
 191

CHAPTER CHAPTER 6
 Methods 

  “Though this be madness, yet there is method in ’t.”  
   —From   Hamlet   (II, ii, 206)  

   “There is more madness to my method than method to my madness.”  
  — Salvador Dali   

 Objectives 

 The objectives of Chapter 6 include an understanding of

�   the concept of a method as a “black box,”  

�   the methods of Java’s   Math   class,  

�   how to construct methods that carry out simple tasks,  

�   the differences between   void   methods and methods that return a value,  

�   the scope of a name, and  

�   method overloading: advantages and potential pitfalls.   

 6.1 INTRODUCTION 

 Not too long ago, in the pioneer days of programming (that’s circa 1966), mathematicians 

Corrado Bohm and Guiseppe Jacopini proved that  a n y  computer program can be written 

using just three basic structures:

 1.   sequence (statements in a program are executed sequentially),  

 2.   selection (  if-else   statements), and  

 3.   repetition (loops).  

These three fundamental ideas are the principal concepts of Chapters 2 through 5. So, at 

least  theoretically , you can put aside this text and implement any program that you dare to 

dream up! You have the tools. 

  Needless to say, complex computer programs are built with tools more sophisticated 

than three simple, albeit powerful, structures. Indeed, a carpenter could theoretically build 

a house using nothing more than nails, a saw, a hammer, and some lumber; but the task 

wouldn’t be easy, and the fi nished product may be unsightly. As a carpenter needs more 

powerful equipment, the programmer requires tools beyond sequence, selection, and rep-

etition. One such programming construct is the  method.  

 
A method is a named sequence of instructions that are grouped together to perform a task.

sim23356_ch06.indd   191sim23356_ch06.indd   191 9/8/08   3:32:33 PM9/8/08   3:32:33 PM

Confirming Pages



192 Part 1 The Fundamental Tools

  Complicated programs perform many different tasks. Methods enable the programmer 

to organize various tasks into neat, manageable, independent bundles of code. Every Java 

application that we have written contains one method; its name is   main   and its instructions 

appear between the opening and closing braces of   main  . 

 

Every Java application must have a main method, and the execution of every Java 

application begins with the main method.

 Other methods that we have used are   print(…), println(…),   and   Math.random().   

  In this chapter you will learn about a few more prepackaged methods provided by Java as 

well as how to construct your own methods. We begin with a “black box” view of a method. 

 6.2 JAVA’S PREDEFINED METHODS 

 Imagine a mathematical, if not magical, “black box” that works in such a way that when-

ever you supply a number to the box, the box gives or  returns  the positive square root of 

that number. See  Figure 6.1a . 

FIGURE 6.1b An area box

area
2

3
6

FIGURE 6.1a A square root box

16 4sqrt

  Figure 6.1b  illustrates a similar mechanism that accepts two numbers, perhaps the length 

and width of a rectangle, and returns the area of the rectangle. 

 Or can you fathom a gizmo that receives a character and returns the integer (ASCII) value 

of that character? See  Figure 6.1c . 

 Such a “box” is a metaphor for a  method . A method is very much like a mathematical 

 function—a black box that computes an output given some inputs. 

 

The values that you supply or pass to the method are called arguments. The value 

computed by the method is the returned value.

 Later, you will see that a method may perform a task without accepting arguments or 

returning a value. 

  Java comes bundled with an extraordinary number of methods. Each of these built-in 

methods is comprised of Java code that performs some specifi c task. Fortunately, the 

FIGURE 6.1c An ASCII converter box

‘A’ 65ascii

sim23356_ch06.indd   192sim23356_ch06.indd   192 9/8/08   3:32:34 PM9/8/08   3:32:34 PM

Confirming Pages



 Chapter 6 Methods 193

 programmer need not know  how  these Java-supplied methods work “inside the box” or 

“under the hood,” but simply how to use them. 

  How do you use these methods? Where do you get them? Let’s start with a simple 

example. 

 6.2.1 The Square Root Method 

Imagine that you are standing on a beach gazing out at the sea. What is the distance to 

the horizon? How far ahead can you see? How far can you see if you are standing on a 

cliff above the beach?

 In general, the distance to the horizon (in miles) can be estimated as follows:

 • Determine the distance (in feet) from sea level to your eyes.

 • Compute the square root of that distance.

 • Multiply the result by 1.23.

Problem Statement Write a program that prompts a user for the distance measured 

from the ground to his/her eyes and calculates the distance to the horizon.

Notice that the following program must calculate a square root. This calculation is per-

formed compliments of the method Math.sqrt(x)—a black box.

Java Solution
1.   import java.util.*;

2.   public class DistanceToHorizon

3.   {

4.       public static void main(String[] args)

5.       {

6.           Scanner input;

7.            double distanceToEyes;             // measured from the ground

8.           double distanceToHorizon;

9.           int answer � 1;                            // used to repeat the calculation

10.         input � new Scanner(System.in);

11.          do

12.         {

13.             System.out.print("Distance from the ground to your eyes in feet: ");

14.             distanceToEyes � input.nextDouble();

15.             distanceToHorizon � 1.23 * Math.sqrt(distanceToEyes);

16.             System.out.println("The distance to the horizon is " � distanceToHorizon � "mi.");

17.              System.out.print("Again? Enter 1 for YES; any other number to Exit: ");

18.             answer � input.nextInt();

19.          }while (answer �� 1);

20.     }

21.  }

Output
Distance from the ground to your eyes in feet: 16.0

The distance to the horizon is 4.92 mi.

Again? Enter 1 for YES; any other number to Exit: 1

Distance from the ground to your eyes in feet: 5.25

The distance to the horizon is 2.8182840523978414 mi

Again? Enter 1 for YES; any other number to Exit: 0

Discussion On line 15, the program utilizes the method

double Math.sqrt(double x)

to calculate the square root of distanceToEyes. The method Math.sqrt(…) hides the 

details of its implementation. How the square root of a number is calculated is hidden 

EXAMPLE 6.1

sim23356_ch06.indd   193sim23356_ch06.indd   193 9/8/08   3:32:35 PM9/8/08   3:32:35 PM

Confirming Pages



194 Part 1 The Fundamental Tools

  The program of Example 6.1 utilizes the   Math.Sqrt(…)   method. To understand how a 

Java method works, let’s take a closer look at the mechanics of this particular method. 

  Consider the statement

double root � Math.sqrt(25.0);

The effect of this statement is that variable   root   is assigned the value 5.0, the square root 

of 25.0. 

  This method, which calculates square root, is a member of Java’s   Math   class. The   Math

class is a Java-supplied collection (or library) of methods that performs mathematical tasks 

or functions.   Math.sqrt(…)   is one of several methods in the   Math   class. The name of the 

method is   sqrt  , and the argument that is supplied to the method is the number 25.0. Notice 

the period that separates the class name   Math   from the method name,   sqrt   .  See  Figure 6.2 . 

  In the statement

double root � Math.sqrt(25.0)

the   Math.sqrt(…)   method is  called  (or  invoked ) with the argument 25.0 and  returns  the 

value 5.0 (the square root of 25.0), which is subsequently assigned to the variable   root  . This 

action is similar to that of the statement:

double sum � 5.0 � 8.0;

Here, the expression 5.0 � 8.0 evaluates to (or returns) 13.0, which is assigned to   sum  . 

 The argument that is passed to a method may be a constant, an expression, or a  variable. 

And a method call may be used within an expression. The following are valid method calls:

System.out.println(Math.sqrt(456));     // prints the square root of 245 ( double)

double w � Math.sqrt(input.nextInt()); // here input is a Scanner object

double x � input.nextDouble();

double y � input.nextDouble();

double z � 3.14 * Math.sqrt(x � y);      // method is used within an expression

A method is described by its  header,  which has the following form:

 return-type   name(  parameter-list  ) 

•   The  return-type  specifi es the data type of the value returned by the method.  

•   The  parameter-list  enumerates the number (implicitly) and type (explicitly) of the 

arguments that must be passed or given to the method.  

•   The names in the parameter-list are called  formal parameters,  or simply  parameters .  

 For example, the header of  Figure 6.3  tells us that the method named   Math.sqrt   accepts one 

argument of type   double   and returns a   double  . Parameter   x   is a (formal) parameter. 

from the programmer. The method functions as a black box, and the programmer simply 

uses this method in the program.

The argument passed to the method is distanceToEyes (a double),

and the returned value (a double) is the square root of distanceToEyes.

For example, if distanceToEyes has the value 16.0, then Math.sqrt(distanceToEyes)

returns the value 4.0 and that value is used in the expression

distanceToHorizon � 1.23 * Math.sqrt(distanceToEyes);

That’s all there is to it.

FIGURE 6.2 The sqrt
method of the Math 
class

Math class

Math.sqrt(25.0)

Name

Argument

sim23356_ch06.indd   194sim23356_ch06.indd   194 10/17/08   12:20:26 PM10/17/08   12:20:26 PM

Confirming Pages



 Chapter 6 Methods 195

 Although the header specifi es that the argument passed to the   Math.sqrt(…)   be of type 

  double  , an argument of any data type may be used, provided that the argument can be auto-

matically cast to type   double  . Thus, the argument of

Math.sqrt(25)

is fi rst cast to the   double   25.0. The returned value is 5.0 (not 5). The returned value is 

always type   double   regardless of the argument. To obtain an integer, you can perform an 

explicit cast on the method’s return value:

(int)Math.sqrt(25);

   Figure 6.4  lists some useful methods found in the   Math   class. In each case, the fi rst two 

columns comprise the header for each method. 

FIGURE 6.3 The header for Math.sqrt(…)

Return-type

double Math.sqrt(double x)

Parameter-list

Return Type Method Description Example

double abs(double x) absolute value Math.abs(�3.1) returns 3.1

int abs(int a) absolute value Math.abs(�25) returns 25

double ceil(double x) returns the smallest whole number (as a 

double) greater than or equal to x
Math.ceil(3.14159) returns 4.0

double cos(double x) cosine function, x is in radians Math.cos(3.141592653589793) 
returns �1.0 (cos(π) � �1)

double exp(double x) the exponential function, ex Math.exp(0.0) returns 1.0 (e0 � 1)

double fl oor(double x) returns the largest whole number 

(as a double) less than or equal to x
Math.fl oor(3.14159) returns 3.0

double log(double x) natural logarithm, ln(x) Math.log(1.0) returns 0.0 (ln(1) � 0)

double max(double x, 

double y)

returns the greater of x and y Math.max(3.0,4.0) returns 4.0

int max(int a, int b) returns the greater of x and y Math.max(3,4) returns 4 (int)

double min(double x, 

double y)

returns the lesser of x and y Math.min(3.0,4.0) returns 3.0

int min(int a, int b) returns the lesser of a and b Math.min(3,4) returns 3 (int)

double pow(double x, 

double y)

xy Math.pow(2.0,5.0) returns 32.0

double random() returns a random number x such that 

0.0 <� x < 1
Math.random() may return 

0.2345676889 or perhaps 0.654678756

long round(x double) rounds to the nearest whole number 

(long)
Math.round(3.14) returns 3 (long)

Math.round (5.67) returns 6 (long)

double sin(double x) sine function, x is in radians Math.sin(3.141592653589793) 

returns 0.0 (sin(π) � 0)

double sqrt(double x) square root Math.sqrt(144.0) returns 12.0

double tan(double x) tangent function, x is in radians Math.tan(3.141592653589793) 

returns 0.0 (tan(π) � 0)

FIGURE 6.4 Methods of the Math class

sim23356_ch06.indd   195sim23356_ch06.indd   195 10/20/08   1:27:34 PM10/20/08   1:27:34 PM

Confirming Pages



196 Part 1 The Fundamental Tools

Legend tells us that approximately 380 years ago Peter Minuit purchased the island of 

Manhattan for the grand sum of 60 Dutch guilders (approximately $24). If Mr. Minuit 

had instead deposited his $24 in the local bank at 5% interest, compounded daily, what 

would his money be worth today? Was his real estate investment a wise one?

 To calculate the present value of Peter Minuit’s original $24, we use the interest 

formula:

 value � amount(1 � rate/360)360*years

where value represents the present value, amount is the initial investment, rate is the yearly 

interest rate, and years is the time (in years) of the investment. Thus, for the problem at 

hand, value is calculated as

value � 24(1 � .05/360)360*380

Here, we use 360 days (a 30-day month) for a “bank year,” rather than 365.

Problem Statement Write a program that prompts the user for:

 • the initial investment,

 • the interest rate, and

 • the term in years,

and calculates the present value. To perform the calculation, we use Java’s “power 

method,” Math.pow(x,y), which calculates xy.

Java Solution
1.   import java.util.*;

2.   public class Interest

3.   {

4.       public static void main(String[] args)

5.       {

6.           Scanner input;

7.            double value;

8.           double amount;

9.           double rate;

10.         double years;

11.          final int DAYS � 360;                     // one year

12.          // prompt for initial investment

13.         input � new Scanner(System.in);

 EXAMPLE 6.2

 6.2.2 A Method that Computes Powers 
 The next example uses the method

double Math.pow(double x, double y)

to calculate  x y  . 
  Notice that the parameter list of the header specifi es that the method requires two 

arguments of type   double  . For example,   Math.pow(5.0,2.0)   returns 5.0 2.0 , that is, 25.0. See 

 Figure 6.5 . 

FIGURE 6.5 The power method, Math.pow(…)

5.0 (x)

2.0 (y)
25.0Math.pow

sim23356_ch06.indd   196sim23356_ch06.indd   196 9/8/08   3:32:38 PM9/8/08   3:32:38 PM

Confirming Pages



 Chapter 6 Methods 197

14.         System.out.print("Initial amount: ");

15.         amount � input.nextDouble();

16.         // prompt for yearly interest rate

17.          System.out.print("Interest rate: ");

18.         rate � input.nextDouble();

19.         // prompt for number of years

20.         System.out.print("Time in years: ");

21.         years � input.nextDouble();

22.         // value � amount * (1 � rate / DAYS)(DAYS*years) – standard interest formula

23.         value � amount * Math.pow (1 � rate / DAYS, DAYS * years); // (1 � rate / DAYS)DAYS*years

24.         System.out.println("Present value $" � value);

25.    }

26.  }

Output (Using the Minuit Data)
Initial amount: 24.00

Interest rate: .05

Time in years: 380

Present value $4.2779275332526875E9

Discussion The method Math.pow(…) is invoked on line 23 with two arguments, both 

expressions. Notice that the present value is displayed in scientifi c notation. In decimal 

notation, that’s about $4,277,927,533. Considering the value of real estate in Manhattan, 

it appears that Peter made a very wise investment.

 6.2.3 Random Numbers 
 The

  double Math.random()  

method returns a random number that is greater than or equal to 0.0 and strictly less than 1.0. 

Notice that   Math.random()   requires no parameter or argument. 

  For example, the fi rst time that a program invokes   Math.random()  , the returned value 

might be 0.8787954399107227, and the next time it might be 0.31799656386438013. Each 

subsequent number returned by   Math.random()   is supposedly unpredictable. The follow-

ing small program calls   Math.random()   ten times. There is no discernible pattern to the 

output . . . it’s random. 

1.   public class TenRandomNumbers

2.  {

3.       public static void main(String[] args)

4.       {

5.           for (int i � 1; i <� 10; i��)

6.                 System.out.println( Math.random() );

7.        }

8.  }

 Output 
0.6516831128923004

0.3159760705754926

0.945877632966408

0.04538322890407964

0.8815999823052094

sim23356_ch06.indd   197sim23356_ch06.indd   197 9/8/08   3:32:40 PM9/8/08   3:32:40 PM

Confirming Pages



198 Part 1 The Fundamental Tools

0.07672479266883347

0.04423548066038108

0.4441137107417066

0.15348060768674676

0.1833850393131755

 Random numbers are indispensable for performing simulations. Such simulations are 

useful in all kinds of applications, including earthquake modeling, epidemic predictions, 

rocket testing, and games. For example, a card game that uses a deck of 52 cards might 

associate each card with a number from 1 to 52. Dealing a card amounts to nothing more 

than choosing a random number in that range. Or, a program might use a random integer, 

either 0 or 1, to simulate the toss of a coin: 0 for heads and 1 for tails. 

 Using Math.random() to Generate Integers 

 With a little hocus pocus we can use   Math.random()   in all sorts of situations. For example, 

to simulate the roll of a single die, a program requires a random integer between 1 and 6 

inclusive. We can use   Math.random()   to generate integers in the range 1 through 6 by “mag-

nifying” its 0 through 1 range. 

  If

  r � Math.random();  

then   r   is of type   double   and

0.0 �  r  < 1.0.

 Therefore,

  0.0 � 6 *  r  < 6.0                     (multiplying the inequality by 6), and

1.0 � 6 *  r  � 1 < 7.0.             (adding 1 to each value in the inequality)   

 Thus   6* Math.random() � 1   is a number greater than or equal to 1 but strictly less than 7. 

  For example, if

  r � 0.8929343993861253, then

     6 * r � 5.3576063963167518, and

 6 * r � 1 � 6.3576063963167518.

 To obtain an integer value, cast 6 *  r  � 1 to an integer, effectively dropping the fractional 

part. Thus,

(int)(6 * Math.random() � 1)

returns a random integer between 1 and 6, inclusive. Similarly,   (int)(52 * Math.random() 

�1)   returns a random integer between 1 and 52, inclusive. You can use this trick to gener-

ate random integers in any range. For example,   (int)(10 * Math.random() � 15)   returns an 

integer between 15 and 24, inclusive. 

  Example 6.3 uses   Math.random()   to simulate a simple casino dice game. 

Probably the simplest of all casino bets is the “over-under” bet. Two dice are rolled, and 

a player has the option of betting whether the sum of the spots displayed on the dice 

will be:

 1. over 7,

 2. under 7, or

 3. exactly 7.

EXAMPLE 6.3

sim23356_ch06.indd   198sim23356_ch06.indd   198 9/8/08   3:32:41 PM9/8/08   3:32:41 PM

Confirming Pages



 Chapter 6 Methods 199

Bets (1) and (2) pay even money. So if a player bets $1, a win pays his money back plus $1. 

Bet (3) pays 4 to 1. Thus if a player bets $2 on 7, a win pays him back his $2 plus $8.

Problem Statement Write a program that simulates the over-under game. If the player 

wins, the winning amount (not including the returned original bet) is reported, and if the 

player loses, a message is printed.

Java Solution
1.  import java.util.*;

2.  public class Dice

3.  {

4.      public static void main(String [] args)

5.      {

6.          Scanner input;

7.           int bet;

8.          int wager;

9.          int die1,die2;

10.        int sum;

11.         input � new Scanner(System.in);

12.         // Place your bet

13.        System.out.print("Enter your bet\n (1) Over 7 \n (2) Under 7 \n (3) Exactly 7\n: ");

14.         bet � input.nextInt();

15.        System.out.print("Enter your wager (whole number): ");

16.        wager � input.nextInt();

17.         // Roll the dice

18.        die1 � (int)(6 * Math.random() � 1) ; // random integer 1..6

19.        die2 � (int)(6 * Math.random() � 1);

20.        sum � die1 � die2;

21.         System.out.println("The sum of the dice is " � sum);

22.        // Check for a win

23.        if ((sum > 7) && (bet �� 1) || (sum < 7) && (bet �� 2))

24.            System.out.println("You win $" � wager);

25.        else if ((sum �� 7) && (bet �� 3))

26.            System.out.println("You win $" � (4 * wager));

27.         else

28.            System.out.println("You lose!");

29.    }

30. }

Output (Two Games)
Enter your bet

 (1) Over 7

 (2) Under 7

 (3) Exactly 7:

2

Enter your wager (whole number): 3

The sum of the dice is 8

You lose!

Enter your bet

 (1) Over 7

 (2) Under 7

 (3) Exactly 7:

sim23356_ch06.indd   199sim23356_ch06.indd   199 9/8/08   3:32:42 PM9/8/08   3:32:42 PM

Confirming Pages



200 Part 1 The Fundamental Tools

 6.3 WRITING YOUR OWN METHODS 

 Although there are thousands of methods in Java’s extensive libraries, Java certainly cannot 

provide a method for every imaginable task. Fortunately, you can create your own methods 

that do whatever task you fancy—be it a method to calculate your taxes or one to determine 

your weight on the moon. Like Java’s methods, a method that you create:

•   has a name,  

•   may accept arguments,  

•   may return a value, and  

•   may be used as part of an expression.   

 The difference between a Java method and one of your own creation is that with your 

own method  you  must program the “black box.” You are the designer, the architect and 

the builder. (Well, you can’t expect Java to do  everything .) In the following examples, we 

illustrate two types of Java methods: those that return a value and those that do not. 

 6.3.1 Methods that Return a Value 
 Many of the prepackaged methods that we have encountered perform a computation and 

return the result of the computation to the caller. For example,   Math.sqrt(double x)   returns 

the square root of   x  , and   Math.random()   returns a random number. The following applica-

tion includes a method that returns a value but, unlike   Math.sqrt(…)   or   Math.random(),   this 

method is  not  part of Java’s library. 

1

Enter your wager (whole number): 6

The sum of the dice is 9

You win $6

Discussion The expressions on lines 18 and 19 simulate the roll of a single die. As 

explained above, even though Math.random() returns a fl oating-point number that is 

greater than or equal to 0 and strictly less than 1, this Java method can be used to generate 

random integers.

Rapid Rick runs races regularly. Although Rick is determined to keep in shape, he does 

enjoy an occasional slice of cheesecake. If Rick knows approximately how many calo-

ries he burns while running, well, he just might treat himself to a little more dessert with 

a little less guilt.

 The number of calories used while running depends on the runner’s weight as well 

as the distance that he/she has run. A common rule of thumb used to estimate the num-

ber of calories burned is:

calories � .653 � weight � distance

where weight is the runner’s weight in pounds and distance is in miles.

EXAMPLE 6.4

sim23356_ch06.indd   200sim23356_ch06.indd   200 9/8/08   3:32:43 PM9/8/08   3:32:43 PM

Confirming Pages



 Chapter 6 Methods 201

Problem Statement Write a program that calculates the number of calories burned as 

a function of weight and distance. Include a method

double caloriesBurned(double weight, double distance)

that accepts two arguments of type double and returns a value of type double. See 

Figure 6.6.

caloriesBurned
165.0(lbs)

4.5(mi)
484.8525(cal)

FIGURE 6.6 The method double caloriesBurned(double weight, double distance)

Java Solution
1.   import java.util.*;

2.   public class RunnersCalculator

3.  {

4.     public static double caloriesBurned(double weight, double distance)

5.     {

6.      // returns the number of calories burned using the formula

7.      // calories � .653 � weight � distance

8.        double calories � .653 * weight * distance;

9.        return calories;

10.    }

11.    public static void main(String[] args)

12.    {

13.        Scanner input;

14.        double myWeight, myDistance, totalCalories;

15.        input � new Scanner(System.in);

16.        System.out.print("Enter weight in pounds: ");

17.        myWeight � input.nextDouble();

18.        System.out.print("Enter distance in miles: ");

19.        myDistance � input.nextDouble();

20.        totalCalories � caloriesBurned(myWeight, myDistance);

21.        System.out.println("Calories burned: " � totalCalories);

22.    }

23. }

Output
Enter weight in pounds: 165.0

Enter distance in miles: 6.0

Calories burned: 646.47

Discussion Like all Java applications, RunnersCalculator begins execution with 

main(…) (lines 11–22). The main(…) method is similar to the main(…) method of any 

other program that we’ve written. You should notice, however, that within main(…) there 

is a call to the method caloriesBurned(…) on line 20:

totalCalories � caloriesBurned(myWeight, myDistance);

sim23356_ch06.indd   201sim23356_ch06.indd   201 9/8/08   3:32:45 PM9/8/08   3:32:45 PM

Confirming Pages



202 Part 1 The Fundamental Tools

A call to caloriesBurned(…)  is really no different than the call to Math.sqrt(…) in 

Example 6.1 or the call to Math.random() in Example 6.3. The method call to calories-

Burned(…) has two arguments: myWeight and myDistance; the returned value is assigned 

to the variable totalCalories.

 The instructions of the method caloriesBurned(…) are specifi ed on lines 8 and 9. 

Unlike Math.sqrt(…) or Math.random(), we can now look “inside the box,” so to speak. 

So let’s do just that.

 Line 4 is the header of the method:

public static double caloriesBurned(double weight, double distance)

For now, you can ignore the keywords public and static. They are necessary and soon 

they will make more sense to you. The remainder of the header specifi es:

• the data type of the return value: double,

• the name of the method: caloriesBurned, and

• the parameters: weight and distance.

 The parameters specify the type and number of the arguments that must be passed 

to the method. When this method is invoked with two arguments, the value of the fi rst 

argument is assigned or passed to weight and the value of the second argument is passed 

to parameter distance. For example, if the method call is

caloriesBurned(155.5, 3.5)

the parameter weight gets the value 155.5, and distance the value 3.5. See Figure 6.7.

Return-type

double caloriesBurned(double weight, double distance)

Method name

Parameters

FIGURE 6.7 Parts of a method header

 The block consisting of lines 5 through 10 contains the instructions of the method 

caloriesBurned(…).

• Line 8 is an expression that calculates the number of calories burned.

• Line 9 is a return statement.  The return statement has the form:

return expression

The return statement has two purposes:

 1. It specifi es the value that the method returns to the caller.

 2. It terminates the method and returns program control to the caller.

That’s all there is to it.

 Figure 6.8 steps through the execution of the program. As you can see, the program 

executes main(…) sequentially, with a side trip to  caloriesBurned(…) on line 20.

sim23356_ch06.indd   202sim23356_ch06.indd   202 9/8/08   3:32:45 PM9/8/08   3:32:45 PM

Confirming Pages



 Chapter 6 Methods 203

Line 14: Declare three variables, myWeight, 

myDistance, and totalCalories.

myWeight myDistance totalCalories

Line 17: Obtain a value for myWeight.
165.0

myWeight myDistance totalCalories

Line 19: Obtain a value for myDistance.
165.0 6.0

myWeight myDistance totalCalories

Line 20: Call caloriesBurned(…). Pass values of the 

arguments myWeight and myDistance to parameters 

weight and distance, respectively.

165.0 6.0

myWeight myDistance totalCalories

 Program control passes to caloriesBurned(…).

Line 4: The parameters weight and distance are 

initialized with the values of arguments myWeight 

and myDistance.

165.0 6.0

weight distance

Line 8: Declare the variable calories. Calculate the 

number of calories burned, and initialize calories to 

that value.

165.0 6.0 646.47

weight distance calories

Line 9: Return the value of calories to the caller 

and exit.

165.0 6.0 646.47

weight distance calories

 Program control returns to the assignment on line 20.

Line 20 (resumed): Assign the returned value to 

totalCalories.

165.0 6.0 646.47

myWeight myDistance totalCalories

Line 21: Print the results.
165.0 6.0 646.47

myWeight myDistance totalCalories

FIGURE 6.8  A trace of RunnersCalculator

sim23356_ch06.indd   203sim23356_ch06.indd   203 10/17/08   12:23:57 PM10/17/08   12:23:57 PM

Confirming Pages



204 Part 1 The Fundamental Tools

 For the correct values to be passed to the appropriate parameters, the order of the 

arguments is crucial. When caloriesBurned(…) is invoked, the values stored in the two 

arguments, myWeight and myDistance, are assigned, or passed, to the parameters specifi ed 

in the header of caloriesBurned(…): weight and distance, respectively. See Figure 6.9.

calories � caloriesBurned(myWeight, myDistance)

double caloriesBurned(double weight, double distance)
{
     double calories;
     calories � .653 * weight * distance
     return calories
}

myWeight passed to weight myDistance passed to distance

FIGURE 6.9  Arguments are passed to parameters: weight gets the value of myWeight, 
and distance the value of myDistance

 The values of myWeight and myDistance that are passed to caloriesBurned(…) are 

the values used in the expression

.635 * weight * distance

on line 8.

 The arguments myWeight and myDistance supply values to the parameters weight

and distance. The arguments initialize the parameters. The parameters weight and 

distance are considered variables of the method. Once the arguments, myWeight and 

myDistance, pass their values to weight and distance, the role of the arguments is com-

plete. Variables myWeight and myDistance have no further jobs in caloriesBurned(…). 

Indeed, if caloriesBurned(…) were to alter weight or distance, the change would not 

affect myWeight or myDistance. Except for the initial copying of argument values to 

parameters, there is no link between the parameters and the arguments.

When the value of an argument is copied to a parameter, the argument is said to be 

passed by value.

 6.3.2 void Methods 
 A method can perform a task without returning a value. Such a method is called a   void

method. You have already seen two  void  methods:   print(…)   and   println(…).   Each method 

displays text but neither returns a value. 

 

To specify a void method, use the reserved word void in place of the return type in the 

method header.

  For example,

void drawSquare(int size)

might be the header of a method that draws a square on the screen and does not return a 

value. Because a   void   method does not return a value, it makes no sense to incorporate a 

  void   method into an expression. The expression

5 * Math.sqrt(25)

sim23356_ch06.indd   204sim23356_ch06.indd   204 10/17/08   12:23:58 PM10/17/08   12:23:58 PM

Confirming Pages



 Chapter 6 Methods 205

is certainly meaningful and has the value 25.0, but

5 * drawSquare(25)

makes no sense because   drawSquare(25)   does not return a value. 

 A call to a   void   method is a “standalone” statement consisting of the method name 

along with any arguments that must be passed to the method, such as

System.out.println("Print me!");

or

drawSquare(10);

  In Example 6.5,   coinChanger(…)   is a void method:   coinChanger(…)   performs a task 

but does not return a value. 

 Problem Statement   Write a program that includes a void method

void coinChanger(int amount)

that accepts a single integer argument between 1 and 100 that represents an amount of 

money between $.01 and $1.00. The method makes change for that amount using the 

minimum number of coins. Coins are in denominations of half dollars, quarters, dimes, 

nickels, and pennies. 

  To ensure that the smallest number of coins is used, fi rst compute the maximum 

number of half dollars, followed by the maximum number of quarters, and so on. For 

example, if the initial amount is 83 cents, we fi rst calculate, in order, the number of half 

dollars, quarters, dimes, nickels, and pennies:

•   from 83 cents: 1 half dollar, 33 cents remain;  

•   from 33 cents: 1 quarter, 8 cents remain;  

•   from 8 cents: 0 dimes, 8 cents remain;  

•   from 8 cents: 1 nickel, 3 cents remain;  

•   fi nally, 3 pennies remain.   

 These calculations are accomplished using the / (integer divide) and % (remainder) 

operators. 

 Java Solution 
1.   import java.util.*;

2.   public class MoneyChanger

3.   {

4.       public static void coinChanger (int amount)

5.       {

6.           // calculates the minimum number of half dollars, quarters, dimes, nickels

7.            // and pennies in amount

8.           int halfDollars, quarters, dimes, nickels, pennies;

9.           System.out.println();

10.         System.out.println(amount � " cents can be converted to:");

11.          halfDollars � amount / 50;           // determine number of half dollars

12.         amount � amount % 50;              // how much remains?

13.         quarters � amount / 25;               // determine number of quarters

EXAMPLE 6.5

sim23356_ch06.indd   205sim23356_ch06.indd   205 10/17/08   12:24:09 PM10/17/08   12:24:09 PM

Confirming Pages



206 Part 1 The Fundamental Tools

14.         amount � amount % 25;              // how much remains?

15.         dimes � amount / 10;                  // determine the number of dimes

16.         amount � amount % 10;              // how much remains?

17.          nickels � amount / 5;                   // determine the number of nickels

18.         pennies � amount % 5;               // remainder is the number of pennies

19.         System.out.println("Half Dollars: " � halfDollars);

20.         System.out.println("Quarters : " � quarters);

21.         System.out.println("Dimes : " � dimes);

22.         System.out.println("Nickels : " � nickels);

23.         System.out.println("Pennies : " � pennies);

24.         return;                                           // return statement is optional here

25.    }

26.    public static void main(String[] args)

27.    {

28.         Scanner input;

29.         input � new Scanner(System.in);

30.         System.out.print("Enter a value between 1 and 100: ");

31.          int money � input.nextInt();

32.         coinChanger(money);                  // call to method coinChanger

33.    }

34.  }

 Output 
Enter a value between 1 and 100:  83 

83 cents can be converted to:

Half Dollars: 1

Quarters  : 1

Dimes    : 0

Nickels  : 1

Pennies   : 3

 Discussion   The program prompts the user for an initial amount of money and invokes 

the method   coinChanger(…)   with that value as an argument. Because   coinChanger(…)

does not return a value, the call to   coinChanger(…)   is not called within an expression. 

The method call is the Java statement (line 32):

coinChanger (money);

 The parameter   amount   of   coinChanger(…)   accepts the value of the argument   money,   

which is supplied interactively. Next, the number of half dollars is calculated, as well as 

how much remains after the half dollars have been removed from   amount   (lines 11 and 

12). Likewise, the numbers of quarters, dimes, and nickels are determined. After calculat-

ing the number of nickels, the fi nal remainder represents the number of pennies (line 18). 

  Take note of the   return   statement on line 24. Unlike the method of Example 6.4, this 

return   statement does not include a return value or an expression. In this situation, the  return  

statement merely causes the method to exit; no value is returned to the calling method. 

Execution of a return statement in a void method causes the method to exit without 

returning a value to the caller.

 Indeed, the  return  statement on line 24 is unnecessary. After a  void  method executes its 

last statement, the method automatically returns; no fi nal return statement is necessary. 

In contrast to a method that returns a value, a   void   method is not required to have  any
return  statements. 

sim23356_ch06.indd   206sim23356_ch06.indd   206 9/8/08   3:32:53 PM9/8/08   3:32:53 PM

Confirming Pages



 Chapter 6 Methods 207

 6.3.3 Putting It All Together 
 Let’s take a more general look at the components of a method and fi ll in a few details. 

 

A Java method consists of a

• header followed by a

• method block.

The parameters in the header specify the number and type of the arguments that 

must be passed to the method. When a method is invoked, the values stored in the 

arguments are copied to the parameters.

 In Example 6.4,   weight   and   distance   are parameters, and   myWeight   and   myDistance   are 

arguments. In Example 6.5, the parameter is   amount   and the argument is   money  . The param-

eters are sometimes called  formal parameters  and the arguments  actual parameters . 

  The form of the  header  is:

 modifiers return-type name  (  parameter-list  ) 

where:

•    modifi ers  (for now) are the keywords   public   and   static  ;  

•    return-type  is the data type of the value that the method returns, or   void   if the method 

does not return a value;  

•    parameter-list  is a (possibly empty) list of parameters that receive values from argu-

ments passed to the method when the method is invoked.   

The  method block  is a sequence of statements enclosed by curly braces:

{

          statement-1;

          statement-2;

          statement-3;

               . . .

           statement-n; 

}

 For example,  Figure 6.10  shows a method that calculates the volume of a box. 

Parameter-listName

public static double volume OfBox(double length, double width, double height)

{
     double volume;
     volume � length * width * height;
     return volume;
}

Return-type

Method block

Modifiers

FIGURE 6.10  A method that calculates the volume of a box

  That’s the big picture, but a few details are in order:

 1.    Method Name.  The name of a method must be a valid Java identifi er. Moreover, a 

method name should convey the method’s purpose, function, or task. For example, 

the name   volumeOfBox   is more suitable than the name   myMethod   or   box  . Standard 

Java convention specifi es that the name of a method begins with a lowercase letter and 

sim23356_ch06.indd   207sim23356_ch06.indd   207 10/17/08   12:32:57 PM10/17/08   12:32:57 PM

Confirming Pages



208 Part 1 The Fundamental Tools

starts each succeeding word in the method name with an uppercase letter. For example, 

the names   volumeOfBox   and   caloriesBurned   both follow this convention; the names 

   VolumeOfBox   and   volumeofbox   do not.  

 2.    Parameter-List.  A method’s  parameter-list  consists of pairs of the form:

 type  parameter-name 

separated by commas.  Figure 6.11  shows the parameter-list of the method   volumeOfBox  . 

FIGURE 6.11  A parameter-list

Parameter-name

Type

double length, double width, double height

 For example:

• The parameter-list of method   caloriesBurned   in Example 6.4 is:

double weight, double distance

•   The method   Math.random()   has no parameter-list.   Math.random()   neither requires 

nor accepts any arguments. The parameter-list is empty.    

 3.    Argument Passing.  When calling a method, the caller passes arguments to the param-

eters. The calling statement must provide a type-suitable value for each parameter. If 

a method has fi ve parameters, fi ve arguments are required. Supplying more or fewer 

arguments than parameters is an error that the compiler can detect. 

•   For example, the method

double volumeOfBox(double length, double width, double height)

 has three parameters each of type   double  . The following are valid calls to 

  volumeOfBox(…)  :

volumeOfBox(2.34, 5.765, 4.678)   // three doubles are passed

volume of box(l, w, h)                       // l, w, and h are type double

volumeOfBox(3, 4, 5)                      // an integer can be expanded to a double

volumeOfBox(3.0*l, 1.5*w, 2.7*h);   // expressions are OK

 In contrast, if

 int volumeOfBox(int length, int width, int height)

 is a method with integer parameters, then the call

 volumeOfBox(3.0, 4.0, 5.0)

 is unacceptable because a value of type   double   cannot be automatically cast to an 

integer.  

•   Finally, note that the invocation

 volumeOfBox(2.3, 4.5) //  INVALID. 

                                        //  Wrong number of arguments

 is illegal: only two values are passed and   volumeOfBox(…)   requires three.   

sim23356_ch06.indd   208sim23356_ch06.indd   208 10/17/08   12:32:58 PM10/17/08   12:32:58 PM

Confirming Pages



 Chapter 6 Methods 209

 4.    Pass by Value.  All arguments are passed “by value.” This means that the arguments 

are evaluated and  values  of the arguments are copied to the parameters of a method. 

Subsequently, modifying the parameters in the method has no effect on the value of 

any variables passed as arguments.  

 5.    Method Block.  The statements of the  method block  accomplish the task of the method.  

 6.   The return Statement.  A method that returns a value  must  include a   return   statement .  
The form of the   return   statement is

return  expression 

   If the data type of the returned value (as specifi ed in the method header) is   T  , then the 

data type of   expression   should also be type   T   (or a type that is automatically cast to 

  T  ). For example, the following method header specifi es that the return type of method 

  gimmeFive   is   double.  

 double  gimmeFive()

 The methods

  double  gimmeFive()      and   double  gimmeFive()

 {                                              {

              return 5.0;                               return 5; // an integer is cast to double

 }                                              }

 both contain valid   return   statements. However, the following method,

    int  gimmeFive()

 {

                    return 5.0;    // cannot cast a double to an int

 }  

  does not have a valid   return   statement because the   double   5.0 does not match the   int   

return type of the method, and 5.0 is not automatically cast to an integer. 

  When a method executes the   return   statement,

 •    the method terminates,  

 •    program control passes back to the caller, and  

 •    any statements following the   return   statement are ignored.    

 7.    Local Variables.  Variables that are declared within a method are called the  local vari-
ables  of that method. Local variables exist and are known only within the method in 

which they are declared. When a method exits, the local variables are destroyed. Local 

variables do not exist beyond the life of a method call. We now look at local variables 

in a bit more detail.   

 6.3.4 Local Variables 
 In Example 6.4, the parameters   weight   and   distance  , as well as the variable   calories   that is 

declared on line 8, are known only within the method   caloriesBurned(…),   that is, between the 

curly braces surrounding the statements of the method. The   main(…)   method can neither see 

nor access these variables. Similarly,   myWeight  ,   myDistance  ,   totalCalories  , and even   input   

are known only in   main(…).   The memory cells,   myWeight  ,   myDistance  , and   totalCalories   of 

 Figure 6.8 , are not visible when program control passes to   caloriesBurned(…).   

 

When a method is invoked, memory for local variables is allocated, and when a 

method exits, that memory is de-allocated.

sim23356_ch06.indd   209sim23356_ch06.indd   209 9/8/08   3:32:57 PM9/8/08   3:32:57 PM

Confirming Pages



210 Part 1 The Fundamental Tools

 Consequently, a method’s local variables do not retain values from call to call. When a 

method exits, its local variables no longer exist. 

  Example 6.6 includes three methods. Each method has its own collection of local 

variables. Notice that the same name is used for more than one variable, yet the computer 

is not at all confused. 

 Rapid Rick of Example 6.4 runs in all weather, rain or shine, and in all seasons, hot or 

cold. The actual heat or cold he experiences depends on more than the outdoor tempera-

ture. The Summer Sizzle Index , SSI , measures what the temperature actually feels like 

on a hot day by taking into account the relative humidity. The Wind Chill Temperature , 
WCT , does the same for a cold day by taking wind speed into consideration. On a hot, 

sticky summer evening when the temperature is a not-so-balmy 80°F and the relative 

humidity is 77%, the  SSI  is 94.5°F. On a blustery winter day, when the temperature is a 

crisp 23°F and the wind speed is 20 mph, the  WCT  is 8.2°F. 

  The Summer Sizzle Index ( SSI ) and Wind Chill Temperature ( WCT ) are calculated 

as follows:

  SSI � 1.98 * (T � (0.55 � 0.0055 * H)*(T � 58)) � 56.83

WCT � 35.74 � 0.6215 * T � 35.75 * V 0.16 � 0.4275 * T * V 0.16

   where  T  is the temperature (in Fahrenheit),  H  is the relative humidity (as a percent), 

and  V  is the wind velocity (miles per hour). 

 Problem Statement   Write a program that, given the temperature and relative humid-

ity, calculates both the Summer Sizzle Index or, given the temperature and wind speed, 

computes the Wind Chill Temperature. 

 Java Solution 
1.   import java.util.*;

2.   public class HotAndCold

3.   {

4.        public static double summerSizzleIndex(double temperature, double relativeHumidity)

5.       {

6.           // calculates and returns Summer Sizzle Index

7.           // temperature is in degrees Fahrenheit; relative humidity is a percent

 8.            double SSI � 1.98 * 

    (temperature � (0.55 � 0.0055 * relativeHumidity) * (temperature � 58)) � 56.83; 

 9.           return SSI; 

10.    }

11.      public static double windChillTemperature(double temperature, double windSpeed)

12.      {

13.          // calculates and returns Wind Chill Temperature

14.          // temperature is in degrees Fahrenheit; wind speed is mph

 15.           double windChill � 35.74 � .6215 * temperature � 35.75 * 

    Math.pow(windSpeed, 0.16)  � 0.4275 * temperature * Math.pow(windSpeed, 0.16);

 16.         return windChill; 

17.     }

18.     public static void main(String[] args)

19.    {

20.         Scanner input � new Scanner(System.in);

21.          double temperature, SSI, windChill, relativeHumidity, windSpeed;

22.          System.out.print("To calculate SSI enter 1; to calculate Wind Chill enter 2: ");

23.         int reply � input.nextInt();

 EXAMPLE 6.6

sim23356_ch06.indd   210sim23356_ch06.indd   210 9/8/08   3:32:57 PM9/8/08   3:32:57 PM

Confirming Pages



 Chapter 6 Methods 211

24.         System.out.print("Temperature: ");

25.         temperature � input.nextDouble();

26.         if (reply �� 1)

27.          {

28.            System.out.print("Relative Humidity: ");

29.            relativeHumidity � input.nextDouble();

30.            SSI � summerSizzleIndex(temperature, relativeHumidity);

31.             System.out.println("Summer Sizzle index: " � SSI);

32.         }

33.         else

34.         {

35.            System.out.print("Wind Speed: ");

36.             windSpeed � input.nextDouble();

37.             windChill � windChillTemperature(temperature, windSpeed);

38.            System.out.println("Wind chill temperature: " � windChill);

39.      }

40.   }

41. }

 Output 
  To calculate SSI enter 1; to calculate Wind Chill enter 2:  1 

Temperature:  80 

Relative Humidity:  75 

Summer Sizzle index: 95.58049999999999

To calculate SSI enter 1; to calculate Wind Chill enter 2:  2 

Temperature:  25 

Wind Speed:  15 

Wind chill temperature: 12.623095109603938  

 Discussion   The HotAndCold class has three methods, each with a number of local 

variables, as shown in  Figure 6.12 . 

summerSizzleIndex windChillTemperature main

temperature (parameter) temperature (parameter) temperature (line 21)

relativeHumidity (parameter) windSpeed (parameter) SSI (line 21)

SSI (line 8) windChill (line 15) windChill (line 21)

relativeHumidity (line 21)

windSpeed (line 21)

input (line 20)

reply (line 23)

FIGURE 6.12 Local variables in three methods

 Although several local variables have the same name, the variables are, in fact, distinct. 

For example, each method has a variable named   temperature  . The three   temperature

variables may have the same name but each has its own storage location. They are 

independent and distinct. Of course, too many variables with the same name can lead to 

confusion and bugs. In general, try to give variables unique names. 

  The concept of local variables is tied to the broader topic of  scope , which we  discuss 

in the next section. 

sim23356_ch06.indd   211sim23356_ch06.indd   211 10/17/08   12:34:55 PM10/17/08   12:34:55 PM

Confirming Pages



212 Part 1 The Fundamental Tools

  6.3.5 Scope 

 

The scope of a variable is that section of the program in which a variable can be 

accessed or referenced.

 For example, consider the following void method that computes the sum and product of the 

fi rst  n  positive integers:

  1.   void sumAndProduct(int n)

2.   {

3.     int  sum  � 0;

4.     int  product  � 1;

5.     for (int i � 1; i �� n; i��)

6.     {

7.        sum �� i;

8.        product *� i;

9.     }

10.       System.out.println( "Sum of the first " � n � " positive integers is " � sum);

11.        System.out.println("Product of the first " � n � " positive integers is " � product);

12.  }

   

The method   sumAndProduct   has several local variables:   n, sum, product  , and   i  . The scope 

of each of these variables is as follows:

•   The scope of parameter   n   is the entire method.  

•   The scope of   sum   begins with its declaration on line 3 and extends to the end of the 

method.  

•   Similarly, the scope of   product   extends from its declaration on line 4 to the method’s end.  

•   As you already know, the variable   i   does not exist beyond the block of the for-loop. 

Thus, the scope of variable   i   is lines 5 through 9. Outside of the for-loop,   i   is inacces-

sible and unknown.  

 

In general, the scope of a variable begins with its declaration and extends to the end 

of the block in which it is declared.

  Recall that a block is a group of statements enclosed by curly braces { and }; so if you 

declare a variable in the outermost block of a method, its scope extends from the declaration to 

the end of the method. On the other hand, the scope of a variable declared within an inner or 

nested block begins at the declaration and terminates at the end of that block. In the segment
  

if (purchase � 200)

{

          double discount  � .20 * purchase;

          double discountPrice  � purchase � discount;

         tax � .05 * discountPrice;

         total � discountPrice � tax;

}

else

{

         tax � .05 * purchase;

         total � purchase � tax;

}

  

sim23356_ch06.indd   212sim23356_ch06.indd   212 9/8/08   3:33:03 PM9/8/08   3:33:03 PM

Confirming Pages



 Chapter 6 Methods 213

the scope of the variables   discount   and   discountPrice   extends from their defi nitions to the 

end of the “  if   block.” Thus, neither variable is known within the “  else   block.” 

  The scope of a variable declared in the header of a   for   loop is the entire   for   loop. In the 

segment

  

for (int i � 0; i �� 50; i��)

{

             // statements

}

   

 The control variable   i   is unknown once the loop terminates. 

  Example 6.7 illustrates a few of these general scope rules. 

 Player Polly is quite a fan of the board game Monopoly. When it is Polly’s turn to roll 

the dice, if she rolls “doubles,” (i.e., both dice show the same number of spots), Polly 

gets another toss of the dice. However, if she unfortunately tosses doubles three times 

in a row, then Polly must “go to jail.” Polly frequently plays Monopoly and has landed 

in jail more than a few times. So, Polly was wondering how likely it is that she tosses 

doubles three consecutive times and lands in Monopoly prison. 

Problem Statement   Write an application that prompts the user for an integer,   numTurns   

representing some number of Monopoly turns. Using random numbers, the program 

simulates rolling the dice for that many turns. Each turn consists of one, two, or three 

rolls of the dice, depending on whether or not doubles appear. The program keeps track 

of the number of simulated turns that results in three tosses of doubles and reports the 

number of jail terms as well as the percentage of jail terms incurred. 

 Java Solution 
1.   import java.util.*;

2.   public class GoDirectlyToJail

3.   {

4.      public static int jailTerms(int  turns )

5.      {

6.        // returns the number of turns that result in three rolls of doubles

7.        int  threeDoubles  � 0;                           // number of turns that result in three Doubles

8.        for (int i � 1; i �� turns; i��)                 // for each turn

9.        {

10.          int numDoubles � 0;                          // counts the number of doubles on any one turn

11.          for (int toss � 1; toss �� 3; toss��)  // up to three tosses/turn

12.          {

13.             // die1 and die2 are local to the inner block

14.             int die1 � (int)(6 * Math.random() � 1);

15.             int die2 � (int)(6 * Math.random() � 1);

16.             if (die1 �� die2 )                             // do the dice show the same number?

17.                 numDoubles��;

18.             else

19.                 break; // not doubles, so end the turn

20.          }

21.          if (numDoubles �� 3)                        // oops, go to jail

22.              threeDoubles��;

23.       }

24.        return threeDoubles;                               // the number turns giving three doubles

25.     }

EXAMPLE 6.7

sim23356_ch06.indd   213sim23356_ch06.indd   213 9/8/08   3:33:03 PM9/8/08   3:33:03 PM

Confirming Pages



214 Part 1 The Fundamental Tools

26.     public static void main(String[] args)

27.     {

28.       Scanner input;

29.       input � new Scanner(System.in);

30.       int numTurns;

31.       int numJailTerms;                                  // three doubles on any turn

32.       System.out.print("How many Monopoly turns would you like to simulate? ");

33.       numTurns � input.nextInt();

34.       numJailTerms � jailTerms(numTurns);

35.        System.out.println("Number of times you got three doubles: " � numJailTerms);

36.        System.out.println("Percent of times you went to jail: " � 

            100 * (((double)numJailTerms/numTurns)) � " percent");

37.     }

38.  }

 Output 
  How many Monopoly turns would you like to simulate?  100000 

Number of times you got three doubles: 454

Percent of times you went to jail: 0.45399999999999996 percent

  

 Discussion   The simulation indicates that the probability of landing in jail is less than 

one-half of a percent. (In fact, the actual probability is 1/216, or about 0.46296 percent). 

  We now look at the local variables and the scope of each. The scope of each vari-

able declared in   main(…)   extends from its point of declaration to the end of the method. 

However, the variables of the method   jailTerms(…)   are a bit more interesting.  Figure 6.13  

lists those variables along with the scope of each. 

Local Variable Scope

turns (parameter) the entire method jailTerms(…)

threeDoubles the entire method jailTerms(…)

i  (line 8) the entire for loop (lines 8–23)

numDoubles (line 10) from the declaration on line 10 to the end of the block 

(lines 10–23)

toss (line 11) the entire for loop (lines 11–20)

die1 (line 14) from the declaration on line 14 to the end of the block 

(lines 14–20)

die2 (line 15) from the declaration on line 15 to the end of the block 

(lines 15–20)

FIGURE 6.13 Scope of variables

   6.3.6 Multiple  return  Statements 

A method may have more than one return statement, but only one executes before the 

method terminates.

 The fi rst   return   statement that executes terminates the method. In Example 6.8, the method 

isPrime(…)   contains several return statements. The   return   statement that executes, and 

thereby terminates the method, depends on the input data. 

sim23356_ch06.indd   214sim23356_ch06.indd   214 9/8/08   3:33:05 PM9/8/08   3:33:05 PM

Confirming Pages



 Chapter 6 Methods 215

  A prime number  p  is a positive integer greater than 1 that has no positive integer divisors 

other than 1 and  p . For example, 101 is a prime number since no positive integers other 

than 1 and 101 divide 101 evenly. The integers 2, 3, 5, 7, and 37 are all prime numbers. 

On the other hand, 100 is not a prime number because 5 is a divisor of 100. With the 

exception of 2, all prime numbers are odd. 

  Prime numbers have fascinated mathematicians for centuries. In approximately 

300 BCE, Euclid proved that there is an infi nite number of primes. Even today, prime 

numbers are the foundation of modern cryptography. Indeed, factoring large numbers into 

primes is a task necessary for cracking modern cryptographic codes. “New” prime num-

bers are discovered every year. Currently, the largest known prime number is 2 43,112,609  − 1, 

which has 12,978,189 digits. Of course, a larger prime may be unearthed tomorrow, if 

that hasn’t happened already! 

  Deciding whether or not an integer with 12,978,189 digits is prime is not an easy 

task. That said, a rather naïve, yet intuitive, scheme for determining whether or not a 

positive integer,  n,   is prime might check all possible divisors of  n  that are greater than 1 

and less than  n . If  n  has no divisor, then  n  is prime. This simple algorithm executes 

quickly for small values of  n , but it is hopelessly slow for large values like 2 43,112,609  − 1 

and the large numbers used in cryptography. 

 Problem Statement   Write a program that prompts a user for a positive integer and 

determines whether or not the number is prime. Include a method

boolean isPrime(int p)

that accepts an integer   p   as a parameter and returns   true   if   p   is prime; otherwise   false  . 

See  Figure 6.14 . 

isPrime true101

FIGURE 6.14 The isPrime (...) method

 Java Solution 
1.   import java.util.*;

2.   public class PrimeChecker

3.   {

4.      public static boolean isPrime(int  p ) // returns true if  p  is a prime number

5.      {

6.        if (p �� 1)             // 0, 1, and all negatives are not prime

7.             return false; 

8.        else if (p �� 2)          // if  p  is 2; return true (exit) because 2 is prime

 9.            return true; 

10.       else if ( p % 2 �� 0)      // if  p  is even and not 2, return false (exit);

11.            return false; 

12.           // so p is odd; check for odd divisors

13.           // if a divisor is found, return false and exit

14.           for (int i � 3; i � p; i �� 2) // i � 3, 5, 7, 9...

15.             if (p % i �� 0)      // if  p  % i �� 0 then i divides  p  so  p  is not prime

 16.                 return false; 

17.           // if the method reaches this point, p is prime,

 18.            return true; 

19.     }

EXAMPLE 6.8

sim23356_ch06.indd   215sim23356_ch06.indd   215 10/18/08   7:17:35 PM10/18/08   7:17:35 PM

Confirming Pages



216 Part 1 The Fundamental Tools

20.     public static void main(String[] args)

21.     {

22.        int number;

23.        Scanner input;

24.        input � new Scanner(System.in);

25.        System.out.print("What number would you like to test? ");

26.        number � input.nextInt();

27.         if (isPrime(number))

28.              System.out.println(number � " is a prime number");

29.        else

30.              System.out.println(number � " is not prime");

31.     }

32.  }

 Output 
What number would you like to test?  6317 

6317 is a prime number

What number would you like to test?  7163 

7163 is not prime

 Discussion   The logic behind the method   isPrime(…)   is described in the comments on 

lines 6, 8, 10, 12–15, and 17. 

 The method   isPrime(…)   contains no less than fi ve  return  statements. When any one 

  return   statement executes, the method exits and program control passes back to the 

caller. For example:

•   If parameter   p   has the value 22, the condition on line 10 is true, and the   return   state-

ment on line 11 executes, returning   false   and terminating the method.  

•   If   p   has the value 35, the loop of line 14 executes, and when   i   attains the value of 

5, the   return   on line 16 executes, returning   false   (because 35 % 5 �� 0, i.e., 35 is 

divisible by 5).  

•   If   p   is 23, then none of the conditions of the   else-if   statement is true nor does the 

condition on line 15 evaluate to   true.   Consequently, the   return   statement on line 18 

returns   true,   that is, 23 is prime.    

   6.4 METHOD OVERLOADING 

 

Java allows two or more methods of the same class to share the same name. This 

practice is called method overloading.

 For example, Java’s   Math   class has several overloaded methods, including   Math.max(…),   

which has two forms:

1.     int Math.max(int x, int y)    

2.     double Math.max(double x, double y)    

Notice that the parameter lists of the two methods differ. The fi rst version of   Math.max(…)   

accepts two integer parameters and the second version accepts two   double   parameters. 

 

So that the Java compiler can distinguish between methods of the same name, 

 overloaded methods must differ in the types and/or number of parameters.

sim23356_ch06.indd   216sim23356_ch06.indd   216 10/18/08   7:17:38 PM10/18/08   7:17:38 PM

Confirming Pages



 Chapter 6 Methods 217

 Because of this rule, Java (usually) has no diffi culty deciding which version of a method to 

execute. For example, consider the four calls to   Math.max(…)   shown in  Figure 6.15 . 

Method Call Returns Argument Types Version

Math.max(10,5) 10 two int 1

Math.max(10.0, 5.0) 10.0 two double 2

Math.max(10.0, 5) 10.0 two double (5 is automatically cast to 5.0) 2

Math.max(10, 5.0) 10.0 two double (10 is automatically cast to 10.0) 2

FIGURE 6.15 Four calls to the overloaded Math.max(…) method

  Overloading can make your programs more readable and less cluttered, but there are 

also hazards and pitfalls. Example 6.9 illustrates the benefi ts as well as some of the pitfalls 

of method overloading. 

 Problem Statement   Carrie Cash shops only at stores that offer deep discounts. Write 

a method,

double cost(double price, double discount)

that provides Carrie with help in calculating the sale price of an item. The   cost(…)

method accepts two arguments: the price of an item and the discount (both   double  ), and 

it returns the marked-down price. Include the method in an application called   Sales  . 

 Java Solution 
1.   public class Sales

2.   {

3.      public static double cost( double price, double discount ) // 0.0 � discount � 1.0

4.     {

            // returns the marked down price, i.e. price after discount

5.         return price - discount * price;                 // marked down price

6.     }

7.

8.     public static void main(String[] args)

9.     {

10.      System.out.println("Cost is " � cost( 25.50, 0.10 ));

11.    }

12.  }

 Output 
Cost is 22.95

 Discussion   The method   cost(…)   accepts two   double   parameters signifying the retail 

price of an item and the discount rate (a decimal number less than 1). The method 

returns the reduced or marked-down price. The method is simple to understand and 

simple to use. 

 Now consider another rather common scenario in which a 10% discount is passed 

to   cost(…)   not as the decimal 0.10 but as the integer 10, that is, change line 10 to:

System.out.println("Cost is " � cost( 25.50,  10  )).

The program compiles, runs, and produces the following erroneous output:

Cost is �229.5

EXAMPLE 6.9

sim23356_ch06.indd   217sim23356_ch06.indd   217 10/18/08   7:17:39 PM10/18/08   7:17:39 PM

Confirming Pages



218 Part 1 The Fundamental Tools

What happened? The argument 10 is automatically converted to a   double   10.0 when it 

is passed to the (d  ouble  ) parameter   discount  . Consequently, the method calculates the 

marked-down price as

22.50 �  10.0  * 22.50 � �229.5

 To provide the fl exibility of passing both integer and   double   arguments to   cost(…),   

you can provide several versions of   cost(…).   The following program has four differ-

ent versions of   cost(…)   that accommodate any combination of decimal and/or integer 

arguments

1.    public class SalesTwo

2.    {

3.       public static double cost(double price, double discount)  // version 1 � double, double 

4.       {

5.         return price � discount * price;

6.       }

7.       public static double cost (int price, int discount)              // version 2 � int, int 

8.      {

9.        double dollarsPrice � price / 100.0;         // convert to dollars and cents

10.      double decimalDiscount � discount / 100.0;       // convert to decimal

11.       return dollarsPrice � dollarsPrice * decimalDiscount;

12.    }

13.    public static double cost(double price, int discount)    // version 3 � double, int 

14.    {

15.      return price � price * (discount / 100.0);

16.    }

17.    public static double cost(int price, double discount)     // version 4 � int , double 

18.   {

19.      return (price / 100.00) � (price / 100.0) * discount;

20.   }

21.   public static void main(String [] args)

22.   {

23.      System.out.println("Cost is " � cost(25.50, 0.10)); // double, double

24.      System.out.println("Cost is " � cost(2550, 10));     // int, int

25.      System.out.println("Cost is " � cost(25.50, 10));    // double, int

26.      System.out.println("Cost is " � cost(2550, 0.10));  // int double

27.    }

28.  }

The program produces the following output:

Cost is 22.95

Cost is 22.95

Cost is 22.95

Cost is 22.95

  The four calls to   cost(…)   on lines 23–26 invoke versions 1–4, respectively. Any 

variation of argument types is acceptable. Thus, a single method name accommodates 

four situations. Certainly, this is simpler and clearer than using four different method 

names such as   cost1, cost2, cost3  , and   cost4  . 

  The previous program illustrates the niceties of overloading; nonetheless, method 

overloading does not come free of problems. For example, the following program with 

just two versions of   cost(…)   does not compile. 

1.   public class SalesToo

2.   {

3.       public static double cost( double  price , int  discount) // double and int

sim23356_ch06.indd   218sim23356_ch06.indd   218 10/18/08   7:17:40 PM10/18/08   7:17:40 PM

Confirming Pages



 Chapter 6 Methods 219

4.       {

5.           return price - price * (discount / 100.0);

6.       }

7.       public static double cost ( int  price , double  discount) // int and double

8.       {

9.           return (price / 100.00) � (price / 100.0) * discount;;

10.     }

11.     public static void main(String[] args)

12.     {

13.         System.out.println("Cost is " � cost( 25.50, 10 ));      // double, int

14.         System.out.println("Cost is " � cost(2550, 0.10));     // int, double

15.         System.out.println("Cost is " � cost( 25.50, 0.10));   // double, double

16.         System.out.println("Cost is " � cost(2550, 10));         // int, int

17.      }

18.  }

 Two of the calls to   cost(…)   in   main(…)   create problems. The fi rst two calls, on lines 13 and 

14, are perfectly legal. The argument types—(  double, int  ) and (  int, double  )—match the types 

in the parameter-lists declared on lines 3 and 7, respectively. However, the call on line 15 

with two   double   arguments generates a compiler error. Each   cost(…)   method requires one 

integer argument. Java does not automatically cast a   double   to an   int  . The compiler generates 

the following message indicating that there is no version of   cost(…)   that satisfi es the call:

    cannot fi nd symbol  

    symbol : method cost(double,double)  

Finally, the call to   cost(…)   on line 16 is also problematic but for a different and more 

subtle reason. Because both arguments are integers, the compiler issues the following 

error message:

    reference to cost is ambiguous, both method cost(int,double) in SalesToo and 

method cost(double,int) in SalesToo match cost(2550, 10))   

  The ambiguity occurs because Java can, in fact, choose either method. On one hand, 

the Java compiler  could  cast argument 2550 to 2550.0 and choose the fi rst method (line 

3). On the other hand, the second argument 10 might be cast to 10.0 to accommodate 

the second method (line 7). Java has a choice of two methods; each method appears 

suitable. Wisely, Java refuses to make an arbitrary choice and generates an error mes-

sage. In general, if an ambiguous choice exists, a program does not compile. 

 The overloaded methods of Example 6.9 are distinguishable because the data types of their 

parameter lists differ. Overloaded methods can also differ in the  number  of arguments that 

they accept. For example, you might have two versions of a method   max(…):  

 1.     int max(int x, int y)    

 2.     int max(int x, int y, int z)    

Version 1 returns the greater of   x   and   y  , and version 2 the greatest of   x, y  , and   z.   The method 

call

max(a,b)

with only two arguments invokes method 1 and the call

max(a,b,c)

with three arguments, invokes method 2. The number of arguments determines the version. 

sim23356_ch06.indd   219sim23356_ch06.indd   219 9/8/08   3:33:14 PM9/8/08   3:33:14 PM

Confirming Pages



220 Part 1 The Fundamental Tools

 EXAMPLE 6.10  Baseball uses many different statistics to measure the performance of a hitter. The  On 
Base Percentage  is the percentage of times that a batter reaches fi rst base. Historically, 

two formulas have been used to calculate this statistic: one that was developed during 

the 1950s and a more modern version created in 1984. 

 The method developed in the 1950s computes the On Base Percentage as:

 (hits � walks � hbp) /(atBat � walks � hbp)

 The 1984 version performs the calculation:

 (hits � walks � hbp) /(atBat � walks � hbp � sacrifi ces)

where

atBat  is number of times a player gets a hit or makes an out,  

hits  is the number of times a player gets a hit,  

walks  is the number of times a player walks,  

hbp  is the number of times a player was hit by a pitch, and  

sacrifi ces  is the number of times a player makes a sacrifi ce fl y.   

 Problem Statement  Write a program with two methods, each named OnBasePercentage,

that calculate this statistic. The first method uses the older formula and the second uses 

its more modern counterpart.

 In the following program, the   main(…)   method of the class   Baseball   displays the 1920 

season statistics for Babe Ruth, including both calculations of “The Babe’s” On Base 

Percentage. 

 Java Solution 

1. public class Baseball

2. {

3.     public static double OnBasePercentage(int atBat,int hits,int walks,int hbp)

4.     // old method from the 1950’s

5.     {

6.        return (double)(hits � walks � hbp) / (double)(atBat � walks � hbp);

7.      }

8.      public static double OnBasePercentage(int atBat,int hits,int walks, int hbp,int sacrifices)

9.     // new method from 1984

10.   {

11.        return (double)(hits � walks � hbp) / (double)(atBat � walks � hbp � sacrifices);

12.   }

13.   public static void main(String [] args)

14.  {

15.

16.        System.out.println("1920 statistics for Babe Ruth:");

17.         System.out.println("At bat: 458");

18.        System.out.println("Hits: 172");

19.        System.out.println("Walks: 150");

  Example 6.10 includes two methods, both named   OnBasePercentage  , that calculate 

the percentage of times during a season that a baseball player gets to fi rst base. The fi rst 

method accepts four integer arguments and the second method expects fi ve. 

sim23356_ch06.indd   220sim23356_ch06.indd   220 9/8/08   3:33:15 PM9/8/08   3:33:15 PM

Confirming Pages



 Chapter 6 Methods 221

20.        System.out.println("Hit by pitch: 3");

21.        System.out.println("Sacrifice flies: 5");

22.        System.out.print("Babe’s On Base Percentage (old method): ");

23.         System.out.println(OnBasePercentage(458,172,150,3)); // Babe Ruth’s statistics

24.        System.out.print("Babe’s On Base Percentage (new method): ");

25.         System.out.println(OnBasePercentage(458,172,150,3,5)); //Babe Ruth’s statistics

26.   }

27.  }

 Output 
1920 statistics for Babe Ruth:

At bat: 458

Hits: 172

Walks: 150

Hit by pitch: 3

Sacrifice flies: 5

Babe's On Base Percentage (old method): 0.5319148936170213

Babe's On Base Percentage (new method): 0.5275974025974026

 Discussion   The class   Baseball   contains two methods named   OnBasePercentage  , 

declared on lines 3 and 8. The fi rst method requires four integer arguments and the  second 

method fi ve. Because the two parameter lists differ in the number of parameters, the Java 

compiler can easily choose a method based on the number of arguments the caller passes. 

The call on line 23 passes four arguments, and the call on line 25 passes fi ve. 

 Examples 6.9 and 6.10 present two very simple variations of method overloading. 

As Example 6.9 illustrates, method overloading based on different data types can lead to 

problems when automatic type conversion occurs. On the other hand, overloading via a 

different number of parameters is much safer.

  Finally, it is not legal to overload a method based on the type of the return value. The 

Java compiler does  not  consider

int MyMethod(int x) and

double MyMethod(int x)

two distinct methods. If two such declarations appear in the same class, a compilation error, 

complaining that   MyMethod(…)   is already defi ned, occurs. 

Attempting to overload a method based on the return type is a common error.

 As in the two previous examples, overloaded methods must differ in the types and/or 

 number of parameters. The   return   value is not a player. 

 Many of Java’s library methods are overloaded.  Figure 6.4  gives several examples 

such as:

Math.max(int a, int b) and Math.max(double a, double b)

or

Math.abs(int a) and Math.abs(double a).

 Indeed, the methods appearing most often in this book, Java’s   print(…)   and   println(…)   meth-

ods, are also overloaded. Each can take an argument of any data type.  

sim23356_ch06.indd   221sim23356_ch06.indd   221 10/18/08   7:18:44 PM10/18/08   7:18:44 PM

Confirming Pages



222 Part 1 The Fundamental Tools

 6.5 IN CONCLUSION 

 In this chapter we describe a  method  as a black box that performs some singular task. Some 

methods accept arguments and some do not; some methods return a value, some do not; 

some methods are prepackaged with Java and others are written by the programmer. In all 

cases, however, methods simplify your programming tasks by separating a large problem 

into simpler components. 

  In Chapter 7, we present another programming structure, the  array , which provides 

another method of program simplifi cation, but in a very different way. 

 Just the Facts 

•   A  method  is a named sequence of instructions that are grouped together to perform a 

task.  

•   The name of a method must be a valid Java identifi er. By convention, the name of 

a method begins with a lowercase letter and each succeeding “word” in the name 

begins with an uppercase letter.  

•   Every Java application must have a   main(…)   method, and every Java application 

begins execution with   main(…).    

• A Java method consists of a  header  followed by a  method block :

 modifiers return-type name (parameter-list) // the header

   {

          // the method block

   }

•   The modifi ers of a method header (for now) are the words   public   and   static  .  

•   A method’s  parameter-list  consists of pairs of the form  type parameter  separated 

by commas. For example,   int x, double y  . Parameters are sometimes called  formal 
parameters .  

•   The values passed to a method are called  arguments  or  actual parameters.   

•   Arguments may be expressions.  

•   All arguments in Java are passed “by-value.” This means that the values of the argu-

ments are initially copied to the parameters of a method. Subsequently modifying 

the parameters in the method has no effect on the value of any variables passed as 

arguments.  

•   The method block performs the task of the method.  

•   The method block must include a   return   statement unless the method is a   void   

method. A   void   method includes an implicit return, the last statement.  

•   When a   return   statement executes, the method exits and program control returns to 

the caller.  

•   The  scope  of a variable is the section of the program in which a variable can be 

accessed or referenced. The scope of a variable begins with its declaration and extends 

to the end of the block in which it is declared. For example, a variable declared in the 

header of a   for   statement is known only in the block of the   for   statement.  

•   Variables declared in the method block are the method’s  local  variables and are inac-

cessible outside the block.  

sim23356_ch06.indd   222sim23356_ch06.indd   222 9/22/08   1:27:27 PM9/22/08   1:27:27 PM

Confirming Pages



 Chapter 6 Methods 223

•   Java allows two or more methods of the same class to share the same name. This 

practice is called  method overloading . Overloaded methods must differ in the types 

and/or number of parameters.  

•   Method overloading based on different data types can lead to problems when automatic 

type conversion occurs. Overloading based on different numbers of parameters is safer.  

•   Java does not distinguish two methods based on the type of the value returned. Thus, 

method overloading based on the type of the return value is not allowed.  

 Bug Extermination 

 A method usually performs a single well-defi ned task. A method that performs several 

jobs is probably too complicated. Complex methods can lead to bugs that are hard to 

uncover. Keep things simple. 

  If an application includes several methods, you should implement and test them, one 

method at a time. When method   A   is working correctly, then implement and test method   B  . 

Write a method; compile it; test it. Then start the process again with the next method. Simulate 

data to test each method. When you are satisfi ed with one method then begin work on another. 

Bugs are easier to fi nd when they are confi ned to ten lines rather than one hundred and ten. 

  The following list enumerates some of the more common bugs associated with methods:

•   Omitting the keyword   void   from the header of a method that does not return a value.  

•   Omitting a   return   statement from a method that returns a value. Your method may 

have indeed computed the required value, but the   return   statement is necessary to 

send the value back to the caller.  

•   Misplacing a   return   statement. Once a   return   statement executes, the method exits. 

Make sure that   return   statements are correctly placed in a method block. If they are 

not, code that you intended to execute may not execute.  

• Specifying your arguments incorrectly. Multiple declarations are not allowed in a 

parameter list:

public void example(int a, int b, double c) is correct.

 public void example(int a, b, double c)  is not.

•   Overloading a method based on the   return   type. The   return   type does not distinguish 

one method from another. The parameter-lists of overloaded methods must differ.  

•   Attempting a method call with the incorrect number of arguments.  

•   Passing arguments of the wrong type to a method. The arguments must match the 

parameter-list not only in number but also in type.  

•   Passing arguments to a method in the wrong order. For example, when calling

double area( double length, double width) // area of a rectangle

 the fi rst argument of the call should signify the length of a rectangle and the second, 

the width. If you reverse the arguments, your program will compile and run, but your 

results will not necessarily be correct.  

•   Omitting the empty parentheses () when invoking a method with no arguments.  

•   Overloading a method based on data type that results in an ambiguous choice for the 

compiler. When, due to automatic casting, there is a choice of more than one method 

to match a method call, the compiler issues a syntax error. When overloading meth-

ods, be sure that no ambiguity exists about which method is appropriate.   

sim23356_ch06.indd   223sim23356_ch06.indd   223 9/22/08   1:27:28 PM9/22/08   1:27:28 PM

Confirming Pages



224 Part 1 The Fundamental Tools

 EXERCISES 

 LEARN THE LINGO 
 Test your knowledge of the chapter’s vocabulary by completing the following crossword 
puzzle. 

Across
 4 A non-void method must specify a _____(two words)
 6 The words public and static are  
 8 If the data type of the return type is T, then the type 

of the returned value must be T or a type that can be 
automatically  to T

 10 Java library containing random()
 12 Overloaded methods differ by the  or number of 

parameters
 14 A method’s ______ gives its name and parameter list
 15 Used to pass a value to a method
 16 The parameter-list specifi es the type and  of 

arguments that must be given to a method
 20 The _____ of a variable is the section of the program in 

which a variable can be accessed
 21 If the choice of an overloaded method is  the 

compiler issues an error message
 22 By convention, the name of a method begins with a(n) 

-case letter
 25 Metaphor for a method
 26 When a method is invoked, the  of an argument is 

passed to the method
 28 Java-supplied void method
 29  methods share the same name

Down
 1 Method that does not return a value
 2 A variable declared in a block is unknown 

 that block
 3 Local variables declared in different 

methods of the same application may have 
the same  

 5 Named set of instructions that performs a 
task

 7 An argument may be a(n)  
 9 When a method exits, control returns to the 

 
 11 Java method for square root
 13 Method that is always executed fi rst
 17 The statements of a method comprise the 

method  
 18 Another name for an argument is a(n)  

parameter
 19 Receives a value passed to a method
 23 A return statement causes a method to 

 
 24 Not necessary in a void method
 27 Variable declared in a method

3

6

1

7

12 13

14

11

15

23

27

18

26

20

24

29

21

16 17

8

4

2

5

10

9

25

28

19

22

sim23356_ch06.indd   224sim23356_ch06.indd   224 10/17/08   12:45:56 PM10/17/08   12:45:56 PM

Confirming Pages



 Chapter 6 Methods 225

 SHORT EXERCISES 
 1.   True or False   
   If false, give an explanation. 

a.      myMethod(…)   may be overloaded as: 

    int myMethod(int x, int y)   and   fl oat myMethod(int x, double y).    

b.      yourMethod(…)   may be overloaded as: 

    int yourMethod(int x, int y)   and   int yourMethod(int x, double y).    

c.      hisMethod(…)   may be overloaded as: 

    int hisMethod(int x, int y)   and   fl oat hisMethod(int x, int y).    

d.      herMethod(…)   may be overloaded as: 

    int herMethod(int x, int y)   and   int herMethod(int x, int y, int z).    

e.    Every Java application begins execution with   main(…).    

f.     main(…)   can invoke at most three other methods.  

g.   A method can call a method that in turn calls another method.  

h.   Overloaded methods must have a different number of parameters.  

i.   Overloaded methods must return the same type of data.  

j.   The parameters in the header of a method are called the  actua l parameters.  

k.   Arguments can be expressions or constants.  

l.   The type of each parameter must match the type of its corresponding argument.  

m.   The scope of a parameter in a method extends to the end of the method.  

n.    The scope of a local variable extends to the end of the method in which it is 

defi ned.  

o.   Every method returns a value.  

p.   The name of a method cannot begin with an uppercase letter.  

q.    Methods provide a programmer with a mechanism to segment a complicated 

application into simpler and easier-to-debug components.  

r.   A method can use the same name for a local variable and a formal parameter.   

 2.    Playing Compiler  
   Determine the errors in each of the following segments. Fix the errors and then 

determine the output. Unusual formatting is not an error. 

a. public class WhatTheHey

 {

         public static int method1(int x,y)

        {

            return x � y;

        }

 

      public int method2(double x, double y)

      {

          return int(x � y);

      }

 

      public static void main(String[] args)

      {

          System.out.println(“The output is: ”, method1(method2(7.1, 6.2), method1(2, 3))

          “years of  bad luck” );

      }

 }

 

sim23356_ch06.indd   225sim23356_ch06.indd   225 10/17/08   12:45:57 PM10/17/08   12:45:57 PM

Confirming Pages



226 Part 1 The Fundamental Tools

b. public class TheBookOnLove

      {

              public static void method1()

              {

                         System.out.println(“I wonder who wrote the book on love”);

              }

              public static void method1(int x)

              {

                         for (i � 0; i � x; i��)

                         System.out.println(“I wonder who wrote the book on love”) � i;

              }

              public static void main(String[] args)

              {

                         int i; for (i � 0; i � 6; i��)

                         {

                               System.out.println(int i);

                               method1();

                               method(i);

                         }

              }

      }

c. public class ThisComputesSomeWeirdStuff

 {

     public static int method1(int a, int b)

     {

         if  (a%2 �� 0) return (a) else return (b)

     }

     public static int method2(int a, int b)

     {

         while (a !� 1) {b��; a � a / 2;} return (b);

     }

     public static void main{String[] args}

     {

         System.out.println(method2(method1(3, 10), method1(16, 57)));

         System.out.println(method2(method1(190, 10), method1(16, 57)));

         System.out.println(method2(method2(3, 10), method1(16, 57)));

         System.out.println(method1(method2(3, 10), method2(16, 57)));

     }

 }

d. public class ThisOneIsPrettyCool

 {

     public static int method1(int w)

     {

         int count � 0;

         while (w !� 1) if  (w % 2 �� 0)

         {

              w � w / 2;

              count��;

             }

sim23356_ch06.indd   226sim23356_ch06.indd   226 9/8/08   3:33:20 PM9/8/08   3:33:20 PM

Confirming Pages



 Chapter 6 Methods 227

         else

              w � 3 * w � 1;

         return count;

     }

     public static void main(String[] args)

     {

         System.out.println(method1(10));

         System.out.println(method1(7));

     }

 }

e. public class OkIveHadEnough

 {

      public static double method1(int a) { return a / 2;}

      public static double method1() {return 1.0;}

      public static int method2(double x) {return 3 * (int)x;}

      public static int method2() {return 0;}

      public static void main(String[] args)

      {

         System.out.println(method2(method1()));

         System.out.println(method1(method2()));

         for (int j � 0; j � 10; j��)

         {

            System.out.println(method2(method1(j));

            System.out.println(method1(method2(j)));

         }

      }

 }

 
 3.    Method Acting  
   Methods can be used to accomplish each of the following tasks. Write only the 

method  headers  for each example. Overload a method name, if appropriate. 

a.   Calculate the largest of 2, 3, or 4 integer values.  

b.  Calculate your federal income tax percentage based on the following chart:

Adjusted Gross Income Range Percentage

$0 � $7,300.00 10%

$7,300.01 � $29,700.00 15%

$29,700.01 � $71,950.00 25%

$71,950.01 � $150,150.00 28%

$150,150.01 � $326,450.00 33%

$326,450.01 � and up 35%

   Allow the income to be expressed in dollars and cents, or simply rounded to the 

nearest thousand dollars. That is, an adjusted gross income of 52,736.98 may 

alternatively be expressed as 53.  

c.    Calculate the percentage score on an exam. You are given the number of ques-

tions on the exam, and the number that are correct.  

sim23356_ch06.indd   227sim23356_ch06.indd   227 9/8/08   3:33:20 PM9/8/08   3:33:20 PM

Confirming Pages



228 Part 1 The Fundamental Tools

d.    Calculate your risk factor ( RF ) for auto insurance in MA, NY, and NJ. Your risk 

factor is either a, b, c, d, or e. In MA,  RF  depends on your age, the number of 

charged accidents on your record, and the number of traffi c violations. In NY,  RF  

depends on your age, your driving points (an integer between 6 and 35, inclu-

sive), and the total dollars paid out to you in charged accident claims. In NJ,  RF  

depends on your age, the distance from your home to the NY border (rounded to 

the nearest mile), the number of traffi c violations on your record, and the number 

of people under 30 years of age in your family.  

e.    Decide whether or not you are eligible to become president. Eligibility is deter-

mined by your year of birth, the fi rst letter of the country in which you were born, 

and the number of years that you have been a U.S. resident.   

 4.    Overloaded Methods  
a.   Method    add  (…) is overloaded as follows:

 static double add( int a, double b)      static double add(double a, int b)

 {                                                          {

          return a � b;                                             return a � b;

 }                                                          }

 Which, if any, of the following invocations fail to compile? Give reasons. 

 

  i.     add(1,2)    

  ii.     add(1.0,2.0)    

  iii.     add(1.0, 2)    

  iv.     add(2.0,2)      

b.   Method  sub(…)  is overloaded as follows:

  

 int sub( int a, int b)             double add(double a, double b)

 {                                          {

              return a � b;                     return a � b;

 }                                          }

  

 Which, if any, of the following invocations fail to compile? Give reasons. 

 

  i.     sub(1,2)    

  ii.     sub(1.0,2.0)    

  iii.     sub(1.0, 2)    

  iv.     sub(2.0,2)      

c.    What is the problem with the following overloaded method that returns a product 

as either an   int   or a   long  ?

  

 int mul(int a, int b)              long mul(int a, int b)

 {                                          {

             return a * b;                         return a * b;

 }                                          }

     
 5.    Pass By Value  
   Harry Hacker has written the following method that is supposed to swap the 

contents of two variables:

sim23356_ch06.indd   228sim23356_ch06.indd   228 11/26/08   11:00:24 AM11/26/08   11:00:24 AM

Confirming Pages



 Chapter 6 Methods 229

 static void swap(int a, int b)

 {

      int temp � a;

      a � b;

      b � temp;

 }

  However, the statements

 int a � 5;

 int b � 6;

 swap(a,b);

 System.out.println("a � " � a � " and b � " � b);

  produce the output

 a � 5 and b � 6.

  Explain why Harry’s method does not work as intended.  

 PROGRAMMING EXERCISES 
 1.    Min and Max  
   Write two methods

 int myMax(int x, int y) and

 int myMin(int x, int y),

  each of which accepts two integers   x   and   y  , and outputs the larger/smaller of 
the two, respectively. The main method of your program should prompt for two 
numbers, pass these numbers to   myMax(…)   and   myMin(…),   and then print the results 
with appropriate explanatory text.  

 2.    Celsius to Fahrenheit  
  Write a method

 int cToF(int x)

  that converts a Celsius temperature to a Fahrenheit temperature. The conversion 
formula is:

F � (9.0/5.0)C � 32.

   The returned value should be rounded to the nearest degree. Test your method by 
displaying a table of Celsius temperatures from �40 to 100, in increments of fi ve 
degrees, with the Fahrenheit equivalents.  

 3.    Random Numbers  
   Write a method

 int randomInt(int x, int y)

  that returns a random integer between   x   and   y,   inclusive. Note that   x   and   y   can be 
positive or negative.  

 4.    Average  
   Write a method

 double average(int n)

sim23356_ch06.indd   229sim23356_ch06.indd   229 11/26/08   11:00:25 AM11/26/08   11:00:25 AM

Confirming Pages



230 Part 1 The Fundamental Tools

  that reads n numbers of type double and returns the average of those numbers. 
Include this method in a program that requests a value for n and displays the average 
of n numbers supplied by a user.  

 5.    Consumer Price Index  
   The Consumer Price Index (CPI) represents the change in the prices paid by urban 

consumers for a representative basket of goods and services. It is a percentage value 
rounded to the nearest tenth, for example, 9.2 or �0.7. Write a method

 double getCPI()

  that asks a user to enter a number between �20 and 20 with one digit after the 
decimal point. If the user supplies an unacceptable number, the method should 
display an appropriate error message (“number too high,” “number too low,” or 
“number has wrong precision”) and prompt the user for another value. When the 
user succeeds, the method should return that number. 

    Test your method by continually prompting a user for a value and displaying the 
value. When you are confi dent that the method is correct, write a second method

 double infl ation( double cpi, double expenses)

  that accepts the CPI and last year’s annual expenses. Method   infl ation  (…) returns 
what you might expect to pay for the same goods in the coming year. Write a 
  main(…)   method that calls both   getCPI()   and   infl ation(…).    

 6.    Price Adjustment  
   Write a method

 int bumpMe(int price, int increase, boolean updown)

  that accepts a price in dollars and returns a new price rounded to the nearest dollar, 
after increasing/decreasing   price   by   increase   percent. If   updown   is true then you 
should increase the price; otherwise, decrease the price. Write an appropriate 
  main(…)   method to test   bumpMe(…).    

 7.    Simulations  
   Simulation is one way that casinos analyze games; simulation is less expensive than 

hiring a mathematician. The “over-under” bet is described in Example 6.3. Write 
three methods, each of which simulates 10,000 plays of a $1/bet game and returns 
the amount of money that is won or lost over 10,000 games. A negative number 
denotes a loss. The three methods operate as follows:

•   Method 1 chooses the bet (“over 7,” “under 7,” or “exact”) at random.  

•   Method 2 always chooses the “over 7” bet.  

•   Method 3 chooses the “over 7” bet 4000 times, the “under 7” bet 4000 times, and the 

“exact” bet 2000 times.   

   Test these methods in a program. Write, test, and debug the methods one at a 
time, that is, get Method 1 working perfectly before including Method 2 in your 
program.  

 8.    Hello World Revisited  
   Write a program that prompts a user for a positive integer  n  and prints “Hello There” 

 n  times. Of course, a value of  n  that is less than or equal to 0 is illegal. To ensure 
valid input, include a method

 int getPos()

  that prompts for a positive integer. If the value of that integer is less than or equal to 0, 
the method should print an appropriate message and request a positive number. 
When the user supplies a valid number, the method returns that number.  

sim23356_ch06.indd   230sim23356_ch06.indd   230 10/17/08   12:53:01 PM10/17/08   12:53:01 PM

Confirming Pages



 Chapter 6 Methods 231

 9.    Carnival Game Simulation  
   The rules of a certain carnival game stipulate that a player throws one standard 

6-sided die, one 20-sided die, one 8-sided die, one 4-sided die, and one 12-sided die. 
The player wins if the total on the fi ve dice is greater than 35 or less than 20. Write a 
program that simulates the carnival game 100 times and reports the number of times 
a player wins. Your program should include a method

 int dieRoll(int x)

  that returns a random number between 1 and  x .  

 10.    Present Value of an Investment  
  The present value on an investment of  A  dollars for  Y  years at an annual rate of 

 R  percent compounded  C  times yearly is

 Present Value � A(1 � R/C)YC (1)

  Of course, if interest is compounded yearly, then  C  � 1 and (1) simplifi es to:

 Present Value � A(1 � R)Y. (2)

   Overload a method   presentValue(…)   so that   presentValue(…)   implements formulas (1) 
and (2). Write a   main  (…) method that tests both versions of   presentValue(…)  .  

 11.    Craps Simulation  
   When playing craps, a player rolls two dice repeatedly until she wins or loses. The 

fi rst roll of the dice is called the  come-out  roll. If the player rolls a 7 or an 11 on the 
come-out roll, then she wins immediately; a 2, 3, or 12 on the come-out roll results 
in an immediate loss. If she rolls a 4, 5, 6, 8, 9, or 10 on the come-out roll, then that 
number becomes her  point  and she continues rolling until she rolls either her point 
or a 7. If she rolls her point, she wins, but if she rolls a 7 before rolling her point, 
she loses. Once a player has established her point, no other numbers (including 2, 3, 
11, or 12) affect her winning or losing. 

    Write a method

 boolean craps()

  that simulates one game of craps and returns true if and only if the player wins. Test 
your method by printing the values of each roll of the dice. When you are convinced 
that your simulation is correct, include this method in a program that executes 
  craps()   1000 times and reports the percentage of wins.  

 12.    Mean Versus Median  
   Implement two methods:

  1.     int median(int x, int y, int z)   that calculates the median of three integers.  
  2.      int mean(int x, int y, int z)   that calculates the average of three integers, rounding 

the result to the nearest integer.  

  Devise a   main(…)   method that accepts three integers and states whether the median 
of the three is larger than the mean, smaller than the mean, or equal to the mean.  

 13.    Zeno’s Paradox  
   A famous paradox devised by Zeno, an Eleatic philosopher (b. 488 BCE), asserts 

that to run from point  A  to point  B , a runner must fi rst traverse half the distance 
between  A  and  B . Before he can do that, he must traverse a “half of the half,” and so 
on ad infi nitum. He must, therefore, pass through an infi nite number of points, and 
that is impossible in a fi nite time. Design and implement a method

 double zeno(int n)

sim23356_ch06.indd   231sim23356_ch06.indd   231 9/8/08   3:33:21 PM9/8/08   3:33:21 PM

Confirming Pages



232 Part 1 The Fundamental Tools

  that calculates the sum 1/2 � 1/4 � 1/8 � … � 1/2  n  . The method should call an 
auxiliary method

 int powerTwo(int n)

  that returns 2  n  . Test both methods in a complete program. Hint: Implement and test 
the two methods one at a time. First write, compile, and test   powerTwo(…).   Once 
that method is working correctly, add   zeno(…)   to your program.  

 14.    Date Calculations  
   Implement an application that prompts for two dates each comprised of three 

integers: a month, a day, and a year between 1900 and 2100, inclusive. If both dates 
are valid, your program should display the number of days between the two dates; 
otherwise, your program should issue an error message. Include a method

 boolean validDate(int month, int day, int year)

  that returns   true   if and only if a date is valid. For example (12, 29, 1980) is valid 
but (29, 12, 1980), (13, 11, 2007), and (1, 1, 1899) are not. You should also design a 
method

 int dateDifference(int day1, int month1, int year1, int day2, int month2, int year2)

  that returns the number of days between the dates (month1, day1, year1) and 
(month2, day2, year2), provided these dates are valid. Don’t forget to take leap years 
into account, and recall that 1900 and 2100 are  not  leap years.  

 15.    Geometric Mean  
   A home purchased for 300,000 dollars increases in value by 10% after one year 

and by another 20% after a second year. Thus, a year after purchasing the house, its 
value is  1.10  �     300,000 dollars and after two years  1.20    �   1.10   �   300,000 dollars. 
A third year  decrease  of 6% drops the value to 94% of the previous value.  0.94    �   
1.20   �   1.10   �   300000 � 372240 dollars. Notice that the multiplier is 1 � 0.06 � 
0.94. The  average  annual increase over the three-year period is the  geometric mean  
of 1.10, 1.20 and 0.94. 

    In general, the  geometric mean  of  n  numbers is the  n  th  root of their product. 
Thus, the geometric mean of 1.10, 1.20, and .94 is (1.10   �   1.20   �   .94) 1/3  � 
1.074568 and the product 1.074568   �   1.074568   �   1.074568   �   300000 equals 
372240, as does the original product, .94   �   1.20   �   1.10   �   300000. In other words, 
the home’s value after three annual changes of 10%, 20%, and �6% is the same as 
if, each year, the home’s value increased by 7.4568%. 

    Write a program that calculates the average increase or decrease on an 
investment held from one to six years. Your program should fi rst prompt for the 
length of time of the investment (an integer between 1 and 6, inclusive) and then the 
percent increase or decrease for each year. A negative number indicates a decrease. 
The program should display the average annual increase or decrease. For example, 
if a home, over a six-year period, has changed in value by 10%, 20%, 6%, �8%, 
�12%, and 3%, then to compute the average annual increase (or decrease), you 
would calculate the geometric mean of 1.1, 1.2, 1.06, 0.92, 0.88, and 1.03. 

     Hints : Overload a method,   geometricMean(…).   Make fi ve versions that have 
two, three, four, fi ve, and six parameters of type   double  . Use   Math.pow(x,y).    

 16.    Harmonic Mean  
   If it takes one hose 12 hours to fi ll a pool, and another hose 4 hours, then together 

they fi ll the pool in (2 � 4 � 12) / (4 � 12) � 6 hours. The  harmonic mean  of two 
positive numbers  a  and  b  is 2 ab/ ( a � b ). Write a method

 double harmonicMean(int x, int y)

sim23356_ch06.indd   232sim23356_ch06.indd   232 10/18/08   7:21:11 PM10/18/08   7:21:11 PM

Confirming Pages



 Chapter 6 Methods 233

  that returns the harmonic mean of  a  � 0 and  b    � 0  . Write another method that 
returns the arithmetic mean of  a  and  b , that is, the average of  a  and  b . Finally, 
include a third method that returns the geometric mean of  a  and  b , that is, the square 
root of  a  �  b  (see Exercise 15). 

    Test your methods in a program that reads two positive integers and displays 
their harmonic mean, arithmetic mean, and geometric mean. For example, if  a  and  b  
have values 12 and 4, the harmonic mean is 6.0, the arithmetic mean is 8.0, and 
the geometric mean is  √ 

___
 48   � 6.928. Did you notice that the harmonic mean times 

the arithmetic mean equals the square of the geometric mean? This identity might 
be helpful to you when you design your methods.  

 17.    Median of Five  
   A teacher wishes to use the median (middle value) of fi ve grades as the fi nal grade 

for each of  n  students. Write a method that returns the median of fi ve integers. For 
example, the median of 10, 50, 48, 35, and 22 is 35. Test your method in a program 
that accepts the number of students, followed by fi ve grades per student, and prints 
the fi nal grade for each student. Do  not  assume that the grades are ordered.  

 18.    Lottery Games  
  Most states sell lottery tickets of one of the following two types:

 a.  A player picks  k  distinct numbers between 1 and  n , inclusive. For example, to 

play Massachusetts’ Megabucks game, a player picks six numbers between 1 

and 42. In this case, the number of possible lottery tickets is:

   42 � 41 � 40 � 39 � 38 � 37   __________________________   
6 � 5 � 4 � 3 � 2 � 1

   � 5,245,786 

    (Notice that six numbers must be selected and there are six factors in the 

numerator, counting down from 42.) Thus, a player who buys a single ticket has 

one chance in 5,245,786 of attaining an instant fortune. In general, if a player 

must choose  k  numbers between 1 and  n,  the number of possible tickets is:

   
n � (n � 1) � (n � 2) � . . . �(n � k � 1)

    ____________________________________    
k � (k � 1) � (k � 2) � . . . � 3 � 2 � 1

   

 b.  The second type of game requires that a player pick  k  numbers between 1 and 

 n  as well as one additional number between 1 and  m . For example, to play 

California’s Super Lotto game, a player picks fi ve numbers between 1 and 47, 

inclusive, and one additional number between 1 and 27, inclusive. In this case 

the number of possible tickets is:

   47 � 46 � 45 � 44 � 43  _____________________  
5 � 4 � 3 � 2 � 1

   � 27 � 41,416,353 

   In general, the number of possibilities is:

   
n � (n � 1) � (n � 2) � . . . �(n � k � 1)

    ____________________________________    
k � (k � 1) � (k � 2) � . . . � 3 � 2 � 1

    � m

  Write an application that calculates the number of possible lottery tickets for each 
type of game, (a) and (b). Overload   numberOfTickets(…)   as

 int numberOfTickets(int n, int k) // choose  k  numbers from 1 to  n 

  and

 int numberOfTickets( int n, int m, int k)   // choose  k  numbers from 1 to  n 

                                            // and an additional number from 1 to  m. 

   These methods return the number of possibilities described in (a) and (b) above, 
respectively. 

sim23356_ch06.indd   233sim23356_ch06.indd   233 10/17/08   1:15:42 PM10/17/08   1:15:42 PM

Confirming Pages



234 Part 1 The Fundamental Tools

    To play New York’s Lotto game, a player picks six numbers between 1 and 59; 
and to play the state’s Mega Millions game, a player picks fi ve numbers between 1 
and 56 and an additional number between 1 and 46. Write a   main(…)   method that 
determines which of the two games gives the better chance of an instant fortune.  

 THE BIGGER PICTURE 

1.    TIME COMPLEXITY  
   The amount of time it takes to run a program is the most important measure of pro-

gram performance. A clock can be used to measure the real running time of a pro-

gram, but results can be misleading if programs are run on different computers. Some 

computers are faster than others, and a fast computer might conceivably run a poorly 

designed program in less time than a slow computer runs a well-designed one. 

    A better measure of performance treats the program as an abstract  algorithm — 

that is, a step-by-step method for solving a problem—and calculates the number of 

steps that the algorithm requires as a function of input size. This focus on the algo-

rithm cuts out the disparity in hardware and allows an even-handed comparison. 

    For example, consider the following algorithm that computes the average of  n  

integers:

sum � first integer;

for each of the remaining  n  � 1 integers

{

      sum � sum � next integer;

}

average � sum/n;

   This algorithm takes approximately  n  steps to accomplish its task, where each step is 

a single addition or division. The  time complexity  of the algorithm is  n . A Java imple-

mentation would accomplish the task using a loop. 

     Following are two algorithms, written in Java-like pseudocode, that calculate the 

 greatest common divisor  ( gcd ) of two numbers  a  and  b , where  a  �  b . The greatest 

common divisor of  a  and  b  is the largest positive integer that evenly divides both  a  

and  b . For example, the greatest common divisor of 36 and 27 is 9, and the greatest 

common divisor of 101 and 68 is 1.  

  Algorithm I: 
// This is a brute force algorithm that starts with the smaller number ( b ) and finds

// the first number less than or equal to  b  that divides evenly into both  a  and  b .

// Assume  a  �  b. 

        for k � b downto 1                          // for each possible divisor, k

               if ( (b % k �� 0) && (a % k �� 0) )     // if k evenly divides both b and a

                     return k;

TH
E 

BI
GG

ER
 P

IC
TU

RE

sim23356_ch06.indd   234sim23356_ch06.indd   234 9/8/08   3:33:22 PM9/8/08   3:33:22 PM

Confirming Pages



THE BIGGER PICTURE

 Algorithm II: 
// This is a clever, sophisticated algorithm called Euclid’s algorithm.

 while (b !� 0)

 {

        int temp � a % b;

        a � b;

        b � temp;

 }

    return a;

     It should be clear why Algorithm I works, but perhaps it is not so obvious why 

Algorithm II accomplishes the same task. Algorithm II is based on a theorem of 

Euclid (300 BCE) that states that given two positive integers  a  and  b , where  a  �  b , 

    the greatest common divisor of  a  and  b  is the same as the greatest common 

divisor of  b  and  a % b,  that is,  gcd ( a,b ) �  gcd ( b, a % b ).  

    For Algorithm I, the worst-case scenario is that the loop iterates from  b  down to 1. 

So, at worst, Algorithm I takes  b  steps. For example, to calculate the greatest com-

mon divisor of 101 and 37, Algorithm II requires 37 steps. 

     For Algorithm II, the number of steps, that is, the time complexity, is not obvi-

ous. However, 19 th  century mathematician Gabriel Lamé proved that Euclid’s algo-

rithm requires at most 5 k  steps, where  k  is the  number of digits  in  b .1 For example, 

Euclid’s algorithm takes at most 5   �   2 � 10 steps to fi nd the greatest common divi-

sor of  a  � 472 and  b  � 36, since 36 has two digits. 

     Compare   5   k  with the time complexity of Algorithm I, which requires at most  b  

steps. The difference is astronomical. For example, if  b  � 10 10  � 10,000,000,000, 

then Algorithm I may take 10 10  steps, but Euclid’s algorithm takes at most 2   �   11 � 

22 steps! Because a number with  n  digits is roughly 10  n  , the difference between the 

two algorithms is akin to the difference between 10  n   and  n . 

 Exercises 
1.    Estimate the number of steps used by Algorithm I and Algorithm II when  a  � 

298765 and  b  � 89765.  

2.    Implement methods for Algorithm I and Algorithm II. Include your implementa-

tions in a program.  

3.    Write a program that compares the running times of Algorithm I and Algorithm II. 

Use the data:  a  � 12000111,  b  � 9899111. To calculate the running time of each 

method, invoke   System.currentTimeMillis(),   which returns the current time (  long  ) to 

the nearest millisecond:

 long startTime � System.currentTimeMillis();

  myMethod(); // call your method here

1Lamé used the Fibonacci sequence to prove his result. The Fibonacci sequence is a sequence of positive 

integers such that the fi rst two terms of the sequence are both 1 and each succeeding term is the sum of the 

previous two numbers. The fi rst 10 terms of the Fibonacci sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, and 55. Lamé 

proved that if a � b  � 0 and b is less than the (n � 1)st term of the Fibonacci sequence, then the number of 

steps required by Euclid’s algorithm is at most n. For example, if b is 100, then the number of steps required by 

Euclid’s algorithm is at most 11 because 100 is less than the 12th term of the Fibonacci sequence: (1 1 2 3 5 8 13 

21 34 55 89 144). Lamé’s theorem implies that the number of steps required by Euclid’s algorithm is no more 

than 5 times the number of digits in b. 

 Chapter 6 Methods 235

sim23356_ch06.indd   235sim23356_ch06.indd   235 10/17/08   1:09:01 PM10/17/08   1:09:01 PM

Confirming Pages



236 Part 1 The Fundamental Tools

TH
E 

BI
GG

ER
 P

IC
TU

RE

   long endTime � System.currentTimeMillis();

   long totalTime � endTime � startTime;

   How do the two algorithms (I and II) compare?  

4.    To each method of Exercise 2, add a counter that keeps track of the number of 

loop iterations, that is, the number of steps performed by each algorithm. Com-

pare the number of steps required by Algorithm I and Algorithm II when  a  � 

12000111 and  b  � 989111. Are your results consistent with the theory? Run the 

program with numbers of your own choice.  

2.    RECURSION, A PREVIEW  
  You have seen that a method can invoke another method. Well, you may be surprised 

to learn that a method can call  itself . A method that includes a call to itself is called a 

 recursive  method. You might surmise that a method that calls itself would create an 

infi nite loop. And, indeed, that may happen. Trace through the following method that 

forever begs you to end its misery!

Public static void runMeForever()

{

    System.out.println(“Stop me. This hurts!”);

    runMeForever();

}

The method   runMeForever()   produces the following, rather redundant, cry for help:

Stop me. This hurts!

Stop me. This hurts!

Stop me. This hurts!

Stop me. This hurts!

Stop me. This hurts!

Stop me. This hurts!

Stop me. This hurts!

...

  Yes, the   runMeForever()   invokes   runMeForever()   which invokes   runMeForever()   

which invokes   runMeForever()  , well, forever. However, you can rewrite this method 

so that it prints the message just  n  times and then stops. As a   boolean   condition 

terminates a  while  loop, we can use a   boolean   condition to put a stop to the infi nite 

chain of recursive method calls.

public static void runMeAwhile( int n )

{

               if (n !� 0) // stops the chain of method calls to itself when   n  �0 

             {

                          System.out.println(“Stop me. This hurts!”);

                          runMeAwhile( n � 1  );

             }

}

 The following class invokes the method   runMeAwhile(…)   with the argument   n � 3  .

public class Test

{

    public static void runMeAwhile( int n )

    {

sim23356_ch06.indd   236sim23356_ch06.indd   236 9/8/08   3:33:24 PM9/8/08   3:33:24 PM

Confirming Pages



THE BIGGER PICTURE

             if (n !� 0) 

            {

                    System.out.println(“Stop me. This hurts!”);

                    runMeAwhile( n � 1  );

            }

    }

    public static void main(String[] Args)

    {

            runMeAwhile(3); // invokes method for the first time

    }

}

   The   main(…)   method of  Test  calls   runMeAwhile(3)   which displays "Stop me. This 

hurts!" and calls runMeAwhile(2), which prints "Stop me. This hurts!" and calls run-

MeAwhile(1), which prints “Stop me. This hurts!”, and calls runMeAwhile(0), which 

does nothing because   n   �� 0. The following diagram depicts the actions of  Test : 

main

runMeAwhile(3)

runMeAwhile(2)

runMeAwhile(1)

runMeAwhile(0)

return

1

2

4

6

8

Stop me. This hurts!

Stop me. This hurts!

Stop me. This hurts!

3

5

7

9

    In theory, recursion and iteration are equivalent; anything that you can accom-

plish with one you can do with the other. Java provides both recursion and iteration 

for the same reason that it provides three different loops (  do-while  ,   while  , and   for  ): 

different problems are solved more naturally with different tools. 

    Recursion, however, is a powerful way of thinking and problem solving that 

extends well beyond the notion of loops. Recursion is one of the major techniques 

employed in the development of powerful computer algorithms. A more thorough 

discussion of recursion follows in Chapter 8.  

 Exercises 
1.    Write a recursive method   int getPos()   that requests a positive integer supplied by 

a user. On input less than or equal to 0, the method displays an appropriate error 

message and asks again for a positive integer via a recursive call to itself. If the 

number is legal, the method returns the number.  

 Chapter 6 Methods 237

sim23356_ch06.indd   237sim23356_ch06.indd   237 9/8/08   3:33:24 PM9/8/08   3:33:24 PM

Confirming Pages



238 Part 1 The Fundamental Tools

TH
E 

BI
GG

ER
 P

IC
TU

RE

2.    Write a recursive method int addUp(int n) that returns the sum of the numbers 

from 1 through  n . Hint:   addUp(n – 1)   will return the sum of the numbers from   1   

through  n  – 1. All you need to do is add  n  to this sum and return.  

3.  Test the methods of Exercises 1 and 2 in a program that includes the following 

  main(…)   method:

public static void main(String[] args)

{

    System.out.println("Enter a positive integer: ");

    int n � getPos();

    System.out.println("The sum 1 through n is "� addUp(n));

}

4.  Determine the output of the following program. If you trace through the method 

calls carefully, you will discern a pattern.

public class Recursion

{

      public static int mystery(int a, int b, int c, int d)

      {

              if (a �� b)

                  return c;

              else

                  return mystery(a, b � 1, d, c � d);

      }

      public static void main (String[] args)

      {

              for(int i � 1; i � 10; i��)

                  System.out.println(mystery(i,1,1,1));

      }

}                

sim23356_ch06.indd   238sim23356_ch06.indd   238 10/18/08   7:23:31 PM10/18/08   7:23:31 PM

Confirming Pages




