
xiii

P r e f a c e

This book is an in-depth introduction to object-oriented programming using
the Java programming language. In addition to covering traditional topics for a CS1
course, some of the more advanced topics such as recursion and linked lists are in-
cluded to provide a comprehensive coverage of beginning to intermediate-level ma-
terials. There are more materials in the book than what are normally covered in a
typical CS1 course. An instructor may want to teach some of the chapters on data
structures in an advanced CS1 course. Topics covered in Chapters 16 to 20 are also
suitable for use in a CS2 course.

Key Differences from the Standard Edition
This comprehensive edition is based on An Introduction to Object-Oriented Pro-
gramming with Java, Fourth Edition. The key differences between this comprehen-
sive version and the fourth edition standard version are as follows:

1. Data Structures Chapters. Chapter 16 covers topics on managing linked
nodes. Using this as the foundation, Chapters 18 through 20 present three ab-
stract data types (ADTs) List, Stack, and Queue, respectively. For all three
ADTs, both array-based and linked-list implementations are shown, and their
relative advantages and disadvantages are discussed.

2. More Discussion on Java 5.0 Features. Many of the new Java 5.0 features
are explained and used in the sample programs. They include the enumerator
type, the for-each loop construct, auto boxing and unboxing, and the generics.
One complete chapter (Chapter 17) is dedicated to the generics.

3. Exclusive Use of Console Input and Output. All the GUI related topics,
including the JOptionPane class, are moved to Chapter 14. Sample programs
before Chapter 14 use the standard console input (Scanner) and output
(System.out). Those who want to use JOptionPane for simple input and output
can do so easily by covering Section 14.1 before Chapter 3.

wu23399_fm.qxd 1/10/07 11:53 Page xiii

xiv Preface

Book Organization
There are 21 chapters in this book, numbered from 0 to 20. The first 11 chapters
cover the core topics that provide the fundamentals of programming. Chapters 11 to
15 cover intermediate-level topics such as sorting, searching, recursion, inheritance,
polymorphism, and file I/O. And Chapters 16 to 20 cover topics related to data
structures. There are more than enough topics for one semester. After the first
11 chapters (Ch 0 to Ch 10), instructors can mix and match materials from Chapters 11
to 20 to suit their needs. We first show the dependency relationships among the
chapters and then provide a brief summary of each chapter.

Chapter Dependency
For the most part, chapters should be read in sequence, but some variations are
possible, especially with the optional chapters. Here’s a simplified dependency
graph:

0

1

2

3

4

5

6

7

8 9 10

1514*131211

18

19 20

17

16
*Note: Some examples use arrays,
 but the use of arrays is not an
 integral part of the examples.
 These examples can be modified
 to those that do not use arrays.
 Many topics from the early part
 of the chapter can be introduced
 as early as after Chapter 2.

wu23399_fm.qxd 1/10/07 11:53 Page xiv

Preface xv

Brief Chapter Summary
Here is a short description of each chapter:

• Chapter 0 is an optional chapter. We provide background information on
computers and programming languages. This chapter can be skipped or as-
signed as an outside reading if you wish to start with object-oriented pro-
gramming concepts.

• Chapter 1 provides a conceptual foundation of object-oriented programming.
We describe the key components of object-oriented programming and illus-
trate each concept with a diagrammatic notation using UML.

• Chapter 2 covers the basics of Java programming and the process of editing,
compiling, and running a program. From the first sample program presented in
this chapter, we emphasize object-orientation. We will introduce the standard
classes String, Date, and SimpleDateFormat so we can reinforce the notion of
object declaration, creation, and usage. Moreover, by using these standard
classes, students can immediately start writing practical programs.We describe
and illustrate console input with System.in and the new Scanner class and output
with System.out.

• Chapter 3 introduces variables, constants, and expressions for manipulating
numerical data. We explain the standard Math class from java.lang and
introduce more standard classes (GregorianCalendar and DecimalFormat) to
continually reinforce the notion of object-orientation. We describe additional
methods of the Scanner class to input numerical values. Random number
generation is introduced in this chapter. The optional section explains how the
numerical values are represented in memory space.

• Chapter 4 teaches the basics of creating programmer-defined classes. We
keep the chapter accessible by introducting only the fundamentals with illus-
trative examples. The key topics covered in this chapter are constructors, vis-
ibility modifiers (public and private), local variables, and passing data to
methods. We provide easy-to-grasp illustrations that capture the essence of
the topics so the students will have a clear understanding of them.

• Chapter 5 explains the selection statements if and switch. We cover boolean
expressions and nested-if statements. We explain how objects are compared
by using equivalence (==) and equality (the equals and compareTo methods).
We use the String and the programmer-defined Fraction classes to make the
distinction between the equivalence and equality clear. Drawing 2-D graphics
is introduced, and a screensaver sample development program is developed.
We describe the new Java 5.0 feature called enumerated type in this chapter.

• Chapter 6 explains the repetition statements while, do–while, and for. Pitfalls
in writing repetition statements are explained. One of the pitfalls to avoid is
the use of float or double for the data type of a counter variable. We illustrate
this pitfall by showing a code that will result in infinite loop. Finding the great-
est common divisor of two integers is used as an example of a nontrivial loop
statement. We show the difference between the straightforward (brute-force)

wu23399_fm.qxd 1/10/07 11:54 Page xv

xvi Preface

and the clever (Euclid’s) solutions. We introduce the Formatter class (new to
Java 5.0) and show how the output can be aligned nicely. The optional last sec-
tion of the chapter introduces recursion as another technique for repetition.
The recursive version of a method that finds the greatest common divisor of
two integers is given.

• Chapter 7 is the second part of creating programmer-defined classes. We
introduce new topics related to the creation of programmer-defined classes
and also repeat some of the topics covered in Chapter 4 in more depth. The
key topics covered in this chapter are method overloading, the reserved
word this, class methods and variables, returning an object from a method,
and pass-by-value parameter passing. As in Chapter 4, we provide many
lucid illustrations to make these topics accessible to beginners. We use the
Fraction class to illustrate many of these topics, such as the use of this and
class methods. The complete definition of the Fraction class is presented in
this chapter.

• Chapter 8 teaches exception handling and assertions. The focus of this chap-
ter is the construction of reliable programs. We provide a detailed coverage of
exception handling in this chapter. We introduce an assertion and show how it
can be used to improve the reliability of finished products by catching logical
errors early in the development.

• Chapter 9 covers nonnumerical data types: characters and strings. Both the
String and StringBuffer classes are explained in the chapter. Another string
class named StringBuilder (new to Java 5.) is briefly explained in this chapter.
An important application of string processing is pattern matching. We describe
pattern matching and regular expression in this chapter. We introduce the
Pattern and Matcher classes and show how they are used in pattern matching.

• Chapter 10 teaches arrays. We cover arrays of primitive data types and of ob-
jects. An array is a reference data type in Java, and we show how arrays are
passed to methods. We describe how to process two-dimensional arrays and
explain that a two-dimensional array is really an array of arrays in Java. Lists
and maps are introduced as a more general and flexible way to maintain a col-
lection of data. The use of ArrayList and HashMap classes from the java.util
package is shown in the sample programs. Also, we show how the WordList
helper class used in Chapter 9 sample development program is implemented
with another map class called TreeMap.

• Chapter 11 presents searching and sorting algorithms. Both N2 and Nlog2N
sorting algorithms are covered. The mathematical analysis of searching and
sorting algorithms can be omitted depending on the students’ background.

• Chapter 12 explains the file I/O. Standard classes such as File and JFile-
Chooser are explained. We cover all types of file I/O, from a low-level byte
I/O to a high-level object I/O. We show how the file I/O techniques are used
to implement the helper classes—Dorm and FileManager—in Chapter 8 and 9
sample development programs. The use of the Scanner class for inputting data
from a textfile is also illustrated in this chapter.

wu23399_fm.qxd 1/10/07 11:54 Page xvi

Preface xvii

• Chapter 13 discusses inheritance and polymorphism and how to use them ef-
fectively in program design. The effect of inheritance for member accessibil-
ity and constructors is explained. We also explain the purpose of abstract
classes and abstract methods.

• Chapter 14 covers GUI and event-driven programming. Only the Swing-
based GUI components are covered in this chapter. We show how to use the
JOptionPane class for a very simple GUI-based input and output. GUI com-
ponents introduced in this chapter include JButton, JLabel, ImageIcon,
JTextField, JTextArea, and menu-related classes. We describe the effective use
of nested panels and layout managers. Handling of mouse events is described
and illustrated in the sample programs. Those who do not teach GUI can skip
this chapter altogether. Those who teach GUI can introduce the beginning part
of the chapter as early as after Chapter 2.

• Chapter 15 covers recursion. Because we want to show the examples where
the use of recursion really shines, we did not include any recursive algorithm
(other than those used for explanation purposes) that really should be written
nonrecursively.

• Chapter 16 covers contiguous and noncontiguous memory allocation schemes
and introduces the concept of linked lists. Ample examples are provided to
illustrate the manipulation of linked lists of primitive data types and linked
lists of objects. This chapter lays the necessary foundation for the students to
learn different techniques for implementing the abstract data types covered in
Chapters 18 through 20.

• Chapter 17 covers new Java 5.0 generics in detail. The chapter describes how
generic classes are defined and how the type safety is supported by generics.
A concrete example of using generics is shown by defining a simple linked list
with generic nodes.

• Chapter 18 introduces the concept of abstract data types (ADT) and covers
the List ADT. Key features of the List ADT are explained and two implemen-
tations using an array and a linked list are shown. The iterator pattern to tra-
verse the elements in the List ADT is introduced.

• Chapter 19 covers the Stack ADT. Key features of the Stack ADT are ex-
plained and two implementations using an array and a linked list are shown.
Sample applications that use stacks are described.

• Chapter 20 covers the Queue ADT. Key features of the Stack ADT are ex-
plained and two implementations using an array and a linked list are shown.
A special type of queue called a priority queue is also intoduced in this
chapter.

wu23399_fm.qxd 1/10/07 11:54 Page xvii

xviii Preface

Development Exercises
give students an opportunity
to practice incremental
development.

Hallmark Features of the Text

Problem Solving

Printing the Initials

Now that we have acquired a basic understanding of Java application programs, let’s
write a new application.We will go through the design, coding, and testing phases of the
software life cycle to illustrate the development process. Since the program we develop
here is very simple, we can write it without really going through the phases. However, it is
extremely important for you to get into a habit of developing a program by following the
software life cycle stages. Small programs can be developed in a haphazard manner, but
not large programs.We will teach you the development process with small programs first,
so you will be ready to use it to create large programs later.

We will develop this program by using an incremental development technique,
which will develop the program in small incremental steps. We start out with a bare-
bones program and gradually build up the program by adding more and more code to
it. At each incremental step, we design, code, and test the program before moving on
to the next step. This methodical development of a program allows us to focus our at-
tention on a single task at each step, and this reduces the chance of introducing errors
into the program.

Problem Statement

We start our development with a problem statement. The problem statement for our
sample programs will be short, ranging from a sentence to a paragraph, but the problem
statement for complex and advanced applications may contain many pages. Here’s the
problem statement for this sample development exercise:

Write an application that asks for the user’s first, middle, and last names and
replies with the user’s initials.

Overall Plan

Our first task is to map out the overall plan for development. We will identify classes nec-
essary for the program and the steps we will follow to implement the program.We begin
with the outline of program logic. For a simple program such as this one, it is kind of obvi-
ous; but to practice the incremental development, let’s put down the outline of program
flow explicitly.We can express the program flow as having three tasks:

1. Get the user’s first, middle, and last names.

2. Extract the initials to formulate the monogram.

3. Output the monogram.

Having identified the three major tasks of the program, we will now identify the
classes we can use to implement the three tasks. First, we need an object to handle the
input. At this point, we have learned about only the Scanner class, so we will use it
here. Second, we need an object to display the result. Again, we will use System.out, as
it is the only one we know at this point for displaying a string value. For the string

Sample Development2.5 Sample Development

program
tasks

Sample Development Programs
Most chapters include a sample
development section that describes the
process of incremental development.

Development Exercises
For the following exercises, use the incremental development methodology to
implement the program. For each exercise, identify the program tasks, create a
design document with class descriptions, and draw the program diagram. Map
out the development steps at the start. Present any design alternatives and
justify your selection. Be sure to perform adequate testing at the end of each
development step.

8. In the sample development, we developed the user module of the keyless
entry system. For this exercise, implement the administrative module that
allows the system administrator to add and delete Resident objects and
modify information on existing Resident objects. The module will also allow
the user to open a list from a file and save the list to a file. Is it proper to
implement the administrative module by using one class? Wouldn’t it be a
better design if we used multiple classes with each class doing a single,
well-defined task?

9. Write an application that maintains the membership lists of five social clubs
in a dormitory. The five social clubs are the Computer Science Club, Biology
Club, Billiard Club, No Sleep Club, and Wine Tasting Club. Use the Dorm

wu23399_fm.qxd 1/10/07 11:54 Page xviii

Preface xix

Object-Oriented Approach
We take the object-first approach to teaching object-oriented programming with emphasis
on proper object-oriented design.The concept of objects is clearly illustrated from the very
first sample program.

/*

Chapter 2 Sample Program: Displaying a Window

File: Ch2Sample1.java

*/

import javax.swing.*;

class Ch2Sample1 {

public static void main(String[] args) {

JFrame myWindow;

myWindow = new JFrame();

myWindow.setSize(300, 200);
myWindow.setTitle("My First Java Program");
myWindow.setVisible(true);

}
}

Dorm

Door

ResidentUser module

Dorm Resident

A helper class
provided to us

A class we
implement

One or more classes
we implement

Administrative
module

Figure 8.8 Program diagrams for the user and administrative modules. Notice the same Dorm and
Resident classes are used in both programs. User and administrative modules will include one or more
classes (at least one is programmer-defined).

Good practices on object-
oriented design are
discussed throughout
the book and illustrated
through numerous
sample programs.

wu23399_fm.qxd 1/10/07 11:55 Page xix

xx Preface

Illustrative Diagrams
Illustrative diagrams are used to explain all key concepts of programming such as the
difference between object declaration and creation, the distinction between the primitive
data type and the reference data type, the call-by-value parameter passing, inheritance, and
many others.

Numerical Data Object

number1 = 237;
number2 = number1;

int number1, number2;

alan = new Professor();
turing = alan;

Professor alan, turing;

number2

number1

turing

alan

number2

number1

turing

alan

number1 = 237;

int number1, number2;

alan = new Professor();

Professor alan, turing;

number2 = number1; turing = alan;

:Professor

:Professor

number2

number1

turing

alan

number1 = 237;

int number1, number2;

alan = new Professor();

Professor alan, turing;

number2 = number1; turing = alan;

237

237

237

Figure 3.3 An effect of assigning the content of one variable to another.

Figure 18.2 Sample version 2 add operations on myList.

Before

After

Before

After

“cat” “gnu” “ape” “dog” “bee”

0 1 2 3 4

“cat”
0

“ape”
1

“dog”
2

“bee”
3

add(1, “gnu”)

throws
<index-out-of-bounds-exception>add(5, “gnu”)

myList

“cat”
0

“ape”
1

“dog”
2

“bee”
3

myList

myList

myList

“cat”
0

“ape”
1

“dog”
2

“bee”
3

No structural
change to the list

Lucid diagrams are used effectively to explain
data structures and abstract data types.

wu23399_fm.qxd 1/10/07 11:55 Page xx

Preface xxi

Student Pedagogy

Always define a constructor and initialize data members fully in the
constructor so an object will be created in a valid state.

It is not necessary to create an object for every variable we use. Many novice pro-
grammers often make this mistake. For example, we write

Fraction f1, f2;
f1 = new Fraction(24, 36);
f2 = f1.simplify();

We didn’t write

Fraction f1, f2;
f1 = new Fraction(24, 36);
f2 = new Fraction(1, 1); //not necessary

f2 = f1.simplify();

because it is not necessary.The simplify method returns a Fraction object, and in
the calling program, all we need is a name we can use to refer to this returned
Fraction object. Don’t forget that the object name (variable) and the actual object
instance are two separate things.

We can turn our simulation program into a real one by replacing the Door
class with a class that actually controls the door. Java provides a mechanism
called Java Native Interface (JNI) which can be used to embed a link to a low-
level device driver code, so calling the open method actually unlocks the
door.

1. What will be displayed on the console window when the following code is
executed and the user enters abc123 and 14?

Scanner scanner = new Scanner(System.in);
try {

int num1 = scanner.nextInt();

System.out.println("Input 1 accepted");

int num2 = scanner.nextInt();

System.out.println("Input 2 accepted");

} catch (InputMismatchException e) {

System.out.println("Invalid Entry");
}

List the catch blocks in the order of specialized to more general exception classes.
At most one catch block is executed, and all other catch blocks are ignored.

Design Guidelines
provide tips on good
program design.

Things to Remember
boxes provide tips for
students to remember key
concepts.

Tips, Hints, and Pitfalls
provide important points
for which to watch out.

You Might Want to Know
boxes give students
interesting bits of
information.

Quick Check
exercises at the end of
the sections allow
students to test their
comprehension of
topics.

wu23399_fm.qxd 1/10/07 11:55 Page xxi

xxii Preface

Supplements for Instructors and Students
On-Line Learning Center is located at www.mhhe.com/wu

For Instructors
• Complete set of PowerPoints, including lecture notes and figures.

• Complete solutions for the exercises

• Example Bank—Additional examples, which are searchable by topic, are
provided online in a “bank” for instructors.

• Homework Manager/Test Bank—Conceptual review questions are stored in
this electronic question bank and can be assigned as exam questions or home-
work.

• Online labs which accompany this text, can be used in a closed lab, open lab,
or for assigned programming projects.

wu23399_fm.qxd 1/10/07 11:55 Page xxii

Preface xxiii

For Students
• Compiler How Tos provide tutorials on how to get up and running on the

most popular compilers to aid students in using IDEs.

• Interactive Quizzes allow students to test what they learn and get immediate
feedback.

• Source code for all example programs in the book.

• Answers to quick check exercises.

• Glossary of key terms.

• Recent News links relevant to computer science.

• Additional Topics such as more on swing and an introduction to data structures.

Acknowledgments
First, I would like to thank the following reviewers for their comments, suggestions,
and encouragement.

Wu Focus Group—Jackson Hole, WY
Elizabeth Adams, James Madison University
GianMario Besana, Depaul University
Michael Buckley, State University of New York, Buffalo
James Cross, Auburn University
Priscilla Dodds, Georgia Perimeter College
Christopher Eliot, University of Massachusetts-Amherst
Joanne Houlahan, John Hopkins University
Len Myers, California Polytechnic State University, San Luis Obispo
Hal Perkins, University of Washington
William Shea, Kansas State University
Marge Skubic, University of Missouri, Columbia
Bill Sverdlik, Eastern Michigan University
Suzanne Westbrook, University of Arizona

wu23399_fm.qxd 1/10/07 11:55 Page xxiii

xxiv Preface

Reviewers
Ajith, Abraham, Oklahoma State University
Elizabeth Adams, James Madison University
David L. Atkins, University of Oregon
GianMario Besana, DePaul University
Robert P. Burton, Brigham Young University
Michael Buckley, State University of New York, Buffalo
Rama Chakrapani, Tennessee Technological University
Teresa Cole, Boise State University
James Cross, Auburn University
Priscilla Dodds, Georgia Perimeter College
Kossi Delali Edoh, Montclair State University
Christopher Eliot, University of Massachusetts-Amherst
Michael Floeser, Rochester Institute of Technology
Joanne Houlahan, John Hopkins University
Michael N. Huhns, University of South Carolina
Eliot Jacobson, University of California, Santa Barbara
Martin Kendall, Montgomery Community College
Mike Litman, Western Illinois University
Len Myers, California Polytechnic State University, San Luis Obispo
Jun Ni, University of Iowa
Robert Noonan, College of William and Mary
Jason S. O’Neal, Mississippi College
Hal Perkins, University of Washington
Gerald Ross, Lane Community College
William Shea, Kansas State University
Jason John Schwarz, North Carolina State University
Marge Skubic, University of Missouri, Columbia
Bill Sverdlik, Eastern Michigan University
Peter Stanchev, Kettering University
Krishnaprasad Thirunarayan, Wright State University
David Vineyard, Kettering University
Suzanne Westbrook, University of Arizona
Melissa Wiggins, Mississippi College
Zhiguang Xu, Valdosta State University.

The following reviewers have provided feedback on the chapters new to this
comprehensive edition:

Eric Matson, Wright State University
Tim Margush, University of Akron
Roxanne Canosa, Rochester Institute of Technology
Ivan Bajic, San Diego State University
Carolyn Miller, North Carolina State
Sunil Prabhakar, Purdue University
Weining Zhang, University of Texas, San Antonio

wu23399_fm.qxd 1/10/07 11:56 Page xxiv

Preface xxv

Personal Story
In September, 2001, I changed my name for personal reasons. Prof C. Thomas
Wu is now Prof Thomas W. Otani. To maintain continuity and not to confuse peo-
ple, we continue to publish the book under my former name. For those who
care to find out a little about my personal history can do so by visiting my web-
site (www.drcaffeine.com).

wu23399_fm.qxd 1/10/07 11:56 Page xxv

