
 xi

 Java Programming: From the Ground Up begins with the fundamentals of program-

ming, moves through the object-oriented paradigm, and concludes with an introduction

to graphics and event-driven programming. The broad coverage of topics as well as

the modularity of the text makes the book suitable for both introductory and intermediate-

level programming courses. The text requires no prerequisites other than an enthusiasm for

problem solving and a willingness to persevere.

 KEY FEATURES OF THE TEXT

 The style of this text is based on the following four principles:

 1. Fundamentals fi rst
 Our approach is neither “objects fi rst” nor “objects late”; it’s “fundamentals fi rst.”

Our method is bottom up, starting with the basic concepts common to most program-

ming languages: variables, selection, iteration, and methods. Once students under-

stand the basic control structures, they can use them to build classes. Programming

tools such as iteration, selection, and recursion are not the exclusive property of the

object-oriented paradigm. Virtually every programming language, from Ada to ZPL,

provides these tools. The text discusses these common features fi rst before using

them to build classes.

 Our experience in the classroom convinces us that this bottom-up approach is ped-

agogically sound and the best way to teach the material. Certainly, one learns how to

use the tools of carpentry before building a house. We believe that the same principle

applies to building classes. You might say that we present Java from the “grounds” up.

 2. Independent presentation of fundamental programming concepts, object- oriented
concepts, GUIs, and event-driven paradigms

 The text is modular. We fi rst tackle basic programming structures, then the funda-

mentals of object-oriented programming, followed by graphics, GUIs, and events.

The separation of graphics from basic programming structures is especially helpful to

beginners, who when presented early with programs that mix fundamentals with GUI

design, events, and OOP, have diffi culty separating these concepts.

 Because the text is modular, it is appropriate for a variety of courses. For example,

a course that teaches Java as a second language can proceed directly to “Part 2: Prin-

ciples of Object-Oriented Programming.” The basics common to most programming

languages (selection, iteration, recursion, methods, arrays) are covered in Part 1 and not

spread throughout the text. A student familiar with another language, such as C��, can

easily fi nd the Java counterpart to any fundamental control structure.

 3. Examples, examples, and more examples
 Examples lead to understanding. Understanding leads to abstraction. Expecting stu-

dents to immediately digest an abstraction that took a professional perhaps years to

distill is unrealistic. Regardless of how clever or articulate the presentation, the prac-

tical teacher quickly resorts to examples so that the student can extract the general

principles in context. Our text contains dozens of examples in the form of fully imple-

mented programs. Moreover, our experience teaching introductory courses convinces

 PREFACE PREFACE

sim23356_FM_USE.indd xisim23356_FM_USE.indd xi 11/25/08 10:25:33 AM11/25/08 10:25:33 AM

Confirming Pages

us that students rarely read examples spanning four or fi ve pages. With that in mind,

we have tried to keep our examples short, succinct, and occasionally entertaining.

 4. Independent and parallel presentation of related computer science topics
 We present a variety of computer science topics that expand upon and enhance the

study of a particular part of the Java toolbox. Optional “Bigger Picture” sections appear

after the exercises of most chapters and are independent of each other. These optional

segments provide an introduction to more advanced topics such as fractals, computer

architecture, artifi cial intelligence, computer theory, bioinformatics, and trees.

 PEDAGOGICAL FEATURES

 Each chapter contains the following features:

 1. Objectives —Each chapter begins with a list of concepts that the student will learn in

that chapter.

 2. Just the Facts —At the conclusion of each chapter, a summary of the fundamental

ideas of the chapter can be reviewed at a glance.

 3. Bug Extermination —At the end of each chapter is a short section on debugging with

a summary of some commonly occurring bugs, and hints for how best to avoid them.

 4. Examples —Examples permeate each chapter. Almost every numbered example is a

standalone program. Many examples are dissected line by line. Each example follows

the same easy-to-understand format: a problem description, a Java solution, typical

output, and fi nally a discussion of the solution.

 5. Exercises —Each chapter contains a variety of exercises and programming problems.

The style and diffi culty of the exercises and problems vary. There are:

• crossword puzzles that test terminology,

• short answer questions that check basic understanding,

• debugging and tracing exercises that do not require a computer,

• short programming problems that reinforce the concepts of the chapter, and

• longer programming assignments that require some creativity and algorithm

development.

 6. The Bigger Picture— Following the exercises, a section entitled The Bigger Picture builds

upon and extends the ideas covered in the chapter. Topics range from two’s complement

number representation, to the halting problem, to DNA sequencing. The material in The
Bigger Picture sections is not prerequisite to any subsequent section of the text. Further-

more, one Bigger Picture segment does not depend upon another. Each stands entirely

on its own. These sections may be included, assigned as supplemental reading, used in

a closed lab setting, or skipped entirely, depending on the audience or time constraints.

However, students who choose to tackle some or all of these sections will fi nd a wealth of

topics, each opening new roads of inquiry into computer science. The effort will provide

students with a larger framework of ideas that extend beyond the study of programming.

 THE CONTENTS

 The text is divided into four parts:

 1. The Fundamental Tools; 2. Principles of Object-Oriented Programming; 3. More Java

Classes; and 4. Basic Graphics, GUIs, and Event-Driven Programming

xii Preface

sim23356_FM_USE.indd xiisim23356_FM_USE.indd xii 11/25/08 10:25:34 AM11/25/08 10:25:34 AM

Confirming Pages

 Part 1: The Fundamental Tools
 Part 1 consists of the standard programming constructs that exist in most program-

ming languages: storage and control structures.

1. Introduction to Computers and Java
 Chapter 1 is a brief introduction to the hardware and software of a computer sys-

tem. The chapter includes a discussion of programming languages, compilers, and

the Java Virtual Machine.

2. Expressions and Data Types
 Chapter 2 begins with a few applications that display string output and moves

gradually to examples that evaluate expressions. The chapter includes an intro-

duction to the primitive data types: int, double, char , and boolean .

3. Variables and Assignment
 Variables are introduced in this chapter. Specifi cally, Chapter 3 addresses three

questions:

• How does an application obtain storage for data?

• How does an application store data?

• How does an application utilize stored data?

Java’s Scanner class is used for interactive input.

4. Selection and Decision: if Statements
 Chapter 4 covers selection via

• the if statement,

• the if-else statement, and

• the switch statement.

The chapter also includes a discussion of nested if statements.

5. Repetition
 Repetition is first introduced with the while statement, then the do-while
statement, and finally the for loop. The chapter explains the stylistic dif-

ferences among the loops and when each type of loop may be appropriate.

There is a discussion of common errors that may lead to infinite loops or

loops that are “off by one.” The chapter includes examples of applications

with nested loops.

6. Methods
 Methods are introduced as “black boxes” that accept input and return a value.

Here, we present a number of methods from Java’s Math class. The bulk of the

chapter deals with “home grown” methods. Because we have not yet introduced

classes and objects, all methods are static .
7. Arrays and Lists: One Name for Many Data

 This chapter covers arrays and array instantiation. Here, we fi rst introduce the

concept of a reference. The chapter includes an introduction to sorting and search-

ing. After discussing two-dimensional arrays, the chapter concludes with a case

study: The Fifteen Puzzle. The case study uses most of the concepts introduced in

Part 1.

8. Recursion
 Recursion is the fi nal topic of Part 1. The chapter begins with a simple example

that does no more than print a message. Subsequent examples grow in complex-

ity, leading to a discussion of tail recursion versus “classic” recursion as well as

the Quicksort algorithm. A fi nal case study, The Design of an Anagram Genera-
tor , ties the concepts together. The chapter emphasizes recursive thinking .

 Preface xiii

sim23356_FM_USE.indd xiiisim23356_FM_USE.indd xiii 11/25/08 2:58:30 PM11/25/08 2:58:30 PM

Confirming Pages

 Part 2: Principles of Object-Oriented Programming
 The heart of Part 2 is the object-oriented paradigm. With the tools of Part 1 mastered,

students can concentrate on the principles of object-oriented programming. The

concepts of Parts 1 and 2 are not in any way tied to building GUIs or event-driven

programming. No side trips to loop-land or “by-the-ways” are necessary. Part 2 is

comprised of the following chapters:

9. Objects and Classes I: Encapsulation, Strings, and Things
 Chapter 9 introduces encapsulation, classes, and objects. This fi rst introduction

to classes and objects is accomplished with examples of several Java classes,

including:

• Random

• String

• StringBuilder

• File

• DecimalFormat

Here, students learn how to use text fi les for simple I/O.

10. Objects and Classes II: Writing Your Own Classes
 In Chapter 9, students learn about objects and classes by using a few prepack-

aged classes. In this chapter students learn how to write their own classes. The

chapter discusses encapsulation and information hiding and gives meaning to

a few mysterious words, such as public and static , that have been used in previ-

ous chapters. A fi nal case study builds a simple audio player, which we dub a

 myPod .

11. Designing with Classes and Objects
 The sole topic of Chapter 11 is program design. This chapter consists of a single

case study: an interactive poker game. We formulate a methodology for deter-

mining the appropriate classes and objects and how these objects interact. Our

focus here is not the syntax, semantics, or mechanics of Java but problem solv-

ing and object-oriented design.

12. Inheritance
 We introduce inheritance as the second principle of object-oriented program-

ming. Here, we contrast inheritance and composition. We also discuss the Object
class and those Object methods inherited by all classes. The chapter includes a

discussion of abstract classes and interfaces.

13. Polymorphism
 The fi nal chapter of Part 2 is a discussion of polymorphism. If inheritance

emphasizes the “sameness” of classes in a hierarchy, then polymorphism under-

scores the differences. The chapter discusses dynamic binding, using polymor-

phism with interfaces, and polymorphism as it relates to Object .

 Part 3: More Java Classes
 Part 3 is the most technical section of the text. Here, we examine the wrapper

classes, exception classes, stream classes, and classes for random access fi les.

We also introduce generics and several elementary data structures such as stacks,

queues, and linked lists. Part 3 ends with a discussion of the Java Collections

Framework.

14. More Java Classes: Wrappers and Exceptions
 Chapter 14 begins with a discussion of the wrapper classes. The chapter includes

a discussion of auto-boxing and unboxing. The remainder of the chapter is

xiv Preface

sim23356_FM_USE.indd xivsim23356_FM_USE.indd xiv 11/25/08 2:58:31 PM11/25/08 2:58:31 PM

Confirming Pages

devoted to Java’s Exception hierarchy. The chapter explains the throw-catch

mechanism, the fi nally block, checked and unchecked exceptions, the throws

clause, and how to create an Exception class.

15. Stream I/O and Random Access Files
 By far the most technical chapter of the text, Chapter 15 is a selective discus-

sion of some of the Byte Stream and Character Stream classes as well as the

connection between the Byte Stream hierarchy and the Character Stream hier-

archy. The chapter contrasts text and binary fi les, gives examples of binary fi le

I/O, and discusses object serialization. Random access fi les are also covered in

this chapter.

16. Data Structures and Generics
 Chapter 16 begins with an introduction to Java’s ArrayList class and gener-

ics. This leads to a discussion of several elementary data structures: stacks,

queues, and linked lists. An implementation for each type of data structure is

discussed.

17. The Java Collections Framework
 By examining the implementations of several classes in the Java Collections

Framework, this chapter demonstrates how choosing the “wrong” class an lead

to an ineffi cient application.

 Part 4: Basic Graphics, GUIs, and Event-Driven Programming

 Part 4 introduces graphics, graphical user interfaces, and event-driven programming.

18. Graphics: AWT and Swing
 Chapter 18 discusses Swing and AWT. The chapter emphasizes frame layout and

discusses several layout managers . Here, we explain how to arrange graphical com-

ponents within a window. We also include an introduction to the Graphics class.

19. Event-Driven Programming
 Event-driven programming is discussed in terms of the delegation event model.

Applications that include buttons, labels, text fi elds, text areas, dialog boxes,

checkboxes, radio buttons, mouse events, and menus fi ll out the rest of the

chapter.

20. A Case Study: Video Poker, Revisited
 Chapter 20 revisits the case study of Chapter 11. Here the focus is on the design

and implementation of a GUI for the text-based poker game developed in Chap-

ter 11. The objective of this chapter is an understanding of the design principle

that entails the separation of the data model from the interface, or more simply,

the model from the view.

 Appendix A: Java Keywords

 Appendix B: The ASCII Character Set

 Appendix C: Operator Precedence

 Appendix D: Javadoc

 This appendix describes how to use Sun’s Javadoc tool to automatically generate

documentation from Java source fi les.

 Appendix E: Packages

 Appendix E focuses on the use of packages to better organize large-scale applica-

tions with many classes.

 Preface xv

sim23356_FM_USE.indd xvsim23356_FM_USE.indd xv 11/25/08 2:58:31 PM11/25/08 2:58:31 PM

Confirming Pages

 TO THE INSTRUCTOR

 How to Use This Book
 This book is fl exible and is designed to serve several audiences:

• For a college-level introduction to programming in Java, Parts 1 and 2 can be used

alone or followed by Part 4 with selections from Part 3, depending on the pace and

focus of the course. In a fi rst course, we would omit the chapter on Stream classes

(Chapter 15). Basic text fi le I/O is covered in Chapter 9.

• A course for students who already know a programming language can begin with

Part 2 and refer to Part 1 as needed. This same approach could be used by an instructor

who prefers “objects early.”

• For high school students in an AP course, Parts 1 and 2 and selections from Part 3

cover the required Java topics. Chapter 15 can be skipped entirely.

 Recursion appears as Chapter 8 at the conclusion of Part 1, prior to our introduction to

object-oriented programming. We present recursion independent of object-oriented pro-

gramming because recursion is a fundamental concept of program control independent of

the programming paradigm. Although recursion appears at the end of Part 1, the topic can

be delayed until the end of Part 2, or skipped entirely. Any example or exercise in the book

that requires recursion is explicitly marked (R) so that an instructor can choose whether or

not to assign it.

 Arrays are storage structures common to most programming languages. Consequently,

we have included the topic of arrays in Part 1. On the other hand, Java arrays are objects.

The book is structured so that arrays (Chapter 7) can be covered at the end of Part 1, or

delayed until after Chapter 9, Objects and Classes I: Encapsulation, Strings, and Things .

Chapter 7 includes a discussion of two-dimensional arrays. These sections can be post-

poned without loss of continuity.

 Simple data structures (stacks, queues, and linked lists) and the Java Collections

Framework are covered at the end of Part 3 because the implementation of data structures

is heavily dependent on the object-oriented paradigm.

 Chapter Dependency Chart
 The following chart gives general chapter prerequisites. The chart can be used to confi gure

many different types of courses. Although Chapters 1 through 6 are shown as prerequisite

to Chapter 9, for those instructors eager to start with objects, a course might begin with

Chapters 1–3, skip to 9, and cover the material in 4–6 as needed.

 Online Resources
 Online resources to accompany Java Programming are available on the text’s website at

www.mhhe.com/bravaco. Some of those resources include:

• Code and data for all program examples in the text

• Lecture PowerPoint slides

• An image library of all line art in the text

• An instructor’s manual containing solutions to exercises

To access these resources, contact your McGraw-Hill representative.

xvi Preface

sim23356_FM_USE.indd xvisim23356_FM_USE.indd xvi 11/25/08 2:58:31 PM11/25/08 2:58:31 PM

Confirming Pages

 TO THE STUDENT

 You are about to study Java, a popular object-oriented programming language. There are

many reasons why you may be studying Java:

• Knowledge of Java and computer programming is required in your discipline
(business, information technology, science, etc.) .

 Programming is a useful tool. Even if you do not become a programmer yourself, this

text will provide you with an appreciation for what a programmer does. Long after you

have forgotten the details in this book, the principles that you have learned will allow

you to communicate better with programmers.

 Preface xvii

1. Computers and Java

2. Expressions and Data Types

3. Variables and Assignment

5. Repetition

6. Methods

10. Objects and Classes II

9. Objects and Classes I

8.1–8.4 Recursion 11. Designing with Classes

13. Polymorphism

12. Inheritance8.5–8.6 Recursion

7.1–7.5 Arrays

7.6–7.10 Arrays

16. Data Structures and Generics

14.1–14.2 The Wrapper

Classes

17. Java Collections

Framework

15. Stream IQ
18. Graphics:

AWT and Swing

19. Event Driven

Programming
20. A Case Study

14.3 Exceptions

4. Selection

sim23356_FM_USE.indd xviisim23356_FM_USE.indd xvii 11/25/08 2:58:31 PM11/25/08 2:58:31 PM

Confirming Pages

• You hope to secure an interesting job.
 Profi ciency in Java is a marketable skill. Many interactive websites are written

using Java. There is much to learn and Java’s learning curve is steep, but greater

profi ciency comes with experience.

• You are beginning a college major in computer science .
 Unlike introductory courses in other sciences such as chemistry and physics, a fi rst

course in computer science is generally not an overview of the discipline but an

intense introduction to programming and the tools of the discipline. While there are

breadth-fi rst courses that provide an overview of computer science, these courses

are rare, and most computer science programs have retained the tradition of teaching

programming fi rst.

Java may very well be the fi rst of many programming languages that you will learn. A good

fi rst language is one with a rich set of features that enables you to learn other languages

quickly. A good fi rst language is one powerful enough to implement sophisticated algo-

rithms without tedious effort. A good language gives you enough power to easily imple-

ment an abstract concept.

 There is no best fi rst language, but there are many good ones such as Scheme, C,

C��, C#, Visual Basic, Python, and of course, Java. Each language has its fans as well as

its detractors. Java, like any programming language, has its strengths and weaknesses as a

fi rst language.

 Strengths:

• Internet friendly

• Platform independent

• Reliable

• Secure

• Sophisticated GUI and event-driven paradigm

• Designed from the ground up as an object-oriented language

• Widely used

• Has huge collection of object libraries allowing fast, effi cient reuse of code

 Weaknesses:

• Huge collection of object libraries is intimidating to beginners.

• Steep learning curve, especially for GUI and event-driven models.

• Slow execution relative to standard compiled languages.

 There is no perfect choice, but Java is certainly a good one. Thousands of people consider

Java their “native” programming language, and Java will not likely disappear soon from

industry or the classroom. Java is an excellent fi rst language.

 The only way to become fl uent in Java is to write programs. You can and should listen

to lectures; you can and should read the text. And, unquestionably, you must do the exer-

cises. With practice and perseverance, you can become a skilled and successful program-

mer and have a bit of fun along the way. Enjoy your journey.

 Electronic Textbook Option
This text is offered through CourseSmart for both instructors and students. CourseSmart

is an online resource where students can purchase the complete text online at almost half

the cost of a traditional text. Purchasing the eTextbook allows students to take advan-

tage of CourseSmart’s web tools for learning, which include full text search, notes and

xviii Preface

sim23356_FM_USE.indd xviiisim23356_FM_USE.indd xviii 11/27/08 2:49:41 PM11/27/08 2:49:41 PM

Confirming Pages

highlighting, and email tools for sharing notes between classmates. To learn more about

CourseSmart options, contact your sales representative or visit www.CourseSmart.com.

 ACKNOWLEDGMENTS

 Many people have contributed to the development of this book. We owe a debt of gratitude

to our reviewers, who graciously gave of their time and expertise:

 Suzanne Balik, North Carolina State University

 Julia I. Couto, Georgia Gwinnet College

 Jeanne Douglas, University of Vermont

 William E. Duncan, Louisiana State University

 H. E. Dunsmore, Purdue University

 Joseph D. Hurley, Texas A & M University

 Dennis Kellermeier, Wright State University

 Lorrie Lehman, University of North Carolina, Charlotte

 Kathy Liszka, University of Akron

 Mark Llewellyn, University of Central Florida

 Hunter Lloyd, Montana State University

 Blayne E. Mayfi eld, Oklahoma State University

 Robert J. McGlinn, Southern Illinois University, Carbondale

 Rodrigo A. Obando, Columbus State University

 Kevin O’Gorman, California Polytechnic Institute of Technology

 Rayno D. Niemi, Rochester Institute of Technology

 Juan Pavón, Facultad de Informática

 Cyndi Rader, Colorado School of Mines

 Michael D. Scott, University of Texas at Austin

 Harish Sethu, Drexel University

 Monica Sweat, Georgia Institute of Technology

 Bahram Zartoshty, California State University, Northridge

We also wish to thank the members of the academic administration at Stonehill College for

their encouragement and support, especially Provost and Academic Vice President Katie

Conboy, Dean Karen Talentino, and Dean Joseph Favazza.

 Colleagues, friends, and students who helped us along our way include Ryan Amari,

Tanya Berger-Wolf, Jennifer Burge, Kathy Conroy, Robert Dugan, Matthew Fuller, Thomas

Gariepy, Michael Haney, Andrew Harmon, Matthew Hinds, Antonio “Thumbs” Martinez,

Nan Mulford, Elizabeth Patterson, Annemarie Ryan, Bonnie Troupe, and Thomas Wall.

 Our gratitude goes to our students at Stonehill College and to the participants in our

NSF Java workshops. You have contributed to this book in ways great and small.

 Our editorial, production, and marketing staff helped this book take shape and we

thank them all: Alan Apt, Carrie Burger, Kevin Campbell, Bonnie Coakley, Edwin Durbin,

Tammy Juran, Melissa Leick, Rebecca Olson, Curt Reynolds, Brenda Rolwes, Michael

Ryder, Raghu Srinivasan, and most especially Lora Kalb-Neyens, who patiently guided us

throughout the creation of this book.

 Lastly, we thank our families, Kathryn Kalinak and Emily Bravaco, and Andrea, Zosh,

Yair, and Yona Simonson, for their love, their encouragement, and their endless patience

without which this book would not have been possible.

 Preface xix

sim23356_FM_USE.indd xixsim23356_FM_USE.indd xix 11/27/08 2:49:42 PM11/27/08 2:49:42 PM

Confirming Pages

