, and
score by Leonard Bernstein, reused Shakespeare’s version of the story. The Broadway musical
was then reused in a Hollywood movie, which won 10 Academy Awards in 1961.

sch2333x_ch08_215-255.Indd Page 216 5/31/07 8:03:36 PM elhisch2333x_ch08_215-255.Indd Page 216 5/31/07 8:03:36 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

Chapter 8 Reusability and Portability 217

of systematic reuse over opportunistic reuse is that artifacts specially constructed for use

in future products are more likely to be easy and safe to reuse; such artifacts generally are

robust, well documented, and thoroughly tested. In addition, they usually display a unifor-

mity of style that makes maintenance easier. The other side of the coin is that implement-

ing systematic reuse within a company can be expensive. It takes time to specify, design,

implement, test, and document a software artifact. However, there can be no guarantee that

such an artifact will be reused and thereby recoup the money invested in developing the

potentially reusable artifact.

 When computers were fi rst constructed, nothing was reused. Every time a product was

developed, items such as multiplication routines, input–output routines, or routines for

computing sines and cosines were constructed from scratch. Quite soon, however, it was

realized that this was a considerable waste of effort, and subroutine libraries were con-

structed. Programmers then simply could invoke square root or sine functions whenever

they wished. These subroutine libraries have become more and more sophisticated and

developed into run-time support routines. Therefore, when a programmer calls a C++ or

Java method, there is no need to write code to manage the stack or pass the arguments

explicitly; it is handled automatically by calling the appropriate run-time support routines.

The concept of subroutine libraries has been extended to large-scale statistical libraries

such as SPSS [Norušis, 2005] and numerical analysis libraries like NAG [2003]. Class

 libraries also play a major role in assisting users of object-oriented languages. For example,

the success of Smalltalk is due at least partly to the wide variety of items in the Smalltalk

library together with the presence of a browser, a CASE tool that assists the user to scan a

class library. With regard to C++, a large number of different libraries are available, many

in the public domain. One example is the C++ Standard Template Library (STL) [Musser

and Saini, 1996].

 An application programming interface (API) generally is a set of operating system

calls that facilitate programming. For example, Win32 is an API for Microsoft operat-

ing systems such as Windows XP; and Cocoa is an API for Mac OS X, a Macintosh

operating system. Although an API usually is implemented as a set of operating system

calls, to the programmer the routines constituting the API can be viewed as a subroutine

library. For example, the Java Application Programming Interface consists of a number

of packages (libraries).

 No matter how high the quality of a software product may be, it will not sell if it takes

2 years to get it onto the market when a competitive product can be delivered in only 1 year.

The length of the development process is critical in a market economy. All other criteria as

to what constitutes a “good” product are irrelevant if the product cannot compete timewise.

For a corporation that has repeatedly failed to get a product to market fi rst, software reuse

offers a tempting technique. After all, if an existing component is reused, then there is no

need to specify, design, implement, test, and document that component. The key point

is that, on average, only about 15 percent of any software product serves a truly original

purpose [Jones, 1984]. The other 85 percent of the product in theory could be standardized

and reused in future products.

 The fi gure of 85 percent is essentially a theoretical upper limit for the reuse rate; never-

theless, reuse rates on the order of 40 percent can be achieved in practice. This leads to an

obvious question: If such reuse rates are attainable in practice and reuse is by no means a

new idea, why do so few organizations employ reuse to shorten the development process?

sch2333x_ch08_215-255.Indd Page 217 5/31/07 8:03:36 PM elhisch2333x_ch08_215-255.Indd Page 217 5/31/07 8:03:36 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

218 Part One Introduction to Object-Oriented Software Engineering

8.2 Impediments to Reuse

There are a number of impediments to reuse:

• All too many software professionals would rather rewrite a component from scratch

than reuse a component written by someone else, the implication being that a compo-

nent cannot be any good unless they wrote it themselves, otherwise known as the not
invented here (NIH) syndrome [Griss, 1993]. NIH is a management issue, and, if

management is aware of the problem, it can be solved, usually by offering fi nancial

incentives to promote reuse.

• Many developers would be willing to reuse a component provided they could be sure

that the component in question would not introduce faults into the product. This at-

titude toward software quality is perfectly easy to understand. After all, every software

professional has seen faulty software written by others. The solution here is to subject

potentially reusable components to exhaustive testing before making them available for

reuse.

• A large organization may have hundreds of thousands of potentially useful com-

ponents. How should these components be stored for effective later retrieval? For

example, a reusable components database might consist of 20,000 items, 125 of

which are sort routines. The database must be organized so that the designer of a

new product can quickly determine which (if any) of those 125 sort routines is ap-

propriate for the new product. Solving the storage/retrieval problem is a technical

issue for which a wide variety of solutions have been proposed (e.g., [Meyer, 1987]

or [Prieto-Díaz, 1991]).

• Reuse can be expensive. Tracz [1994] has stated that three costs are involved: the cost

of making a component reusable, the cost of reusing a component, and the cost of de-

fi ning and implementing a reuse process. He estimates that just making a component

reusable increases its cost by at least 60 percent. Some organizations have reported

cost increases of 200 percent and even up to 480 percent, whereas the cost of mak-

ing a component reusable was only 11 percent in one Hewlett-Packard reuse project

[Lim, 1994].

• Legal issues can arise with contract software. In terms of the type of contract usually

drawn up between a client and a software development organization, the software

product belongs to the client. Therefore, if the software developer reuses a compo-

nent of one client’s product in a new product for a different client, this essentially

constitutes a violation of the fi rst client’s copyright. For internal software, that is,

when the developers and client are members of the same organization, this problem

does not arise.

• Another impediment arises when commercial off-the-shelf (COTS) components are

reused. Rarely are developers given the source code of a COTS component, so software

that reuses COTS components has limited extensibility and modifi ability.

 The fi rst four impediments can be overcome, at least in principle. So, other than cer-

tain legal issues and problems with COTS components, essentially no major impediments

 prevent implementing reuse within a software organization (but see Just in Case You

 Wanted to Know Box 8.2).

sch2333x_ch08_215-255.Indd Page 218 5/31/07 8:03:36 PM elhisch2333x_ch08_215-255.Indd Page 218 5/31/07 8:03:36 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

8.3 Reuse Case Studies

Many published case studies show how reuse has been successfully achieved in practice;

reuse case studies that have had a major impact include [Matsumoto, 1984, 1987; Selby,

1989; Prieto-Díaz, 1991; and Lim, 1994]. Here, we analyze two case studies. The fi rst, which

describes a reuse project that took place between 1976 and 1982, is important because the

reuse mechanism used then for COBOL designs is the same as the reuse mechanism used

today in object-oriented application frameworks (Section 8.5.2). This case study therefore

serves to clarify modern reuse practices.

Just in Case You Wanted to Know Box 8.2

The World Wide Web is a great source of “urban myths,” that is, apparently true stories that
somehow just do not stand up under scrutiny when they are investigated closely. One such
urban myth concerns code reuse.
 The story is told that the Australian Air Force set up a virtual reality training simulator
for helicopter combat training. To make the scenarios as realistic as possible, programmers
included detailed landscapes and (in the Northern Territory) herds of kangaroos. After all,
the dust from a herd disturbed by a helicopter might reveal the position of that helicopter
to the enemy.
 The programmers were instructed to model both the movements of the kangaroos and
their reaction to helicopters. To save time, the programmers reused code originally used to
simulate the reaction of infantry to attack by a helicopter. Only two changes were made: They
changed the icon from a soldier to a kangaroo, and they increased the speed of movement of
the fi gures.
 One fi ne day, a group of Australian pilots wanted to demonstrate their prowess with the
fl ight simulator to some visiting American pilots. They “buzzed” (fl ew extremely low over) the
virtual kangaroos. As expected, the kangaroos scattered, and then reappeared from behind a
hill and launched Stinger missiles at the helicopter. The programmers had forgotten to remove
that part of the code when they reused the virtual infantry implementation.
 However, as reported in The Risks Digest, it appears that the story is not totally an urban
myth—much of it actually happened [Green, 2000]. Dr. Anne-Marie Grisogono, head of the
Simulation Land Operations Division at the Australian Defence Science and Technology Or-
ganisation, told the story at a meeting in Canberra, Australia, on May 6, 1999. Although the
simulator was designed to be as realistic as possible (it even included over 2 million virtual
trees, as indicated on aerial photographs), the kangaroos were included for fun. The program-
mers indeed reused Stinger missile detachments so that the kangaroos could detect the arrival
of helicopters, but the behavior of the kangaroos was set to “retreat” so that the kangaroos,
correctly, would fl ee if a helicopter approached. However, when the software team tested their
simulator in their laboratory (not in front of visitors), they discovered that they had forgotten
to remove both the weapons and “fi re” behavior. Also, they had not specifi ed what weapons
were to be used by the simulated fi gures, so when the kangaroos fi red on the helicopters, they
fi red the default weapon, which happened to be large multicolored beachballs.
 Grisogono confi rmed that the kangaroos were immediately disarmed and therefore it is
now safe to fl y over Australia. But notwithstanding this happy ending, software professionals
still must take care when reusing code not to reuse too much of it.

sch2333x_ch08_215-255.Indd Page 219 5/31/07 8:03:37 PM elhisch2333x_ch08_215-255.Indd Page 219 5/31/07 8:03:37 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

220 Part One Introduction to Object-Oriented Software Engineering

8.3.1 Raytheon Missile Systems Division
In 1976, a study was undertaken at Raytheon’s Missile Systems Division to determine

whether systematic reuse of designs and code was feasible [Lanergan and Grasso, 1984].

Over 5000 COBOL products in use were analyzed and classifi ed. The researchers de-

termined that only six basic operations are performed in a business application product.

As a result, between 40 and 60 percent of business application designs and modules

could be standardized and reused. The basic operations were found to be sort data, edit or

 manipulate data, combine data, explode data, update data, and report on data. For the next

6 years, a concerted attempt was made to reuse both design and code wherever possible.

 The Raytheon approach employed reuse in two ways, what the researchers termed func-
tional modules and COBOL program logic structures. In Raytheon’s terminology a func-
tional module is a COBOL code fragment designed and coded for a specifi c purpose,

such as an edit routine, database procedure division call, tax computation routine, or date

aging routine for accounts receivable. Use of the 3200 reusable modules resulted in applica-

tions that, on average, consisted of 60 percent reused code. Functional modules were care-

fully designed, tested, and documented. Products that used these functional modules were

found to be more reliable, and less testing of the product as a whole was needed.

 The modules were stored in a standard copy library and obtained with the copy verb.

That is, the code was not physically present within the application product but was in-

cluded by the COBOL compiler at compilation time, a mechanism similar to #include in

C++. The resulting source code therefore was shorter than if the copied code were physi-

cally present. As a consequence, maintenance was easier.

 The Raytheon researchers also used what they termed a COBOL program logic struc-
ture. This is a framework that has to be fl eshed out into a complete product. One example

of a logic structure is the update logic structure. This is used to perform a sequential update,

such as the mini case study in Section 5.1.1. Error handling is built in, as is sequence check-

ing. The logic structure is 22 paragraphs (units of a COBOL program) in length. Many of the

paragraphs can be fi lled in by using functional modules such as get-transaction, print-page-
headings, and print-control-totals. Figure 8.1 is a symbolic depiction of the framework of a

COBOL program logic structure with the paragraphs fi lled in by functional modules.

COBOL program
logic structure

Functional module

 Figure 8.1
A symbolic

representation

of the Raytheon

Missile Systems

Division reuse

mechanism.

sch2333x_ch08_215-255.Indd Page 220 5/31/07 8:03:37 PM elhisch2333x_ch08_215-255.Indd Page 220 5/31/07 8:03:37 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

Chapter 8 Reusability and Portability 221

 The use of such templates has many advantages. It makes the design and coding of a

product quicker and easier, because the framework of the product already is present; all that

is needed is to fi ll in the details. Fault-prone areas such as end-of-fi le conditions already

have been tested. In fact, testing as a whole is easier. But Raytheon believed that the major

advantage would occur when the users requested modifi cations or enhancements. Once a

maintenance programmer was familiar with the relevant logic structure, it was almost as if

he or she had been a member of the original development team.

 By 1983, logic structures had been used over 5500 times in developing new products.

About 60 percent of the code consisted of functional modules, that is, reusable code. This

meant that design, coding, module testing, and documentation time also was reduced by

60 percent, leading to an estimated 50 percent increase in productivity in software product

development. But, for Raytheon, the real benefi t of the technique lay in the hope that the

readability and understandability resulting from the consistent style would reduce the cost

of maintenance by between 60 and 80 percent. Unfortunately, Raytheon closed the division

before the necessary maintenance data could be obtained.

 The second reuse case study is a cautionary tale, rather than a success story.

8.3.2 European Space Agency
On June 4, 1996, the European Space Agency launched the Ariane 5 rocket for the fi rst

time. As a consequence of a software fault, the rocket crashed about 37 seconds after liftoff.

The cost of the rocket and payload was about $500 million [Jézéquel and Meyer, 1997].

 The primary cause of the failure was an attempt to convert a 64-bit integer into a 16-bit

unsigned integer. The number being converted was larger than 216, so an Ada exception

(run-time failure) occurred. Unfortunately, there was no explicit exception handler in the

code to deal with this exception, so the software crashed. This caused the onboard computers

to crash which, in turn, caused the Ariane 5 rocket to crash.

 Ironically, the conversion that caused the failure was unnecessary. Certain computa-

tions are performed before liftoff to align the inertial reference system. These computations

should stop 9 seconds before liftoff. However, if there is a subsequent hold in the count-

down, resetting the inertial reference system after the countdown has recommenced can

take several hours. To prevent that happening, the computations continue for 50 seconds

after the start of fl ight mode, that is, well into the fl ight (notwithstanding that, once liftoff

has occurred, there is no way to align the inertial reference system). This futile continuation

of the alignment process caused the failure.

 The European Space Agency uses a careful software development process that incor-

porates an effective software quality assurance component. Then, why was there no ex-

ception handler in the Ada code to handle the possibility of such an overfl ow? To prevent

overloading the computer, conversions that could not possibly result in overfl ow were left

unprotected. The code in question was 10 years old. It had been reused, unchanged and

without any further testing, from the software controlling the Ariane 4 rocket (the precursor

of the Ariane 5). Mathematical analysis had proven that the computation in question was

totally safe for the Ariane 4. However, the analysis was performed on the basis of certain

assumptions that were true for the Ariane 4 but not for the Ariane 5. Therefore, the analysis

no longer was valid, and the code needed the protection of an exception handler to cater to

the possibility of an overfl ow. Were it not for the performance constraint, there surely would

sch2333x_ch08_215-255.Indd Page 221 5/31/07 8:03:37 PM elhisch2333x_ch08_215-255.Indd Page 221 5/31/07 8:03:37 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

222 Part One Introduction to Object-Oriented Software Engineering

have been exception handlers throughout the Ariane 5 Ada code. Alternatively, the use of

the assert pragma both during testing and after the product had been installed (Section

6.5.3) could have prevented the Ariane 5 crash if the relevant module had included an asser-

tion that the number to be converted was smaller than 216 [Jézéquel and Meyer, 1997].

 The major lesson of this reuse experience is that software developed in one context

must be retested when reused in another context. That is, a reused software module does

not need to be retested by itself, but it must be retested after it has been integrated into the

product in which it is reused. Another lesson is that it is unwise to rely exclusively on the

results of mathematical proofs, as discussed in Section 6.5.2.

 We now examine the impact of the object-oriented paradigm on reuse.

8.4 Objects and Reuse

When the theory of composite/structured design fi rst was put forward about 30 years ago,

the claim was made that an ideal module has functional cohesion (Section 7.2.6). That is,

if a module performed only one operation, it was thought to be an exemplary candidate

for reuse, and maintenance of such a module was expected to be easy. The fl aw in this

reasoning is that a module with functional cohesion is not self-contained and independent.

Instead, it has to operate on data. If such a module is reused, then the data on which it is to

operate must be reused, too. If the data in the new product are not identical to those in the

original, then either the data have to be changed or the module with functional cohesion

has to be changed. Therefore, contrary to what we used to believe, functional cohesion is

not ideal for reuse.

 According to C/SD as originally put forward in 1974, the next best type of module

is one with informational cohesion (Section 7.2.7). Nowadays, we appreciate that such a

module essentially is an object, that is, an instance of a class. A well-designed object is the

fundamental building block of software because it models all aspects of a particular real-

world entity (conceptual independence, or encapsulation) but conceals the implementation

of both its data and the operations that operate on the data (physical independence, or in-

formation hiding). Therefore, when the object-oriented paradigm is utilized correctly, the

resulting modules (objects) have informational cohesion, and this promotes reuse.

8.5 Reuse during Design and Implementation

Dramatically different types of reuse are possible during design. The reused material can

vary from just one or two artifacts to the architecture of the complete software product. We

now examine various types of design reuse, some of which carry over into implementation.

8.5.1 Design Reuse
When designing a product, a member of the design team may realize that a class from an

earlier design can be reused in the current project, with or without minor modifi cations. This

type of reuse is particularly common in an organization that develops software in one spe-

cifi c application domain, such as banking or air traffi c control systems. The organization can

sch2333x_ch08_215-255.Indd Page 222 5/31/07 8:03:37 PM elhisch2333x_ch08_215-255.Indd Page 222 5/31/07 8:03:37 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

Chapter 8 Reusability and Portability 223

promote this type of reuse by setting up a repository of design components likely to be reused

in the future and encouraging designers to reuse them, perhaps by a cash bonus for each such

reuse. This type of reuse, limited though it may be, has two advantages. First, tested designs

are incorporated into the product. The overall design therefore can be produced more quickly

and is likely to have a higher quality than when the entire design is produced from scratch.

Second, if the design of a class can be reused, then it is likely that the implementation of that

class also can be reused, if not the actual code then at least conceptually.

 This approach can be extended to library reuse, depicted in Figure 8.2(a). A library is a

set of related reusable routines. For example, developers of scientifi c software rarely write

the methods to perform such common tasks as matrix inversion or fi nding eigenvalues.

Instead, a scientifi c class library such as LAPACK++ [2000] is purchased. Then, whenever

possible, the classes in the scientifi c library are utilized in future software.

 Another example is a library for a graphical user interface. Instead of writing the GUI

methods from scratch, it is far more convenient to use a GUI class library or toolkit, that

is, a set of classes that can handle every aspect of the GUI. Many GUI toolkits of this kind

are available, including the Java Abstract Windowing Toolkit [Flanagan, 2005].

 A problem with library reuse is that libraries frequently are presented in the format of

a set of reusable code artifacts rather than reusable designs. Toolkits, too, generally pro-

mote code reuse rather than design reuse. This problem can be alleviated with the help of

a browser, that is, a CASE tool for displaying the inheritance tree. The designer then can

traverse the inheritance tree of the library, examine the fi elds of the various classes, and

determine which class is applicable to the current design.

 A key aspect of library and toolkit reuse is that, as depicted in Figure 8.2(a), the de-

signer is responsible for the control logic of the product as a whole. The library or toolkit

contributes to the software development process by supplying parts of the design that in-

corporate the specifi c operations of the product.

 On the other hand, an application framework is the converse of a library or toolkit in

that it supplies the control logic; the developers are responsible for the design of the spe-

cifi c operations. This is described in Section 8.5.2.

(a) (b) (c) (d)

 Figure 8.2 A symbolic representation of four types of design reuse. Shading denotes design reuse within (a) a library

or a toolkit, (b) a framework, (c) a design pattern, and (d) a software architecture comprising a framework, a toolkit, and

three design patterns.

sch2333x_ch08_215-255.Indd Page 223 5/31/07 8:03:37 PM elhisch2333x_ch08_215-255.Indd Page 223 5/31/07 8:03:37 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

224 Part One Introduction to Object-Oriented Software Engineering

8.5.2 Application Frameworks
As shown in Figure 8.2(b), an application framework incorporates the control logic

of a design. When a framework is reused, the developers have to design the application-

specifi c operations of the product being built. The places where the application-specifi c

operations are inserted frequently are referred to as hot spots.

 The term framework nowadays usually refers to an object-oriented application frame-

work. For example, in [Gamma, Helm, Johnson, and Vlissides, 1995], a framework is defi ned

as a “set of cooperating classes that make up a reusable design for a specifi c class of software.”

However, consider the Raytheon Missiles Systems Division case study of Section 8.3.1. Figure

8.1 is identical to Figure 8.2(b). In other words, the Raytheon COBOL program logic structure

of the 1970s is a classical precursor of today’s object- oriented application framework.

 An example of an application framework is a set of classes for the design of a compiler.

The design team merely has to provide classes specifi c to the language and desired target

machine. These classes then are inserted into the framework, as depicted by the white

boxes in Figure 8.2(b). Another example of a framework is a set of classes for the soft-

ware controlling an ATM. Here, the designers need to provide the classes for the specifi c

banking services offered by the ATMs of that banking network.

 Reusing a framework results in faster product development than reusing a toolkit, for

two reasons. First, more of the design is reused with a framework, so there is less to design

from scratch. Second, the portion of the design that is reused with a framework (the control

logic) generally is harder to design than the operations, so the quality of the resulting de-

sign also is likely to be higher than when a toolkit is reused. As with library or toolkit reuse,

often the implementation of the framework can be reused as well. The developers probably

have to use the names and calling conventions of the framework, but that is a small price to

pay. Also, the resulting product is likely to be maintained easily because the control logic

has been tested in other products that reuse the application framework and the maintainer

previously may have maintained another product that reused that same framework.

 IBM’s WebSphere (formerly known as e-Components, and originally as San Francisco)

is a framework for building online information systems in Java. It utilizes Enterprise Java-

Beans, that is, classes that provide services for clients distributed throughout a network.

 In addition to application frameworks, many code frameworks are available. One of the fi rst

commercially successful code frameworks was MacApp, a framework for writing application

software on the Macintosh. Borland’s Visual Component Library (VCL) is an object-oriented

set of frameworks for building GUIs in Windows-based applications. VCL applications can

perform standard windowing operations, such as moving and resizing windows, processing

input via dialog boxes, and handling events like mouse clicks or menu selections.

 We now consider design patterns.

8.5.3 Design Patterns
Christopher Alexander (see Just in Case You Wanted to Know Box 8.3) said, “Each pattern

describes a problem which occurs over and over again in our environment, and then de-

scribes the core of the solution to that problem, in such a way that you can use this solution

a million times over, without ever doing it the same way twice” [Alexander et al., 1977].

Although he was writing within the context of patterns in buildings and other architectural

objects, his remarks are equally applicable to design patterns.

sch2333x_ch08_215-255.Indd Page 224 5/31/07 8:03:37 PM elhisch2333x_ch08_215-255.Indd Page 224 5/31/07 8:03:37 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

 A design pattern is a solution to a general design problem in the form of a set of in-

teracting classes that have to be customized to create a specifi c design. This is depicted in

Figure 8.2(c). The shaded boxes connected by lines denote the interacting classes. The white

boxes inside the shaded boxes denote that these classes must be customized for a specifi c

design.

 To understand how patterns can assist with software development, consider the

following example. Suppose that a software engineer wishes to reuse two existing

classes, P and Q, say, but that their interfaces are incompatible. For example, when P

sends a message to Q, it passes four parameters, but Q’s interface is such that it expects

only three parameters. Changing the interface of P or Q would create a whole host

of incompatibility problems in all the applications that currently incorporate P or Q.

Instead, a class A needs to be constructed that accepts a message from P with four

parameters, and sends a message to Q with only three parameters. (A class of this kind

is sometimes called a wrapper.)

 What we have described is a specifi c solution to a more general problem, namely,

enabling any two incompatible classes to work together. Instead of designing this one solu-

tion, we need a design pattern, the Adapter pattern. Just as an instance of a class is an ob-

ject, an instance of the Adapter pattern is a solution to the incompatibility problem tailored

to the two classes involved. This pattern is described in more detail in Section 8.6.

 Patterns can interact with other patterns. This is represented symbolically in Figure 8.2(d)

where the bottom-left block of the middle pattern again is a pattern. A case study of a docu-

ment editor in [Gamma, Helm, Johnson, and Vlissides, 1995] contains eight interacting

patterns. That is what happens in practice; it is unusual for the design of a product to con-

tain only one pattern.

 As with toolkits and frameworks, if a design pattern is reused, then an implementation

of that pattern probably also can be reused. In addition, analysis patterns can assist with the

analysis workfl ow [Fowler, 1997]. Finally, in addition to patterns, there are antipatterns;

these are described in Just in Case You Wanted to Know Box 8.4.

 Because of the importance of design patterns, we return to this topic in Section 8.6,

after we have concluded our overview of reuse in design and implementation.

Just in Case You Wanted to Know Box 8.3

One of the most infl uential individuals in the fi eld of object-oriented software engineering is
Christopher Alexander, a world-famous architect who freely admits to knowing little or nothing
about objects or software engineering. In his books, and especially in [Alexander et al., 1977],
he describes a pattern language for architecture, that is, for describing towns, buildings, rooms,
gardens, and so on. His ideas were adopted and adapted by object-oriented software engineers,
especially the so-called Gang of Four (Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides). Their best-selling book on design patterns [Gamma, Helm, Johnson, and Vlissides,
1995] resulted in Alexander’s ideas being widely accepted by the object-oriented community.
 Patterns occur in other contexts as well. For example, when approaching an airport, pilots
have to know the appropriate landing pattern, that is, the sequence of directions, altitudes,
and turns needed to land the plane on the correct runway. Also, a dressmaking pattern is a
series of shapes that can be used repeatedly to create a particular dress. The concept of a
pattern itself is by no means novel. What is new is the application of patterns to software
development and especially design.

sch2333x_ch08_215-255.Indd Page 225 6/8/07 3:11:11 PM epgsch2333x_ch08_215-255.Indd Page 225 6/8/07 3:11:11 PM epg /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

8.5.4 Software Architecture
The architecture of a cathedral might be described as Romanesque, Gothic, or Baroque.

Similarly, the architecture of a software product might be described as object-oriented,

pipes and fi lters (UNIX components), or client–server (with a central server providing

fi le storage and computing facilities for a network of client computers). Figure 8.2(d)

symbolically depicts an architecture composed of a toolkit, a framework, and three design

patterns.

 Because it applies to the design of a product as a whole, the fi eld of software ar-
chitecture encompasses a variety of design issues, including the organization of the

product in terms of its components; product-level control structures; issues of commu-

nication and synchronization; databases and data access; the physical distribution of the

components; performance; and choice of design alternatives [Shaw and Garlan, 1996].

Accordingly, software architecture is a considerably more wide-ranging concept than

design patterns.

 In fact, Shaw and Garlan [1996] state, “Abstractly, software architecture involves the

description of elements from which systems are built, interactions among those elements,

patterns that guide their composition, and constraints on those patterns” [emphasis add-

ed]. Consequently, in addition to the many items listed in the previous paragraph, software

architecture includes patterns as a subfi eld. This is one reason why Figure 8.2(d) shows

three design patterns as components of a software architecture.

 The many strengths of design reuse are even greater when a software architecture

is reused. One way that reuse of architectures is achieved in practice is with software
 product lines [Lai, Weiss, and Parnas, 1999; Jazayeri, Ran, and van der Linden, 2000].

The idea is to develop a software architecture common to a number of software products

and instantiate this architecture when developing a new product. For example, Hewlett-

Packard manufactures a broad variety of printers, and new models constantly are being

 developed. Hewlett-Packard now has a fi rmware architecture that is instantiated for each

new printer model. The results have been impressive. For example, between 1995 and

1998, the number of person-hours to develop the fi rmware for a new printer model de-

creased by a factor of 4 and the time to develop the fi rmware decreased by a factor of 3.

Also, reuse has increased. For more recent printers, over 70 percent of the components

of the fi rmware are reused, almost unchanged, from earlier products [Toft, Coleman, and

Ohta, 2000].

 Architecture patterns are another way of achieving architectural reuse. One pop-

ular architecture pattern is the model-view-controller (MVC) architecture pat-
tern. As shown in Section 5.1, a traditional way of designing software is to decompose

it into three pieces: input, processing, and output. The MVC pattern can be viewed

as an extension of the input–processing–output architecture to the GUI domain. The

Just in Case You Wanted to Know Box 8.4

An antipattern is a practice that can cause a project to fail, such as “analysis paralysis” (spend-
ing far too much time and effort on the analysis workfl ow) or designing an object-oriented
product in which just one object does almost all the work. A major motivation for writing the
fi rst antipattern book was that nearly one-third of all software projects are canceled, two-thirds
of all software projects encounter cost overruns in excess of 200 percent, and over 80 percent
of all software projects are deemed failures [Brown et al., 1998].

sch2333x_ch08_215-255.Indd Page 226 5/31/07 8:03:38 PM elhisch2333x_ch08_215-255.Indd Page 226 5/31/07 8:03:38 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

Chapter 8 Reusability and Portability 227

correspondence is shown in Figure 8.3. The view(s) and the controller provide the GUI.

The decomposition of the architecture into model, view, and controller allows each of

the components to be changed independently of the other two, thereby enhancing the

reusability.

 Another popular architectural pattern is the three-tier architecture. The presenta-
tion logic tier accepts user input and generates user output—this tier corresponds to

the GUI. The business logic tier incorporates the processing of the business rules. The

data access logic tier communicates with the underlying database. Again, this archi-

tectural pattern permits each of the three components to be changed independently of the

other two. This independence is a major reason why the three-tier architecture promotes

reuse.

8.5.5 Component-Based Software Engineering
The goal of component-based software engineering is to construct a standard

 collection of reusable components. Then, instead of reinventing the wheel each time, in

the future all software will be constructed by choosing a standard architecture and standard

reusable frameworks and inserting standard reusable code artifacts into the hot spots of the

frameworks. That is, software products will be built by composing reusable components.

Ideally, this will be done using an automated tool.

 In this chapter, we describe the many advantages that accrue through the reuse of

code artifacts, design patterns, and software architectures. Hence, achieving component-

based software engineering would solve numerous problems in software development.

In particular, it would lead to order-of-magnitude increases in software productivity and

 quality and decreases in time to market and maintenance effort.

 Unfortunately, the state of the art with regard to reuse is currently far from this ambitious

target. In addition, component-based software construction has many challenges, including

the defi nition, standardization, and retrieval of components. However, researchers in many

centers are actively engaged in trying to achieve the goal of component-based software

engineering [Heineman and Councill, 2001].

8.6 More on Design Patterns

Because of the importance of design patterns in object-oriented software engineering, we

now examine design patterns in greater detail. We begin with a mini case study that illus-

trates the Adapter design pattern (Section 8.5.3).

 Figure 8.3 The correspondence between the components of the

MVC model and the input–processing–output model.

MVC component Description Corresponds to

Model Core functionality, data Processing
View Displays information Output
Controller Handles user input Input

sch2333x_ch08_215-255.Indd Page 227 5/31/07 8:03:38 PM elhisch2333x_ch08_215-255.Indd Page 227 5/31/07 8:03:38 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

228 Part One Introduction to Object-Oriented Software Engineering

FLIC Mini Case Study

Until recently, premiums at Flintstock Life Insurance Company (FLIC) depended on

both the age and the gender of the person applying for insurance. FLIC has recently

decided that certain policies will now be gender-neutral; that is, the premium for

those policies will depend solely on the age of the applicant.

 Up to now, premiums have been computed by sending a message to method

 computePremium of class Applicant, passing the age and gender of the appli-

cant. Now, however, a different computation has to be made, based solely on the

applicant’s age. A new class is written, Neutral Applicant, and premiums are

computed by sending a message to method computeNeutralPremium in that class.

However, there has not been enough time to change the whole system. The situation

is therefore as shown in Figure 8.4.

 There are serious interfacing problems. First, an Insurance object passes a message

to an object of type Applicant, instead of Neutral Applicant. Second, the message

is sent to method computePremium instead of method computeNeutralPremium.

Third, parameters age and gender are passed, instead of just age. The three question

marks on the lower arrow in Figure 8.4 represent these three interfacing problems.

 To solve these problems, we need to interpose class Wrapper, as shown in

Figure 8.5. An object of class Insurance sends the same message computePremium

passing the same two parameters (age and gender), but now the message is sent to an

object of type Wrapper. This object then sends message computeNeutralPremium

to an object of class NeutralApplicant, passing only age as the parameter. The

three interfacing problems have been solved.

{

}

determinePremium ()

Insurance

applicant.computePremium (age, gender);

Neutral Applicant

computeNeutralPremium (age)

Client

???

 Figure 8.4
A UML

diagram

showing

interfacing

problems

between

classes.

MiniCase Study

8.6.1

sch2333x_ch08_215-255.Indd Page 228 5/31/07 8:03:38 PM elhisch2333x_ch08_215-255.Indd Page 228 5/31/07 8:03:38 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

Chapter 8 Reusability and Portability 229

8.6.2 Adapter Design Pattern
Generalizing the solution of Figure 8.5 leads to the Adapter design pattern shown

in Figure 8.6 [Gamma, Helm, Johnson, and Vlissides, 1995]. In this fi gure, the names of

 abstract classes and their abstract (virtual) methods are in sans serif italics. (An abstract
class is a class that cannot be instantiated, although it can be used as a base class. An

 abstract class usually contains at least one abstract method, that is, a method with an

 interface but without an implementation.) Method request is defi ned as an abstract method

of class Abstract Target. It is then implemented in (concrete) class Adapter to send

message specifi cRequest to an object of class Adaptee. This solves the implementation

incompatibilities. Class Adapter is a concrete subclass of abstract class Abstract Target,

as refl ected by the open arrow denoting inheritance in Figure 8.6.

 Figure 8.6 depicts a general solution to the problem of permitting communication be-

tween two objects with incompatible interfaces. In fact, the Adapter design pattern is even

more powerful than that. It provides a way for an object to permit access to its internal

implementation in such a way that clients are not coupled to the structure of that internal

{

}

computePremium (age, gender)

Wrapper

neutralApplicant.computeNeutralPremium (age);

{

}

determinePremium ()

Insurance

wrapper.computePremium (age, gender);

Neutral Applicant

computeNeutralPremium (age)

Client

 Figure 8.5 Wrapper solution to the

interfacing problems of Figure 8.4.

Adaptee

specificRequest ()

Abstract Target

abstract request ()

Client

{

}

request ()

Adapter

adaptee.specificRequest ();

Inheritance References

 Figure 8.6 The Adapter design pattern.

sch2333x_ch08_215-255.Indd Page 229 5/31/07 8:03:39 PM elhisch2333x_ch08_215-255.Indd Page 229 5/31/07 8:03:39 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

230 Part One Introduction to Object-Oriented Software Engineering

implementation. That is, it provides all the advantages of information hiding (Section 7.6)

without having to actually hide the implementation details.

 We now turn to the Bridge design pattern.

8.6.3 Bridge Design Pattern
The aim of the Bridge design pattern is to decouple an abstraction from its implemen-

tation so that the two can be changed independently of one another. The Bridge pattern is

sometimes called a driver (for example, a printer driver or video driver).

 Suppose that part of a design is hardware-dependent, but the rest is not. The design then

consists of two pieces. Those parts of the design that are hardware-dependent are put on

one side of the bridge, the hardware-independent pieces on the other side. In this way, the

abstract operations are uncoupled from the hardware-dependent parts; there is a “bridge”

between the two parts. Now, if the hardware changes, the modifi cations to the design and

the code are localized to only one side of the bridge. The Bridge design pattern can there-

fore be viewed as a way of achieving information hiding via encapsulation.

 This is shown in Figure 8.7. The implementation-independent piece is in classes

Abstract Conceptualization and Refi ned Conceptualization, and the implementation-

dependent piece is in classes Abstract Implementation and Concrete Implemen-
tation.
 The Bridge design pattern is also useful for decoupling operating system–dependent

pieces or compiler-dependent pieces, thereby supporting multiple implementations. This is

shown in Figure 8.8.

Inheritance References

Refined Conceptualization

Client

{

}

operation ()

Abstract Conceptualization

impl.operationImplementation ();

Abstract Implementation

abstract operationImplementation ()

Concrete Implementation

operationImplementation ()

 Figure 8.7 The Bridge design pattern.

sch2333x_ch08_215-255.Indd Page 230 5/31/07 8:03:39 PM elhisch2333x_ch08_215-255.Indd Page 230 5/31/07 8:03:39 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

In
he

rit
an

ce
Re

fe
re

nc
es

R
ef

in
ed

 C
o

n
ce

p
tu

al
iz

at
io

n

C
li

en
t

{ }op
er

at
io

n
()

A
b
st

ra
ct

 C
on

ce
p
tu

a
liz

a
ti

on

im
p

l.o
p

er
at

io
nI

m
p

le
m

en
ta

tio
n

()
;

A
b
st

ra
ct

 I
m

p
le

m
en

ta
ti

on

a
b
st

ra
ct

 o
pe

ra
tio

nI
m

pl
em

en
ta

tio
n

()

C
o

n
cr

et
e

Im
p

le
m

en
ta

ti
o

n
 A

op
er

at
io

nI
m

p
le

m
en

ta
tio

n
()

C
o

n
cr

et
e

Im
p

le
m

en
ta

ti
o

n
 B

op
er

at
io

nI
m

p
le

m
en

ta
tio

n
()

 Fi
g

ur
e

8.
8

U
si

n
g
 t

h
e

B
ri

dg
e

d
es

ig
n
 p

at
te

rn
 t

o
 s

u
p
p
o
rt

 m
u
lt

ip
le

 i
m

p
le

m
en

ta
ti

o
n
s.

231

sch2333x_ch08_215-255.Indd Page 231 5/31/07 8:03:39 PM elhisch2333x_ch08_215-255.Indd Page 231 5/31/07 8:03:39 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

C
li

en
t

{ }cr
ea

te
It

er
at

or
 (

)

C
o

n
cr

et
e

A
g

g
re

g
at

e

re
tu

rn
 n

ew
 c

on
cr

et
eI

te
ra

to
r

(t
hi

s)
;

C
o

n
cr

et
e

It
er

at
o

r

 f
irs

t
()

 n

ex
t

()

 is
D

on
e

()
 :

Bo
ol

ea
n

 c
ur

re
nt

It
em

 (
)

: I
te

m

A
b
st

ra
ct

 I
te

ra
to

r

a
b
st

ra
ct

 fi
rs

t
()

a
b
st

ra
ct

 n
ex

t
()

a
b
st

ra
ct

 is
D

on
e

()
 :

Bo
ol

ea
n

a
b
st

ra
ct

 c
ur

re
nt

It
em

 (
)

: I
te

m

A
b
st

ra
ct

 A
g
g
re

g
a
te

a
b
st

ra
ct

 c
re

at
eI

te
ra

to
r

()
 :

It
er

at
or

In
he

rit
an

ce
C

re
at

es
Re

fe
re

nc
es

 Fi
g

ur
e

8.
9

T
h
e

It
er

at
or

 d
es

ig
n
 p

at
te

rn
.

232

sch2333x_ch08_215-255.Indd Page 232 5/31/07 8:03:39 PM elhisch2333x_ch08_215-255.Indd Page 232 5/31/07 8:03:39 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

Chapter 8 Reusability and Portability 233

8.6.4 Iterator Design Pattern
An aggregate object (or container or collection) is an object that contains other

 objects grouped together as a unit. Examples include a linked list and a hash table. An

iterator is a programming construct that allows a programmer to traverse the elements of

an aggregate object without exposing the implementation of that aggregate. An iterator is

frequently referred to as a cursor, especially within a database context.

 An iterator may be viewed as a pointer with two main operations: element access,

or referencing a specifi c element in the collection; and element traversal, or modifying

itself so it points to the next element in the collection.

 A well-known example of an iterator is a television remote control. Every remote con-

trol has a key (often labeled Up or ▲) that increases the channel number by 1 and a key

(often labeled Down or ▼) that decreases the channel number by 1. The remote control

increases or decreases the channel number without the viewer having to specify (or even

having to know) the current channel number, let alone the program that is being carried on

that channel. That is, the device implements element traversal without exposing the imple-

mentation of the aggregate.

 The Iterator design pattern is shown in Figure 8.9. A Client object deals with only

the Abstract Aggregate and Abstract Iterator (essentially an interface). The Client
object asks the Abstract Aggregate object to create an iterator for the Concrete Ag-
gregate object and then utilizes the returned Concrete Iterator to traverse the con-

tents of the aggregate. The Abstract Aggregate object has to have an abstract method,

createIterator, as a way of returning an iterator to the Client object within the application

program, whereas the Abstract Iterator interface needs to defi ne only the basic four tra-

versal operations, abstract methods fi rst, next, isDone, and currentItem. Implementation of

these fi ve methods is achieved at the next level of abstraction, in Concrete Aggregate

(createIterator) and Concrete Iterator (fi rst, next, isDone, and currentItem).

 The key aspect of the Iterator design pattern is that implementation details of the elements

are hidden from the iterator itself. Accordingly, we can use an iterator to process every element

in a collection, independently of the implementation of the container of the elements.

 Furthermore, the pattern allows different traversal methods. It even allows multiple

traversals to be in progress concurrently, and these traversals can be achieved without

 having the specifi c operations listed in the interface. Instead, we have one uniform inter-

face, namely, the four abstract operations fi rst, next, isDone, and currentItem in Abstract
Iterator, with the specifi c traversal method(s) implemented in Concrete Iterator.

8.6.5 Abstract Factory Design Pattern
Suppose that a software organization wishes to build a widget generator, a tool that assists

developers in constructing a graphical user interface. Instead of having to develop the

various widgets (such as windows, buttons, menus, sliders, and scroll bars) from scratch,

a developer can use the set of classes created by the widget generator that defi ne the

widgets to be utilized within the application program.

 The problem is that the application program (and, therefore, the widgets) may have to

run under many different operating systems, including Linux, Mac OS, and Windows. The

widget generator is to support all three operating systems. However, if the widget generator

hard-codes routines that run under one specifi c system into an application program,

sch2333x_ch08_215-255.Indd Page 233 5/31/07 9:20:25 PM elhisch2333x_ch08_215-255.Indd Page 233 5/31/07 9:20:25 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

234 Part One Introduction to Object-Oriented Software Engineering

it will be diffi cult to modify that application program in the future, replacing the generated

routines with different routines that run under a different operating system. For example,

suppose that the application program is to run under Linux. Then, every time a menu is to

be generated, message create Linux menu is sent. However, if that application program

now needs to run under Mac OS, every instance of create Linux menu must be replaced

by create Mac OS menu. For a large application program, such a conversion from Linux

to Mac OS is laborious and fault prone.

 The solution is to design the widget generator in such a way that the application

program is uncoupled from the specifi c operating system. This can be achieved using

the Abstract Factory design pattern [Gamma, Helm, Johnson, and Vlissides,

1995]. Figure 8.10 shows the resulting design of the graphical user interface toolkit.

Again, the names of abstract classes and their abstract (virtual) methods are in sans
serif italics. At the top of Figure 8.10 is abstract class Abstract Widget Factory. This

abstract class contains numerous abstract methods; for simplicity, only two are shown

here: create menu and create window. Moving down in the fi gure, Linux Widget
Factory, Mac OS Widget Factory, and Windows Widget Factory are concrete

subclasses of Abstract Widget Factory. Each class contains the specifi c methods for

creating widgets that run under a given operating system. For example, create menu

within Linux Widget Factory causes a menu object to be created that will run

under Linux.

 There are also abstract classes for each widget. Two are shown here, Abstract Menu
and Abstract Window. Each has concrete subclasses, one for each of the three operat-

ing systems. For example, Linux Menu is one concrete subclass of Abstract Menu.

Method create menu within concrete subclass Linux Widget Factory causes an object

of type Linux Menu to be created.

 To create a window, a Client object within the application program need only send

a message to abstract method create window of Abstract Widget Factory and poly-

morphism ensures that the correct widget is created. Suppose that the application program

has to run under Linux. First, an object Widget Factory of type (class) Linux Widget
Factory is created. Then a message to virtual (abstract) method create window of Abstract
Widget Factory passing Linux as a parameter is interpreted as a message to method create
window within concrete subclass Linux Widget Factory. Method create window in

turn sends a message to create a Linux Window; this is indicated by the leftmost vertical

dashed line in Figure 8.10.

 The critical aspect of this fi gure is that the three interfaces between the Client within

the application program and the widget generator, classes Abstract Widget Factory,

Abstract Menu, and Abstract Window, all are abstract classes. None of these

interfaces is specifi c to any one operating system because the methods of the abstract

 classes are abstract (virtual in C++). Consequently, the design of Figure 8.10 indeed

has uncoupled the application program from the operating system.

 The design of Figure 8.10 is an instance of the Abstract Factory design pattern

shown in Figure 8.11. To use this pattern, specifi c classes replace the generic names like

Concrete Factory 2 and Product B3. That is why Figure 8.2(c), the symbolic rep-

resentation of a design pattern, contains white rectangles within the shaded rectangles;

the white rectangles represent the details that have to be supplied to reuse this pattern in

a design.

sch2333x_ch08_215-255.Indd Page 234 5/31/07 8:03:39 PM elhisch2333x_ch08_215-255.Indd Page 234 5/31/07 8:03:39 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

Chapter 8 Reusability and Portability 235

8.7 Categories of Design Patterns

The defi nitive list of 23 design patterns given in [Gamma, Helm, Johnson, and Vlissides,

1995] is presented in Figure 8.12. The patterns are divided into three categories: creational

patterns, structural patterns, and behavioral patterns. Creational design patterns solve

design problems by creating objects; the Abstract Factory pattern (Section 8.6.5) is an

 example. Structural design patterns solve design problems by identifying a simple

Abstract Widget Factory

abstract create menu ()
abstract create window ()

Abstract Menu

Mac OS MenuLinux Menu
Client

Windows Menu

Mac OS WindowLinux Window Windows Window

Abstract Window

Windows
Widget Factory

create menu ()
create window ()

Mac OS Widget
Factory

create menu ()
create window ()

Linux Widget
Factory

create menu ()
create window ()

Inheritance Creates References

 Figure 8.10
Design of

graphical user

interface toolkit.

The names of

abstract classes

and their virtual

functions are

italicized.

sch2333x_ch08_215-255.Indd Page 235 5/31/07 8:03:40 PM elhisch2333x_ch08_215-255.Indd Page 235 5/31/07 8:03:40 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

236 Part One Introduction to Object-Oriented Software Engineering

way to realize relationships between entities. Examples include the Adapter pattern

(Section 8.6.2) and the Bridge pattern (Section 8.6.3). Finally, behavioral design pat-
terns solve design problems by identifying common communication patterns between

 objects. An example of this type of design pattern is the Iterator pattern (Section 8.6.4).

 Many other lists of design patterns, organized into a variety of different categories,

have been put forward. These categories are either for design patterns in general, or for

specifi c domains, such as design patterns for Web pages or computer games. However,

these alternative lists of patterns have not been widely accepted.

Abstract Widget Factory

abstract create product A ()
abstract create product B ()

Abstract Product A

Product A2Product A1
Client

Product A3

Product B2Product B1 Product B3

Abstract Product B

Concrete
Factory 3

Concrete
Factory 2

Concrete
Factory 1

create product A ()
create product B ()

create product A ()
create product B ()

create product A ()
create product B ()

Inheritance Creates References

Figure 8.11
Abstract
 Factory design

pattern. The

names of

abstract classes

and their virtual

functions are

italicized.

sch2333x_ch08_215-255.Indd Page 236 6/8/07 3:11:20 PM epgsch2333x_ch08_215-255.Indd Page 236 6/8/07 3:11:20 PM epg /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

Chapter 8 Reusability and Portability 237

8.8 Strengths and Weaknesses of Design Patterns

Design patterns have many strengths:

1. As pointed out in Section 8.5.3, design patterns promote reuse by solving a general

design problem. The reusability of a design pattern can be enhanced by careful incor-

poration of features that can be used to further enhance reuse, such as inheritance.

2. A design pattern provides high-level documentation of the design, because patterns

specify design abstractions.

3. Implementations of many design patterns exist. In such cases, there is no need to

code or document those parts of a program that implement design patterns. (Testing

of those parts of the program is still essential, of course.)

4. If a maintenance programmer is familiar with design patterns, it will be easier to

comprehend a program that incorporates design patterns, even if he or she has never

seen that specifi c program before.

 However, design patterns have a number of weaknesses, too:

1. The use of the 23 standard design patterns in [Gamma, Helm, Johnson, and Vlissides,

1995] in a software product may be an indication that the language we are using is

not powerful enough. Norwig [1996] examined the C++ implementations of those

patterns and found that 16 out of the 23 have simpler implementations in Lisp or

Dylan than in C++, for at least some uses of each pattern.

Figure 8.12
The 23 design

patterns listed

in [Gamma,

Helm, Johnson,

and Vlissides,

1995].

Creational patterns
 Abstract factory Creates an instance of several families of classes (Section 8.6.5)
 Builder Allows the same construction process to create different representations
 Factory method Creates an instance of several possible derived classes
 Prototype A class to be cloned
 Singleton Restricts instantiation of a class to a single instance
Structural patterns
 Adapter Matches interfaces of different classes (Section 8.6.2)
 Bridge Decouples an abstaction from its implementation (Section 8.6.3)
 Composite A class that is a composition of similar classes
 Decorator Allows additional behavior to be dynamically added to a class
 Façade A single class that provides a simplifi ed interface
 Flyweight Uses sharing to support large numbers of fi ne-grained classes effi ciently
 Proxy A class functioning as an interface
Behavioral patterns
 Chain-of-responsibility A way of processing a request by a chain of classes
 Command Encapsulates an action within a class
 Interpreter A way to implement specialized language elements
 Iterator Sequentially accesses the elements of a collection (Section 8.6.4)
 Mediator Provides a unifi ed interface to a set of interfaces
 Memento Captures and restores an object’s internal state
 Observer Allows the observation of the state of an object at run time
 State Allows an object to partially change its type at run time
 Strategy Allows an algorithm to be dynamically selected at run time
 Template method Defers implementations of an algorithm to its subclasses
 Visitor Adds new operations to a class without changing it

sch2333x_ch08_215-255.Indd Page 237 5/31/07 8:03:40 PM elhisch2333x_ch08_215-255.Indd Page 237 5/31/07 8:03:40 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

238 Part One Introduction to Object-Oriented Software Engineering

2. A major problem is that there is as yet no systematic way to determine when and

how to apply design patterns. Design patterns are still described informally, using

natural language text. Accordingly, we have to decide manually when to apply a

pattern; a CASE tool (Chapter 5) cannot be used.

3. To obtain maximal benefi t from design patterns, multiple interacting patterns are

employed. For example, as stated in Section 8.5.3, a case study of a document

editor in [Gamma, Helm, Johnson, and Vlissides, 1995] contains eight interacting

patterns. As already pointed out, we do not yet have a systematic way of knowing

when and how to use one pattern, let alone multiple interacting patterns.

4. When performing maintenance on a software product built using the classical para-

digm, it is essentially impossible to retrofi t classes and objects. It is similarly all but

impossible to retrofi t patterns to an existing software product, whether classical or

object-oriented.

 However, the weaknesses of design patterns are outweighed by their strengths. Further-

more, once current research efforts to formalize and hence automate design patterns have

succeeded, patterns will be much easier to use than at present.

8.9 Reuse and Postdelivery Maintenance

The traditional reason for promoting reuse is that it can shorten the development process.

For example, a number of major software organizations are trying to halve the time needed

to develop a new product, and reuse is a primary strategy in these endeavors. However, as

refl ected in Figure 1.3, for every $1 spent on developing a product, $2 or more are spent on

maintaining that product. Therefore, a second important reason for reuse is to reduce the

time and cost of maintaining a product. In fact, reuse has a greater impact on postdelivery

maintenance than on development.

 Suppose now that 40 percent of a product consists of components reused from earlier

products and this reuse is evenly distributed across the entire product. That is, 40 percent of

the specifi cation artifacts consist of reused components, 40 percent of the design artifacts,

40 percent of the code artifacts, 40 percent of the manuals, and so on. Unfortunately, this does

not mean that the time to develop the product as a whole will be 40 percent less than it would

have been without reuse. First, some of the components have to be tailored to the new product.

Suppose that one-quarter of the reused components are changed. If a component has to be

changed, then the documentation for that component also has to be changed. Furthermore, the

changed component has to be tested. Second, if a code artifact is reused unchanged, then unit

testing of that code artifact is not required. However, integration testing of that code artifact still

is needed. So, even if 30 percent of a product consists of components reused unchanged and

a further 10 percent are reused changed, the time needed to develop the complete product at

best is only about 27 percent less [Schach, 1992]. Suppose that, as in Figure 1.3(a), 33 percent

of a software budget is devoted to development. Then, if reuse reduces development costs by

27 percent, the overall cost of that product over its 12- to 15-year lifetime is reduced by only

about 9 percent as a consequence of reuse; this is refl ected in Figure 8.13.

 Similar but lengthier arguments can be applied to the postdelivery maintenance compo-

nent of the software process [Schach, 1994]. Under the assumptions of the previous para-

graph, the effect of reuse on postdelivery maintenance is an overall cost saving of about

sch2333x_ch08_215-255.Indd Page 238 5/31/07 8:03:40 PM elhisch2333x_ch08_215-255.Indd Page 238 5/31/07 8:03:40 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

Chapter 8 Reusability and Portability 239

18 percent, as shown in Figure 8.13. Clearly, the major impact of reuse is on postdelivery

maintenance rather than development. The underlying reason is that reused components

generally are well designed, thoroughly tested, and comprehensively documented, thereby

simplifying all three types of postdelivery maintenance.

 If the actual reuse rates in a given product are lower (or higher) than assumed in this

section, then the benefi ts of reuse are different. But the overall result is still the same: Reuse

affects postdelivery maintenance more than it does development.

 We turn now to portability.

8.10 Portability

The ever-rising cost of software makes it imperative that some means be found to contain

costs. One way is to ensure that the product as a whole can be adapted easily to run on a

variety of different hardware–operating system combinations. Some of the cost of writing

the product may then be recouped by selling versions that run on other computers. But the

most important reason for writing software that can be implemented easily on other com-

puters is that, every 4 years or so, the client organization purchases new hardware, and all

its software then must be converted to run on the new hardware. A product is considered

portable if it is signifi cantly less expensive to adapt the product to run on the new computer

than to write a new product from scratch [Mooney, 1990].

 More precisely, portability may be defi ned as follows: Suppose a product P is compiled

by compiler C and then runs on the source computer, namely, hardware confi guration H

under operating system O. A product P' is needed that functionally is equivalent to P but

must be compiled by compiler C' and run on the target computer, namely, hardware

confi guration H' under operating system O'. If the cost of converting P into P' is signifi -

cantly less than the cost of coding P' from scratch, then P is said to be portable.

 Overall, the problem of porting software is nontrivial because of incompatibilities

among different hardware confi gurations, operating systems, and compilers. Each of these

aspects is examined in turn.

8.10.1 Hardware Incompatibilities
Product P currently running on hardware confi guration H is to be installed on hardware

confi guration H'. Superfi cially, this is simple; copy P from the hard drive of H onto DAT

tape and transfer it to H'. However, this will not work if H' uses a Zip drive for backup; DAT

tape cannot be read on a Zip drive.

Figure 8.13 Average percentage cost savings under the assumption that 40 percent of a new

 product consists of reused components, three-quarters of which are reused unchanged.

Activity Percentage of Total Cost Percentage Savings over
 over Product Lifetime Product Lifetime due to
 Reuse

Development 33% 9.3%
Postdelivery maintenance 67 17.9

sch2333x_ch08_215-255.Indd Page 239 5/31/07 8:03:40 PM elhisch2333x_ch08_215-255.Indd Page 239 5/31/07 8:03:40 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

240 Part One Introduction to Object-Oriented Software Engineering

 Suppose now that the problem of physically copying the source code of product P to

computer H' has been solved. There is no guarantee that H' can interpret the bit patterns

created by H. A number of different character codes exist, the most popular of which are

Extended Binary Coded Decimal Interchange Code (EBCDIC) and American Standard

Code for Information Interchange (ASCII), the American version of the 7-bit ISO code

[Mackenzie, 1980]. If H uses EBCDIC but H' uses ASCII, then H' will treat P as so much

garbage.

 Although the original reason for these differences is historical (that is, researchers work-

ing independently for different manufacturers developed different ways of doing the same

thing), there are defi nite economic reasons for perpetuating them. To see this, consider the

following imaginary situation. MCM Computer Manufacturers has sold thousands of its

MCM-1 computer. MCM now wishes to design, manufacture, and market a new computer,

the MCM-2, which is more powerful in every way than the MCM-1 but costs considerably

less. Suppose further that the MCM-1 uses ASCII code and has 36-bit words consisting

of four 9-bit bytes. Now, the chief computer architect of MCM decides that the MCM-2

should employ EBCDIC and have 16-bit words consisting of two 8-bit bytes. The sales

force then has to tell current MCM-1 owners that the MCM-2 is going to cost them $35,000

less than any competitor’s equivalent machine but will cost them up to $200,000 to convert

existing software and data from MCM-1 format to MCM-2 format. No matter how good

the scientifi c reasons for redesigning the MCM-2, marketing considerations will ensure

that the new computer is compatible with the old one. A salesperson then can point out to

an existing MCM-1 owner that, not only is the MCM-2 computer $35,000 less expensive

than any competitor’s machine, but any customer ill-advised enough to buy from a different

manufacturer will be spending $35,000 too much and also will have to pay some $200,000

to convert existing software and data to the format of the non-MCM machine.

 Moving from the preceding imaginary situation to the real world, the most successful

line of computers to date has been the IBM System/360–370 series [Gifford and Spector,

1987]. The success of this line of computers is due largely to full compatibility between

machines; a product that runs on an IBM System/360 Model 30 built in 1964 runs un-

changed on an IBM eServer zSeries 990 built in 2007. However, the product that runs

on the IBM System/360 Model 30 under OS/360 may require considerable modifi cation

before it can run on a totally different 2007 machine, such as a Sun Fire E25K server under

Solaris. Part of the diffi culty may be due to hardware incompatibilities. But part may be

caused by operating system incompatibilities.

8.10.2 Operating System Incompatibilities
The job control languages (JCLs) of any two computers usually are vastly different. Some

of the difference is syntactic—the command for executing an executable load image might

be @xeq on one computer, //xqt on another, and .exc on a third. When porting a product to

a different operating system, syntactic differences are relatively straightforward to handle

by simply translating commands from the one JCL into the other. But other differences can

be more serious. For example, some operating systems support virtual memory. Suppose

that a certain operating system allows products to be up to 1024 MB in size, but the actual

area of main memory allocated to a particular product may be only 64 MB. What happens

is that the user’s product is partitioned into pages 2048 KB in size, and only 32 of these

sch2333x_ch08_215-255.Indd Page 240 5/31/07 8:03:40 PM elhisch2333x_ch08_215-255.Indd Page 240 5/31/07 8:03:40 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

Chapter 8 Reusability and Portability 241

pages can be in main memory at any one time. The rest of the pages are stored on disk

and swapped in and out as needed by the virtual memory operating system. As a result,

products can be written with no effective constraints as to size. But, if a product that has

been successfully implemented under a virtual memory operating system is to be ported

to an operating system with physical constraints on product size, the entire product may

have to be rewritten and then linked using overlay techniques to ensure that the size limit

is not exceeded.

8.10.3 Numerical Software Incompatibilities
When a product is ported from one machine to another or even compiled using a different

compiler, the results of performing arithmetic may differ. On a 16-bit machine, that is,

a computer with a word size of 16 bits, an integer ordinarily is represented by one word

(16 bits) and a double-precision integer by two adjacent words (32 bits). Unfortunately,

some language implementations do not include double-precision integers. For example,

standard Pascal does not include double-precision integers. Therefore, a product that func-

tions perfectly on a compiler–hardware–operating system confi guration in which Pascal

integers are represented using 32 bits may fail to run correctly when ported to a computer

in which integers are represented by only 16 bits. The obvious solution—representing inte-

gers larger than 216 by fl oating-point numbers (type real)—does not work because integers

are represented exactly whereas fl oating-point numbers in general are only approximated

using a mantissa (fraction) and exponent.

 This problem can be solved in Java, because each of the eight primitive data types has

been carefully specifi ed. For example, type int always is implemented as a signed 32-bit

two’s complement integer, and type fl oat always occupies 32 bits and satisfi es ANSI/

IEEE (Standard) 754 [1985] for fl oating-point numbers. The problem of ensuring that a

numerical computation is performed correctly on every target hardware–operating system

therefore cannot arise in Java. (For more insights into the design of Java, see Just in Case

You Wanted to Know Box 8.5.) However, where a numerical computation is performed

in a language other than Java, it is important, but often diffi cult, to ensure that numerical

computations are performed correctly on the target hardware–operating system.

8.10.4 Compiler Incompatibilities
Portability is diffi cult to achieve if a product is implemented in a language for which few

compilers exist. If the product has been implemented in a specialized language such as

CLU [Liskov, Snyder, Atkinson, and Schaffert, 1977], it may be necessary to rewrite it in

a different language if the target computer has no compiler for that language. On the other

hand, if a product is implemented in a popular object-oriented language such as C++ or

Java, the chances are good that a compiler or interpreter for that language can be found

for a target computer.

 Suppose that a product is written in an object-oriented language such as standard For-

tran, Fortran 2003 (see Just in Case You Wanted to Know Box 8.6 for more on the name

“Fortran 2003”). In theory, there should be no problem in porting the product from one ma-

chine to another—after all, standard Fortran is standard Fortran. Regrettably, that is not the

case; in practice, there is no such thing as standard Fortran. Even though there is an ISO/

sch2333x_ch08_215-255.Indd Page 241 5/31/07 8:03:40 PM elhisch2333x_ch08_215-255.Indd Page 241 5/31/07 8:03:40 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

242 Part One Introduction to Object-Oriented Software Engineering

IEC standard for Fortran 2003 [ISO/IEC 1539–1, 2004], there is no reason for a compiler

writer to adhere to it. For example, a decision may be taken to support additional features

not usually found in Fortran 2003 so that the marketing division can tout a “new, extended

Fortran compiler.” Conversely, a compiler for a small embedded microprocessor may not

be a full Fortran implementation. Also, with a deadline to produce a compiler, management

may decide to bring out a less-than-complete implementation, intending to support the full

standard in a later revision. Suppose that the compiler on the source computer supports a

superset of Fortran 2003. Suppose further that the compiler on the target computer is an

implementation of standard Fortran 2003. When a product implemented on that source

computer is ported to the target, any portions of the product that use nonstandard Fortran

2003 constructs from the superset have to be recoded. Therefore, to ensure portability,

programmers should use only standard Fortran language features.

 Early COBOL standards were developed by the COnference on DAta SYstems Lan-

guages (CODASYL), a committee of American computer manufacturers and govern-

ment and private users. Joint Technical Committee 1 of Subcommittee 22 of the Inter-

national Organization for Standardization (ISO) and the International Electrotechnical

Just in Case You Wanted to Know Box 8.5

In 1991, James Gosling of Sun Microsystems developed Java. While developing the lan-
guage, he frequently stared out the window at a large oak tree outside his offi ce. In fact,
he did this so often that he decided to name his new language Oak. However, his choice of
name was unacceptable to Sun because it could not be trademarked, and without a trade-
mark Sun would lose control of the language.
 After an intensive search for a name that could be trademarked and was easy to re-
member, Gosling’s group came up with Java. During the 18th century, much of the coffee
imported into England was grown in Java, the most populous island in the Dutch East Indies
(now Indonesia). As a result, Java now is a slang word for coffee, the third most popular
beverage among software engineers. Unfortunately, the names of the Big Two carbonated
cola beverages are already trademarked.
 To understand why Gosling designed Java, it is necessary to appreciate the source of
the weaknesses he perceived in C++. And, to do that, we have to go back to C, the parent
language of C++.
 In 1972, the programming language C was developed by Dennis Ritchie at AT&T Bell
Laboratories (now Lucent Technologies) for use in systems software. The language was de-
signed to be extremely fl exible. For example, it permits arithmetic on pointer variables, that is,
on variables used to store memory addresses. From the viewpoint of the average programmer,
this poses a distinct danger; the resulting programs can be extremely insecure because control
can be passed to anywhere in the computer. Also, C does not embody arrays as such. Instead,
a pointer to the address of the beginning of the array is used. As a result, the concept of an
out-of-range array subscript is not intrinsic to C. This is a further source of possible insecurity.
 These and other insecurities were no problem at Bell Labs. After all, C was designed by an
experienced software engineer for use by other experienced software engineers at Bell Labs.
These professionals could be relied on to use the powerful and fl exible features of C in a secure
way. A basic philosophy in the design of C was that the person using C knows exactly what
he or she is doing. Software failures that occurred when C is used by less competent or inex-
perienced programmers should not be blamed on Bell Labs; there never was any intent that C
should be widely employed as a general-purpose programming language, as it is today.

sch2333x_ch08_215-255.Indd Page 242 5/31/07 8:03:41 PM elhisch2333x_ch08_215-255.Indd Page 242 5/31/07 8:03:41 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

Chapter 8 Reusability and Portability 243

Commission (IEC) now are responsible for COBOL standards [Schricker, 2000]. Unfortu-

nately, COBOL standards do not promote portability. A COBOL standard has an offi cial

life of 5 years, but each successive standard is not necessarily a superset of its predecessor.

Equally worrisome is that many features are left to the individual implementer, subsets

may be termed standard COBOL, and there is no restriction on extending the language to

form a superset. OO-COBOL [ISO/IEC 1989, 2002], the language of the current COBOL

standard, is object oriented, as is Fortran 2003 [ISO/IEC 1539–1, 2004].

 The standard for C++ [ISO/IEC 14882, 1998] was unanimously approved by the vari-

ous national standards committees (including ANSI) in November 1997. The standard

received fi nal ratifi cation in 1998.

 The only truly successful language standard so far has been the Ada 83 standard, embodied

in the Ada Reference Manual [ANSI/MIL-STD-1815A, 1983]. (For background information

on Ada, see Just in Case You Wanted to Know Box 8.6.) Until the end of 1987, the name Ada

was a registered trademark of the U.S. government, Ada Joint Program Offi ce (AJPO). As

owner of the trademark, the AJPO stipulated that the name Ada legally could be used only

for language implementations that complied exactly with the standard; subsets and supersets

 With the rise of the object-oriented paradigm, a number of object-oriented program-
ming languages based on C were developed, including Object C, Objective C, and C++.
The idea behind these languages was to embed object-oriented constructs within C, which
by then was a popular programming language. It was argued that it would be easier for
programmers to learn a language based on a familiar language than to learn a totally new
syntax. However, only one of the many C-based object-oriented languages became widely
accepted, C++, developed by Bjarne Stroustrup, also of AT&T Bell Laboratories.
 It has been suggested that the reason behind the success of C++ was the enormous fi nan-
cial clout of AT&T (now part of SBC Communications). However, if corporate size and fi nan-
cial strength were relevant features in promoting a programming language, today we would
all be using PL/I, a language developed and strongly promoted by IBM. The reality is that
PL/I, notwithstanding the prestige of IBM, has retreated into obscurity. The real reason for
the success of C++ is that it is a true superset of C. That is, unlike any of the other C-based
object-oriented programming languages, virtually any C program is also valid C++. Therefore,
organizations realized that they could switch from C to C++ without changing any of their
existing C software. They could advance from the classical paradigm to the object-oriented
paradigm without disruption. A remark frequently encountered in the Java literature is, “Java
is what C++ should have been.” The implication is that, if only Stroustrup had been as smart
as Gosling, C++ would have turned out to be Java. On the contrary, if C++ had not been a true
superset of C, it would have gone the way of all other C-based object-oriented programming
languages; that is, it essentially would have disappeared. Only after C++ had taken hold as a
popular language was Java designed in reaction to perceived weaknesses in C++. Java is not a
superset of C; for example, Java has no pointer variables. Therefore, it would be more accurate
to say that “Java is what C++ could not possibly have been.”
 Finally, it is important to realize that Java, like every other programming language, has
weaknesses of its own. In addition, in some areas (such as access rules), C++ is superior to
Java [Schach, 1997]. It will be interesting to see, in the coming years, whether C++ con-
tinues to be the predominant object-oriented programming language or whether it is sup-
planted by Java or some other language.

sch2333x_ch08_215-255.Indd Page 243 5/31/07 8:03:41 PM elhisch2333x_ch08_215-255.Indd Page 243 5/31/07 8:03:41 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

244 Part One Introduction to Object-Oriented Software Engineering

were expressly forbidden. A mechanism was set up for validating Ada compilers, and only a

compiler that successfully passed the validation process could be called an Ada compiler. Con-

sequently, the trademark was used as a means of enforcing standards and hence portability.

 Now that the name Ada no longer is a trademark, enforcement of the standard is being

achieved via a different mechanism. There is little or no market for an Ada compiler that has

not been validated. Therefore, strong economic forces encourage Ada compiler developers

to have their compilers validated and hence certifi ed as conforming to the Ada standard.

This has applied to compilers for both Ada 83 [ANSI/MIL-STD-1815A, 1983] and Ada 95

[ISO/IEC 8652, now 1995]; the latter is object oriented.

 For Java to be a totally portable language, it is essential for the language to be standard-

ized and to ensure that the standard is strictly obeyed. Sun Microsystems, like the Ada Joint

Program Offi ce, uses the legal system to achieve standardization. As mentioned in Just in

Case You Wanted to Know Box 8.5, Sun chose a name for its new language that could be

copyrighted so that Sun could enforce its copyright and bring legal action against alleged

violators (which happened when Microsoft developed nonstandard Java classes). After all,

portability is one of the most powerful features of Java. If multiple versions of Java are per-

mitted, the portability of Java suffers; Java can be truly portable only if every Java program

is handled identically by every Java compiler. To try to infl uence public opinion, in 1997

Sun ran a “Pure Java” advertising campaign.

 Version 1.0 of Java was released early in 1997. A series of revised versions followed

in response to comments and criticisms. The latest version at the time of writing is Java

J2SE (Java 2 Platform, Standard Edition), version 5.0. This process of stepwise refi nement

of Java will continue. When the language eventually stabilizes, it is likely that a standards

organization such as ANSI or ISO will publish a draft standard and elicit comments from

all over the world. These comments will be used to put together the offi cial Java standard.

8.11 Why Portability?

In the light of the many barriers to porting software, the reader might well wonder if it is

worthwhile to port software at all. An argument in favor of portability stated in Section 8.10

is that the cost of software may be partially recouped by porting the product to a different

hardware–operating system confi guration. However, selling multiple variants of the

Just in Case You Wanted to Know Box 8.6

Names of programming languages are spelled in uppercase when the name is an acronym.
Examples include ALGOL (ALGOrithmic Language), COBOL (COmmon Business Oriented
Language), and FORTRAN (FORmula TRANslator). Conversely, all other programming lan-
guages begin with an uppercase letter and the remaining letters in the name (if any) are
in lowercase. Examples include Ada, C, C++, Java, and Pascal. Ada is not an acronym; the
language was named after Ada, Countess of Lovelace (1815–1852). Daughter of the poet
Lord Alfred Byron, Ada was the world’s fi rst programmer by virtue of her work on Charles
Babbage’s difference engine. Pascal is not an acronym either—this language was named
after the French mathematician and philosopher, Blaise Pascal (1623–1662). And I am sure
that you have read all about the name Java in Just in Case You Wanted to Know Box 8.5.
 There is one exception: Fortran. The FORTRAN Standards Committee decided that, effec-
tive with the 1990 version, the name of the language would thenceforth be written Fortran.

sch2333x_ch08_215-255.Indd Page 244 5/31/07 8:03:41 PM elhisch2333x_ch08_215-255.Indd Page 244 5/31/07 8:03:41 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

Chapter 8 Reusability and Portability 245

software may not be possible. The application may be highly specialized, and no other

client may need the software. For instance, a management information system written for

one major car rental corporation may simply be inapplicable to the operations of other

car rental corporations. Alternatively, the software itself may give the client a competitive

 advantage, and selling copies of the product would be tantamount to economic suicide. In

the light of all this, is it not a waste of time and money to engineer portability into a product

when it is designed?

 The answer to this question is an emphatic No. The major reason why portability is

 essential is that the life of a software product generally is longer than the life of the hard-

ware for which it was fi rst written. Good software products can have a life of 15 years or

more, whereas hardware frequently is changed every 4 years. Therefore, good software can

be implemented, over its lifetime, on three or more different hardware confi gurations.

 One way to solve this problem is to buy upwardly compatible hardware. The only

 expense is the cost of the hardware; the software need not be changed. Nevertheless, in

some cases it may be economically more sound to port the product to different hardware

entirely. For example, the fi rst version of a product may have been implemented 7 years ago

on a mainframe. Although it may be possible to buy a new mainframe on which the prod-

uct can run with no changes, it may be considerably less expensive to implement multiple

copies of the product on a network of personal computers, one on the desk of each user. In

this instance, if the software has been written in a way that would promote portability, then

porting the product to the personal computer network makes good fi nancial sense.

 But there are other kinds of software. For example, many organizations that write soft-

ware for personal computers make their money by selling multiple copies of COTS soft-

ware. For instance, the profi t on a spreadsheet package is small and cannot possibly cover

the cost of development. To make a profi t, 50,000 (or even 500,000) copies may have to

be sold. After this point, additional sales are pure profi t. So, if the product can be ported to

additional types of hardware with ease, even more money can be made.

 Of course, as with all software, the product is not just the code but also the documen-

tation, including the manuals. Porting the spreadsheet package to other hardware means

changing the documentation as well. Therefore, portability also means being able to change

the documentation easily to refl ect the target confi guration, instead of having to write new

documentation from scratch. Considerably less training is needed if a familiar, existing

product is ported to a new computer than if a completely new product were to be written.

For this reason, too, portability is to be encouraged.

 Techniques to facilitate portability now are described.

8.12 Techniques for Achieving Portability

One way to try to achieve portability is to forbid programmers to use constructs that might

cause problems when ported to another computer. For example, an obvious principle would

seem to be this: Write all software in a standard version of a high-level programming lan-

guage. But how is a portable operating system to be written? After all, it is inconceivable

that an operating system could be written without at least some assembler code. Similarly,

a compiler has to generate object code for a specifi c computer. Here, too, it is impossible

to avoid all implementation-dependent components.

sch2333x_ch08_215-255.Indd Page 245 5/31/07 8:03:41 PM elhisch2333x_ch08_215-255.Indd Page 245 5/31/07 8:03:41 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

246 Part One Introduction to Object-Oriented Software Engineering

8.12.1 Portable System Software
Instead of forbidding all implementation-dependent aspects, which would prevent almost

all system software from being written, a better technique is to isolate any necessary imple-

mentation-dependent pieces. An example of this technique is the way the original UNIX

operating system was constructed [Johnson and Ritchie, 1978]. About 9000 lines of the

operating system were written in C. The remaining 1000 lines constituted the kernel. The

kernel was written in assembler and had to be rewritten for each implementation. About

1000 lines of the C code consisted of device drivers; this code, too, had to be rewritten

each time. However, the remaining 8000 lines of C code remained largely unchanged from

implementation to implementation.

 Another useful technique for increasing the portability of system software is to use

levels of abstraction (Section 7.4.1). Consider, for example, graphical display routines for

a workstation. A user inserts a command such as drawLine into his or her source code.

The source code is compiled and then linked with graphical display routines. At run time,

drawLine causes the workstation to draw a line on the screen as specifi ed by the user.

This can be implemented using two levels of abstraction. The upper level, written in a high-

level language, interprets the user’s command and calls the appropriate lower-level code

artifact to execute that command. If the graphical display routines are ported to a new

type of workstation, then no changes need be made to the user’s code or the upper level of

the graphical display routines. However, the lower-level code artifacts of the routines have

to be rewritten, because they interface with the actual hardware, and the hardware of the

new workstation is different from that of the workstation on which the package was previ-

ously implemented. This technique also has been used successfully for porting commu-

nications software that conforms to the seven levels of abstraction of the ISO-OSI model

[Tanenbaum, 2002].

8.12.2 Portable Application Software
With regard to application software, rather than system software such as operating systems

and compilers, it generally is possible to write the product in a high-level language. Section

13.1 points out that frequently no choice can be made with regard to implementation lan-

guage, but that when it is possible to select a language, the choice should be made on the

basis of cost–benefi t analysis (Section 5.2). One factor that must enter into the cost–benefi t

analysis is the impact on portability.

 At every stage in the development of a product, decisions can be made that result in a

more portable product. For example, some compilers distinguish between uppercase and

lowercase letters. For such a compiler, thisIsAName and thisisaname are different vari-

ables. But other compilers treat the two names the same. A product that relies on differ-

ences between uppercase letters and lowercase letters can lead to hard-to-discover faults

when the product is ported.

 Just as frequently no choice can be made of programming language, no choice may be

allowed in the operating system. However, if at all possible, the operating system under

which the product runs should be a popular one. This is an argument in favor of the UNIX

operating system. UNIX has been implemented on a wide range of hardware. In addition,

UNIX, or more precisely, UNIX-like operating systems, have been implemented on top of

many mainframe operating systems. For personal computers, it remains to be seen whether

sch2333x_ch08_215-255.Indd Page 246 5/31/07 8:03:41 PM elhisch2333x_ch08_215-255.Indd Page 246 5/31/07 8:03:41 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

Chapter 8 Reusability and Portability 247

Linux will overtake Windows as the most widely used operating system. Just as use of a

widely implemented programming language promotes portability, so too does use of a

widely implemented operating system.

 To facilitate the moving of software from one UNIX-based system to another, the

Portable Operating System Interface for Computer Environments (POSIX) was devel-

oped [NIST 151, 1988]. POSIX standardizes the interface between an application program

and a UNIX operating system. POSIX has been implemented on a number of non-UNIX

operating systems as well, broadening the number of computers to which application soft-

ware can be ported with little or no problem.

 Language standards can play their part in achieving portability. If the coding standards

of a development organization stipulate that only standard constructs may be used, then the

resulting product is more likely to be portable. To this end, programmers must be provided

a list of nonstandard features supported by the compiler but whose use is forbidden without

prior managerial approval. Like other sensible coding standards, this one can be checked

by machine.

 Graphical user interfaces similarly are becoming portable via the introduction of stan-

dard GUI languages. Examples of these include Motif and X11. The standardization of

GUI languages is in reaction to the growing importance of GUIs, and the resulting need for

portability of human–computer interfaces.

 It is also necessary to plan for potential lack of compatibility between the operating

system under which the product is being constructed and any future operating systems

to which the product may be ported. If at all possible, operating system calls should be

localized to one or two code artifacts. In any event, every operating system call must be

carefully documented. The documentation standard for operating system calls should as-

sume that the next programmer to read the code will have no familiarity with the current

operating system, often a reasonable assumption.

 Documentation in the form of an installation manual should be provided to assist with

future porting. That manual points out what parts of the product have to be changed when

porting the product and what parts may have to be changed. In both instances, a careful ex-

planation must be provided of what has to be done and how to do it. Finally, lists of changes

that have to be made in other manuals, such as the user manual or the operator manual, also

must appear in the installation manual.

8.12.3 Portable Data
The problem of portability of data can be vexing. Problems of hardware incompatibilities

were pointed out in Section 8.10.1. But even after such problems have been solved, soft-

ware incompatibilities remain. For instance, the format of an indexed-sequential fi le is

determined by the operating system; a different operating system generally implies a dif-

ferent format. Many fi les require headers containing information such as the format of the

data in that fi le. The format of a header almost always is unique to the specifi c compiler and

operating system under which that fi le was created. The situation can be even worse when

database management systems are used.

 The safest way of porting data is to construct an unstructured (sequential) fi le, which

can then be ported with minimal diffi culty to the target machine. From this unstructured fi le,

the desired structured fi le can be reconstructed. Two special conversion routines have to be

sch2333x_ch08_215-255.Indd Page 247 5/31/07 8:03:41 PM elhisch2333x_ch08_215-255.Indd Page 247 5/31/07 8:03:41 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

248 Part One Introduction to Object-Oriented Software Engineering

written, one running on the source machine to convert the original structured fi le into se-

quential form and one running on the target machine to reconstruct the structured fi le from

the ported sequential fi le. Although this solution seems simple enough, the two routines are

nontrivial when conversions between complex database models have to be performed.

8.12.4 Web-Based Applications
One of the greatest strengths of the World Wide Web is that Web-based applications can

achieve an extremely high level of portability. First, Web-based applications can be made

portable by utilizing a language like HTML (Hypertext Markup Language) [HTML, 2006]

or XML (Extensible Markup Language) [XML, 2003] that can be read by any Web browser,

and by employing Java applets, which can be run on virtually every client. A further degree

of portability can be achieved by separating the HTML or XML interface from the rest of

the program (especially the application logic). The resulting application program will then

run on a server, but can be accessed via virtually any client with a Web browser, including

a personal digital assistant (PDA) or cell phone. Furthermore, such an application program

can be ported to a new server without changing the clients that access it.

 At the time of writing, not all applications can be run with every Web browser. For

example, some applications that run under Internet Explorer will not work with Firefox be-

cause Firefox conforms to the World Wide Web Consortium (W3C) standards [W3C, 2006],

but Internet Explorer does not [Computer Gripes, 2004]. However, as Web technology

evolves in the future, it is likely that the highest levels of portability will be attained.

 We conclude this chapter with a summary of the strengths of and impediments to reuse

and portability (Figure 8.14); the section in which each item is discussed is stated.

Figure 8.14
Strengths of and

impediments

to reuse and

portability, and

the section in

which the topic

is discussed.

 Strengths Impediments

Reuse

Portability

Shorter development time (Section 8.1)
Lower development cost (Section 8.1)
Higher-quality software (Section 8.1)
Shorter maintenance time (Section 8.6)
Lower maintenance cost (Section 8.6)

NIH syndrome (Section 8.2)
Potential quality issues (Section 8.2)
Retrieval issues (Section 8.2)
Cost of making a component reusable
 (opportunistic reuse) (Section 8.2)
Cost of making a component for future
 reuse (systematic reuse) (Section 8.2)
Legal issues (contract software only)
 (Section 8.2)
Lack of source code for COTS
 components (Section 8.2)

Software has to be ported to new
 hardware every 4 years or so
 (Section 8.11)
More copies of COTS software can be
 sold (Section 8.11)

Potential incompatibilities:
 Hardware (Section 8.7.1)
 Operating systems (Section 8.7.2)
 Numerical software (Section 8.7.3)
 Compilers (Section 8.7.4)
 Data formats (Section 8.9.3)

sch2333x_ch08_215-255.Indd Page 248 5/31/07 8:03:41 PM elhisch2333x_ch08_215-255.Indd Page 248 5/31/07 8:03:41 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

Chapter 8 Reusability and Portability 249

Chapter
Review

Reuse is described in Section 8.1. Various impediments to reuse are described in Section 8.2. Two

reuse case studies are presented in Section 8.3. The impact of the object-oriented paradigm on reuse

is analyzed in Section 8.4. Reuse during design and implementation is the subject of Section 8.5;

the topics covered include frameworks, patterns, software architecture, and component-based soft-

ware engineering. Design patterns are discussed in greater detail in Section 8.6; after a mini case study

(Section 8.6.1), the Adapter, Bridge, Iterator, and Abstract Factory design patterns are described in

Sections 8.6.2, 8.6.3, 8.6.4, and 8.6.5, respectively. Categories of design patterns are discussed in

Section 8.7. Section 8.8 contains a discussion of strengths and weaknesses of design patterns. The

impact of reuse on postdelivery maintenance is discussed in Section 8.9.

 Portability is discussed in Section 8.10. Portability can be hampered by incompatibilities caused

by hardware (Section 8.10.1), operating systems (Section 8.10.2), numerical software (Section 8.10.3),

or compilers (Section 8.10.4). Nevertheless, it is extremely important to try to make all products as

portable as possible (Section 8.11). Ways of facilitating portability include using popular high-level

languages, isolating the nonportable pieces of a product (Section 8.12.1), adhering to language stan-

dards (Section 8.12.2), and the use of unstructured data (Section 8.12.3). The chapter concludes with

a discussion of Web-based applications (8.12.4).

For
Further
Reading

A variety of reuse case studies can be found in [Lanergan and Grasso, 1984; Matsumoto, 1984, 1987;

Selby, 1989; Prieto-Díaz, 1991; Lim, 1994; Jézéquel and Meyer, 1997; and Toft, Coleman, and Ohta,

2000]. Successful reuse experiences at four European companies are described in [Morisio, Tully, and

Ezran, 2000]. The management of reuse is described in [Lim, 1998]. A search scheme for object retrieval

and reuse is described in [Isakowitz and Kauffman, 1996]. The cost-effectiveness of reuse is described in

[Barnes and Bollinger, 1991] and ways of identifying components for future reuse in [Caldiera and Basili,

1991]. Meyer [1996a] analyzes the claim that the object-oriented paradigm promotes reuse; four case stud-

ies in reuse and object technology appear in [Fichman and Kemerer, 1997]. Reuse metrics are discussed

in [Poulin, 1997]. Factors that affect the success of reuse programs are presented in [Morisio, Ezran, and

Tully, 2002]. Reuse strategies are discussed in [Ravichandran and Rothenberger, 2003]. A comprehensive

model for evaluating software reuse alternatives is presented in [Tomer et al., 2004]. Further papers on

reuse are to be found in the May 2000 issue of IEEE Transactions on Software Engineering.

 A good source of information on frameworks is [Lewis et al., 1995]. D’Souza and Wills [1999]

present a development methodology based on object-oriented frameworks and components. A series

of articles on frameworks can be found in [Fayad and Johnson, 1999; Fayad and Schmidt, 1999;

and Fayad, Schmidt, and Johnson, 1999]. The October 2000 issue of Communications of the ACM

includes articles on component-based frameworks, including [Fingar, 2000] and [Kobryn, 2000],

which describes how to model components and frameworks using UML. Achieving reuse via frame-

works and patterns is described in [Fach, 2001].

 Design patterns were put forward by Alexander within the context of architecture, as described in

[Alexander et al., 1977]. A fi rst-hand account of the origins of pattern theory appears in [Alexander,

1999]. The primary work on software design patterns is [Gamma, Helm, Johnson, and Vlissides,

1995]; a newer book is [Vlissides, 1998]. Analysis patterns are described in [Fowler, 1997], and

requirements patterns in [Hagge and Lappe, 2005].

 Experiments to assess the impact of design pattern documentation on maintenance are described

in [Prechelt, Unger-Lamprecht, Philippsen, and Tichy, 2002]. Antipatterns are described in [Brown et

al., 1998]. Patterns for designing embedded systems are discussed in [Pont and Banner, 2004]. Vokac

[2004] describes the impact of patterns on fault rates in a 500-KLOC product.

 The primary source of information on software architectures is [Shaw and Garlan, 1996]. Newer

works on software architectures include [Bosch, 2000] and [Bass, Clements, and Kazman, 2003].

Software product lines are described in [Jazayeri, Ran, and van der Linden, 2000; Knauber,

sch2333x_ch08_215-255.Indd Page 249 5/31/07 8:03:41 PM elhisch2333x_ch08_215-255.Indd Page 249 5/31/07 8:03:41 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

8.1 Explain in detail the differences between reusability and portability.

8.2 A code artifact is reused, unchanged, in a new product. In what ways does this reuse reduce

the overall cost of the product? In what ways is the cost unchanged?

8.3 Suppose that a code artifact is reused with one change, an addition operation is changed to a

subtraction. What impact does this minor change have on the savings of Problem 8.2?

8.4 What is the infl uence of cohesion on reusability?

8.5 What is the infl uence of coupling on reusability?

8.6 You have just joined a large organization that manufactures a variety of pollution control products.

The organization has hundreds of software products consisting of some 8000 different Fortran

2003 classes. You have been hired to come up with a plan for reusing as many of these classes

as possible in future products. What is your proposal?

Problems

250 Part One Introduction to Object-Oriented Software Engineering

Key Terms abstract class 229

Abstract Factory design

pattern 234

abstract method 229

accidental reuse 216

Adapter design pattern 229

aggregate 233

application framework 224

architecture pattern 226

Bridge design pattern 230

behavioral design

patterns 236

business logic tier 227

COBOL program logic

structure 220

collection 233

component-based software

engineering 227

container 233

creational design

patterns 235

cursor 233

data access logic tier 227

deliberate reuse 216

driver 230

element access 233

element traversal 233

framework 224

functional module 220

hot spot 224

iterator 233

Iterator design pattern 233

model-view-controller

 (MVC) architecture

pattern 226

not invented here (NIH)

syndrome 218

opportunistic reuse 216

portable 216

presentation logic tier 227

reuse 216

software architecture 226

software product line 226

source computer 239

structural design

patterns 235

systematic reuse 216

target computer 239

toolkit 223

widget 233

wrapper 225

Muthig, Schmid, and Widen, 2000; Donohoe, 2000; and Clements and Northrop, 2002]. The state of

the practice of software product lines is discussed in [Birk et al. 2003]. Cost–benefi t analysis of soft-

ware product lines is presented in [Bockle et al., 2004]. The July/August 2002 issue of IEEE Software

contains a variety of articles on product lines.

 Papers on component-based software engineering can be found in the September/October 1998

issue of IEEE Software, including [Weyuker, 1998], which discusses the testing of component-based

software. Brereton and Budgen [2000] discuss the key issues in component-based software products.

Articles on experiences with component-based software engineering include [Sparling, 2000] and

[Baster, Konana, and Scott, 2001]. Strengths and weaknesses of component-based software engi-

neering are discussed in [Vitharana, 2003]. [Heineman and Councill, 2001] is a highly recommended

compendium of articles on component-based software engineering.

 Strategies for achieving portability can be found in [Mooney, 1990]. Portability of UNIX is

 discussed in [Johnson and Ritchie, 1978].

sch2333x_ch08_215-255.Indd Page 250 5/31/07 8:03:42 PM elhisch2333x_ch08_215-255.Indd Page 250 5/31/07 8:03:42 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

8.7 Consider an automated library circulation system. Every book has a bar code, and every bor-

rower has a card bearing a bar code. When a borrower wishes to check out a book, the librar-

ian scans the bar codes on the book and the borrower’s card, and enters C at the computer

terminal. Similarly, when a book is returned, it is again scanned and the librarian enters R.

Librarians can add books (+) to the library collection or remove them (–). Borrowers can go

to a terminal and determine all the books in the library by a particular author (the borrower

enters A= followed by the author’s name), all the books with a specifi c title (T= followed

by the title), or all the books in a particular subject area (S= followed by the subject area).

Finally, if a borrower wants a book currently checked out, the librarian can place a hold

on the book so that, when it is returned, it will be held for the borrower who requested it

(H= followed by the number of the book). Explain how you would ensure a high percentage

of reusable code artifacts.

8.8 You are required to build a product for determining whether a bank statement is correct. The

data needed include the balance at the beginning of the month; the number, date, and amount

of each check; the date and amount of each deposit; and the balance at the end of the month.

Explain how you would ensure that as many code artifacts as possible of the product can be

reused in future products.

8.9 Consider an automated teller machine (ATM). The user puts a card into a slot and enters

a four-digit personal identifi cation number (PIN). If the PIN is incorrect, the card is

ejected. Otherwise, the user may perform the following operations on up to four different

bank accounts:

 (i) Deposit any amount. A receipt is printed showing the date, amount deposited, and

account number.

 (ii) Withdraw up to $200 in units of $20 (the account may not be overdrawn). In addition

to the money, the user is given a receipt showing the date, amount withdrawn, account

number, and account balance after the withdrawal.

 (iii) Determine the account balance. This is displayed on the screen.

 (iv) Transfer funds between two accounts. Again, the account from which the funds are

transferred must not be overdrawn. The user is given a receipt showing the date, amount

transferred, and the two account numbers.

 (v) Quit. The card is ejected.

 Explain how you would ensure that as many code artifacts as possible of the product can be

reused in future products.

8.10 How early in the software life cycle could the developers have caught the fault in the Ariane

5 software (Section 8.3.2)?

8.11 Section 8.5.2 states that “the Raytheon COBOL program logic structure of the 1970s is a clas-

sical precursor of today’s object-oriented application framework.” What are the implications

of this for technology transfer?

8.12 Explain the role played by abstract classes in the design pattern of Figure 8.10.

8.13 Explain how you would ensure that the automated library circulation system (Problem 8.7) is

as portable as possible.

8.14 Explain how you would ensure that the product that checks whether a bank statement is cor-

rect (Problem 8.8) is as portable as possible.

8.15 Explain how you would ensure that the software for the automated teller machine (ATM) of

Problem 8.9 is as portable as possible.

Chapter 8 Reusability and Portability 251

sch2333x_ch08_215-255.Indd Page 251 5/31/07 8:03:42 PM elhisch2333x_ch08_215-255.Indd Page 251 5/31/07 8:03:42 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

8.16 Your organization is developing a real-time control system for a new type of laser that will

be used in cancer therapy. You are in charge of writing two assembler modules. How will you

instruct your team to ensure that the resulting code will be as portable as possible?

8.17 You are responsible for porting a 750,000-line OO-COBOL product to your company’s new

computer. You copy the source code to the new machine but discover when you try to compile

it that every one of the over 15,000 input–output statements has been written in a nonstandard

OO-COBOL syntax that the new compiler rejects. What do you do now?

8.18 In what ways does the object-oriented paradigm promote portability and reusability?

8.19 (Term Project) Suppose that the Osric’s Offi ce Appliances and Decor product of Appendix A

has been developed using the object-oriented paradigm. What parts of the product could be

reused in future products?

8.20 (Readings in Software Engineering) Your instructor will distribute copies of [Tomer et al.,

2004]. What data would you need to accumulate in order to use the model?

[Alexander, 1999] C. ALEXANDER, “The Origins of Pattern Theory,” IEEE Software 16 (September/

October 1999), pp. 71–82.

[Alexander et al., 1977] C. ALEXANDER, S. ISHIKAWA, M. SILVERSTEIN, M. JACOBSON, I. FIKSDAHL-KING, AND

S. ANGEL, A Pattern Language, Oxford University Press, New York, 1977.

[ANSI/IEEE 754, 1985] Standard for Binary Floating Point Arithmetic, ANSI/IEEE 754, American

National Standards Institute, Institute of Electrical and Electronic Engineers, New York, 1985.

[ANSI/MIL-STD-1815A, 1983] Reference Manual for the Ada Programming Language, ANSI/

MIL-STD-1815A, American National Standards Institute, United States Department of Defense,

Washington, DC, 1983.

[Barnes and Bollinger, 1991] B. H. BARNES AND T. B. BOLLINGER, “Making Reuse Cost-Effective,”

IEEE Software 8 (January 1991), pp. 13–24.

[Bass, Clements, and Kazman, 2003] L. BASS, P. CLEMENTS, AND R. KAZMAN, Software Architecture in
Practice, 2nd ed., Addison-Wesley, Reading, MA, 2003.

[Baster, Konana, and Scott, 2001] G. BASTER, P. KONANA, AND J. E. SCOTT, “Business Components: A Case

Study of Bankers Trust Australia Limited,” Communications of the ACM 44 (May 2001), pp. 92–98.

[Birk et al. 2003] A. BIRK, G. HELLER, I. JOHN, K. SCHMID, T. VON DER MASSEN, AND K. MULLER,

“ Product Line Engineering, the State of the Practice,” IEEE Software 20 (November/December

2003), pp. 52–60.

[Bockle et al., 2004] G. BOCKLE, P. CLEMENTS, J. D. MCGREGOR, D. MUTHIG, AND K. SCHMID, “Calcu-

lating ROI for Software Product Lines,” IEEE Software 21 (May/June 2004), pp. 23–31.

[Bosch, 2000] J. BOSCH, Design and Use of Software Architectures, Addison-Wesley, Reading,

MA, 2000.

[Brereton and Budgen, 2000] P. BRERETON AND D. BUDGEN, “Component-Based Systems: A Classifi -

cation of Issues,” IEEE Computer 33 (November 2000), pp. 54–62.

[Brown et al., 1998] W. J. BROWN, R. C. MALVEAU, W. H. BROWN, H. W. MCCORMICK, III, AND

T. J. MOWBRAY, AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis, John

Wiley and Sons, New York, 1998.

[Caldiera and Basili, 1991] G. CALDIERA AND V. R. BASILI, “Identifying and Qualifying Reusable

Software Components,” IEEE Computer 24 (February 1991), pp. 61–70.

[Clements and Northrop, 2002] P. CLEMENTS AND L. NORTHROP, Software Product Lines: Practices and
Patterns, Addison-Wesley, Reading, MA, 2002.

[Computer Gripes, 2004] “Gripes about Web Sites That Don’t Work Well with Firefox,” at: www.
computergripes.com/fi refoxsites.html, 2004.

[Donohoe, 2000] P. DONOHOE (EDITOR), Software Product Lines: Experience and Research Direc-
tions, Kluwer Academic Publishers, Boston, 2000.

252 Part One Introduction to Object-Oriented Software Engineering

References

sch2333x_ch08_215-255.Indd Page 252 5/31/07 8:03:42 PM elhisch2333x_ch08_215-255.Indd Page 252 5/31/07 8:03:42 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

Chapter 8 Reusability and Portability 253

[D’Souza and Wills, 1999] D. D’SOUZA AND A. WILLS, Objects, Components, and Frameworks with
UML: The Catalysis Approach, Addison-Wesley, Reading, MA, 1999.

[Fach, 2001] P. W. FACH, “Design Reuse through Frameworks and Patterns,” IEEE Software 18
(September/October 2001), pp. 71–76.

[Fayad and Johnson, 1999] M. FAYAD AND R. JOHNSON, Domain-Specifi c Application Frameworks:
Frameworks Experience by Industry, John Wiley and Sons, New York, 1999.

[Fayad and Schmidt, 1999] M. FAYAD AND D. C. SCHMIDT, Building Application Frameworks: Object-
Oriented Foundations of Framework Design, John Wiley and Sons, New York, 1999.

[Fayad, Schmidt, and Johnson, 1999] M. FAYAD, D. C. SCHMIDT, AND R. JOHNSON, Implementing Applica-
tion Frameworks: Object-Oriented Frameworks at Work, John Wiley and Sons, New York, 1999.

[Fichman and Kemerer, 1997] R. G. FICHMAN AND C. F. KEMERER, “Object Technology and Reuse:

Lessons from Early Adopters,” IEEE Computer 30 (July 1997), pp. 47–57.

[Fingar, 2000] P. FINGAR, “Component-Based Frameworks for e-Commerce,” Communications of the
ACM 43 (October 2000), pp. 61–66.

[Flanagan, 2005] D. FLANAGAN, Java in a Nutshell: A Desktop Quick Reference, 5th ed., O’Reilly and

Associates, Sebastopol, CA, 2005.

[Fowler, 1997] M. FOWLER, Analysis Patterns: Reusable Object Models, Addison-Wesley, Reading,

MA, 1997.

[Gamma, Helm, Johnson, and Vlissides, 1995] E. GAMMA, R. HELM, R. JOHNSON, AND J. VLISSIDES, Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, Reading, MA, 1995.

[Gifford and Spector, 1987] D. GIFFORD AND A. SPECTOR, “Case Study: IBM’s System/360–370

 Architecture,” Communications of the ACM 30 (April 1987), pp. 292–307.

[Green, 2000] P. GREEN, “FW: Here’s an Update to the Simulated Kangaroo Story,” The Risks Digest
20 (January 23, 2000), catless.ncl.ac.uk/Risks/20.76.html.

[Griss, 1993] M. L. GRISS, “Software Reuse: From Library to Factory,” IBM Systems Journal 32

(No. 4, 1993), pp. 548–66.

[Hagge and Lappe, 2005] L. HAGGE AND K. LAPPE, “Sharing Requirements Engineering Experience

Using Patterns,” IEEE Software 22 (January/February 2005), pp. 24–31.

[Heineman and Councill, 2001] G. T. HEINEMAN AND W. T. COUNCILL, Component-Based Software
Engineering: Putting the Pieces Together, Addison-Wesley, Reading, MA, 2001.

[HTML, 2006] “W3C HTML Homepage,” at www.w3.org/MarkUp, 2006.

[Isakowitz and Kauffman, 1996] T. ISAKOWITZ AND R. J. KAUFFMAN, “Supporting Search for Reusable

Software Objects,” IEEE Transactions on Software Engineering 22 (June 1996), pp. 407–23.

[ISO/IEC 1539–1, 2004] Information Technology—Programming Languages—Fortran—Part 1:
Base Language, ISO/IEC 1539–1, International Organization for Standardization, International

Electrotechnical Commission, Geneva, 2004.

[ISO/IEC 1989, 2002] Information Technology—Programming Language COBOL, ISO 1989:2002,

International Organization for Standardization, International Electrotechnical Commission,

 Geneva, 2002.

[ISO/IEC 8652, 1995] Programming Language Ada: Language and Standard Libraries, ISO/IEC

8652, International Organization for Standardization, International Electrotechnical Commission,

Geneva, 1995.

[ISO/IEC 14882, 1998] Programming Language C++, ISO/IEC 14882, International Organization

for Standardization, International Electrotechnical Commission, Geneva, 1998.

[Jazayeri, Ran, and van der Linden, 2000] M. JAZAYERI, A. RAN, AND F. VAN DER LINDEN, Software Ar-
chitecture for Product Families: Principles and Practice, Addison-Wesley, Reading, MA, 2000.

[Jézéquel and Meyer, 1997] J.-M. JÉZÉQUEL AND B. MEYER, “Put It in the Contract: The Lessons of

Ariane,” IEEE Computer 30 (January 1997), pp. 129–30.

[Johnson and Ritchie, 1978] S. C. JOHNSON AND D. M. RITCHIE, “Portability of C Programs and the

UNIX System,” Bell System Technical Journal 57 (No. 6, Part 2, 1978), pp. 2021–48.

Chapter 8 Reusability and Portability 253

sch2333x_ch08_215-255.Indd Page 253 5/31/07 8:03:42 PM elhisch2333x_ch08_215-255.Indd Page 253 5/31/07 8:03:42 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

[Jones, 1984] T. C. JONES, “Reusability in Programming: A Survey of the State of the Art,” IEEE
Transactions on Software Engineering SE-10 (September 1984), pp. 488–94.

[Knauber, Muthig, Schmid, and Widen, 2000] P. KNAUBER, D. MUTHIG, K. SCHMID, AND T. WIDEN,

“Applying Product Line Concepts in Small and Medium-Sized Companies,” IEEE Software 17

(September/October 2000), pp. 88–95.

[Kobryn, 2000] C. KOBRYN, “Modeling Components and Frameworks with UML,” Communications
of the ACM 43 (October 2000), pp. 31–38.

[Lai, Weiss, and Parnas, 1999] C. T. R. LAI, D. M. WEISS, AND D. L. PARNAS, Software Product-
Line Engineering: A Family-Based Software Development Process, Addison-Wesley, Read-

ing, MA, 1999.

[Lanergan and Grasso, 1984] R. G. LANERGAN AND C. A. GRASSO, “Software Engineering with Reus-

able Designs and Code,” IEEE Transactions on Software Engineering SE-10 (September 1984),

pp. 498–501.

[LAPACK++, 2000] “LAPACK++: Linear Algebra Package in C++,” at math.nist.gov/lapack++, 2000.

[Lewis et al., 1995] T. LEWIS, L. ROSENSTEIN, W. PREE, A. WEINAND, E. GAMMA, P. CALDER, G. ANDERT,

J. VLISSIDES, AND K. SCHMUCKER, Object-Oriented Application Frameworks, Manning, Green-

wich, CT, 1995.

[Lim, 1994] W. C. LIM, “Effects of Reuse on Quality, Productivity, and Economics,” IEEE Software

11 (September 1994), pp. 23–30.

[Lim, 1998] W. C. LIM, Managing Software Reuse, Prentice Hall, Upper Saddle River, NJ, 1998.

[Liskov, Snyder, Atkinson, and Schaffert, 1977] B. LISKOV, A. SNYDER, R. ATKINSON, AND C. SCHAFFERT,

“Abstraction Mechanisms in CLU,” Communications of the ACM 20 (August 1977), pp. 564–76.

[Mackenzie, 1980] C. E. MACKENZIE, Coded Character Sets: History and Development, Addison-

Wesley, Reading, MA, 1980.

[Matsumoto, 1984] Y. MATSUMOTO, “Management of Industrial Software Production,” IEEE Com-
puter 17 (February 1984), pp. 59–72.

[Matsumoto, 1987] Y. MATSUMOTO, “A Software Factory: An Overall Approach to Software Produc-

tion,” in: Tutorial: Software Reusability, P. Freeman (Editor), Computer Society Press, Washing-

ton, DC, 1987, pp. 155–78.

[Meyer, 1987] B. MEYER, “Reusability: The Case for Object-Oriented Design,” IEEE Software

4 (March 1987), pp. 50–64.

[Meyer, 1996a] B. MEYER, “The Reusability Challenge,” IEEE Computer 29 (February 1996), pp. 76–78.

[Mooney, 1990] J. D. MOONEY, “Strategies for Supporting Application Portability,” IEEE Computer

23 (November 1990), pp. 59–70.

[Morisio, Ezran, and Tully, 2002] M. MORISIO, M. EZRAN, AND C. TULLY, “Success and Failure Factors

in Software Reuse,” IEEE Transactions on Software Engineering 28 (April 2002), pp. 340–57.

[Morisio, Tully, and Ezran, 2000] M. MORISIO, C. TULLY, AND M. EZRAN, “Diversity in Reuse Processes,”

IEEE Software 17 (July/August 2000), pp. 56–63.

[Musser and Saini, 1996] D. R. MUSSER AND A. SAINI, STL Tutorial and Reference Guide: C++
Programming with the Standard Template Library, Addison-Wesley, Reading, MA, 1996.

[NAG, 2003] “NAG The Numerical Algorithms Group Ltd,” at www.nag.co.uk, 2003.

[NIST 151, 1988] “POSIX: Portable Operating System Interface for Computer Environments,”

Federal Information Processing Standard 151, National Institute of Standards and Technology,

Washington, DC, 1988.

[Norušis, 2005] M. J. NORUŠIS, SPSS 13.0 Guide to Data Analysis, Prentice Hall, Upper Saddle

Valley River, NJ, 2005.

[Norwig, 1996] P. NORWIG, “Design Patterns in Dynamic Programming,” norvig.com/design-
patterns/ppframe.htm/, 1996.

[Pont and Banner, 2004] M. J. PONT AND M. P. BANNER, “Designing Embedded Systems Using

Patterns: A Case Study,” Journal of Systems and Software 71 (May 2004), pp. 201–13.

254 Part One Introduction to Object-Oriented Software Engineering

sch2333x_ch08_215-255.Indd Page 254 5/31/07 8:03:42 PM elhisch2333x_ch08_215-255.Indd Page 254 5/31/07 8:03:42 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

Chapter 8 Reusability and Portability 255

[Poulin, 1997] J. S. POULIN, Measuring Software Reuse: Principles, Practice, and Economic Models,

Addison-Wesley, Reading, MA, 1997.

[Prechelt, Unger-Lamprecht, Philippsen, and Tichy, 2002] L. PRECHELT, B. UNGER-LAMPRECHT,

M. PHILIPPSEN, AND W. F. TICHY, “Two Controlled Experiments in Assessing the Usefulness

of Design Pattern Documentation in Program Maintenance,” IEEE Transactions on Software
Engineering 28 (June 2002), pp. 595–606.

[Prieto-Díaz, 1991] R. PRIETO-DÍAZ, “Implementing Faceted Classifi cation for Software Reuse,”

Communications of the ACM 34 (May 1991), pp. 88–97.

[Ravichandran and Rothenberger, 2003] T. RAVICHANDRAN AND M. A. ROTHENBERGER, “Software Reuse

Strategies and Component Markets,” Communications of the ACM 46 (August 2003), pp. 109–14

[Schach, 1992] S. R. SCHACH, Software Reuse: Past, Present, and Future, videotape, 150 min, US-

VHS format, IEEE Computer Society Press, Los Alamitos, CA, November 1992.

[Schach, 1994] S. R. SCHACH, “The Economic Impact of Software Reuse on Maintenance,” Journal of
Software Maintenance—Research and Practice 6 (July/August 1994), pp. 185–96.

[Schach, 1997] S. R. SCHACH, Software Engineering with Java, Richard D. Irwin, Chicago, 1997.

[Schricker, 2000] D. SCHRICKER, “Cobol for the Next Millennium,” IEEE Software 17 (March/April

2000), pp. 48–52.

[Selby, 1989] R. W. SELBY, “Quantitative Studies of Software Reuse,” in: Software Reusability, Vol. 2,

Applications and Experience, T. J. Biggerstaff and A. J. Perlis (Editors), ACM Press, New York,

1989, pp. 213–33.

[Shaw and Garlan, 1996] M. SHAW AND D. GARLAN, Software Architecture: Perspectives on an
Emerging Discipline, Prentice Hall, Upper Saddle River, NJ, 1996.

[Sparling, 2000] M. SPARLING, “Lessons Learned through Six Years of Component-Based Develop-

ment,” Communications of the ACM 43 (October 2000), pp. 47–53.

[Tanenbaum, 2002] A. S. TANENBAUM, Computer Networks, 4th ed., Prentice Hall, Upper Saddle

River, NJ, 2002.

[Toft, Coleman, and Ohta, 2000] P. TOFT, D. COLEMAN, AND J. OHTA, “A Cooperative Model for Cross-

Divisional Product Development for a Software Product Line,” in: Software Product Lines:
Experience and Research Directions, P. Donohoe (Editor), Kluwer Academic Publishers, Bos-

ton, 2000, pp. 111–32.

[Tomer et al., 2004] A. TOMER, L. GOLDIN, T. KUFLIK, E. KIMCHI, AND S. R. SCHACH, “Evaluating

Software Reuse Alternatives: A Model and Its Application to an Industrial Case Study,” IEEE
Transactions on Software Engineering 30 (September 2004), pp. 601–12.

[Tracz, 1994] W. TRACZ, “Software Reuse Myths Revisited,” Proceedings of the 16th International
Conference on Software Engineering, Sorrento, Italy, May 1994, pp. 271–72.

[Vitharana, 2003] P. VITHARANA, “Risks and Challenges of Component-Based Software Develop-

ment,” Communications of the ACM 46 (August 2003), pp. 67–72.

[Vlissides, 1998] J. VLISSIDES, Pattern Hatching: Design Patterns Applied, Addison-Wesley, Reading,

MA, 1998.

[Vokac, 2004] M. VOKAC, “Defect Frequency and Design Patterns: An Empirical Study of Industrial

Code,” IEEE Transactions on Software Engineering 30 (December 2004), pp. 904–17.

[Weyuker, 1998] E. J. WEYUKER, “Testing Component-Based Software: A Cautionary Tale,” IEEE
Software 15 (September/October 1998), pp. 54–59.

[XML, 2003] “Extensible Markup Language (XML),” at www.w3.org/XML/, 2003.

sch2333x_ch08_215-255.Indd Page 255 5/31/07 8:03:43 PM elhisch2333x_ch08_215-255.Indd Page 255 5/31/07 8:03:43 PM elhi /Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08/Volumes/107/MHIA039/sch2333xindd%0/sch2333x_ch08

