Selection Statements

Obje c t.i Vviems
After you have read and studied this chapter, you should be able to

e Implement selection control in a program o Nest an if statement inside another if
using if statements. statement’s then or else part correctly.

e Implement selection control in a program o Describe how objects are compared.
using switch statements. o Choose the appropriate selection control

e Write boolean expressions using relational and statement for a given task.
boolean operators. o Define and use enumerated constants.

e Evaluate given boolean expressions correctly. e Draw geometric shapes on a window.

214 Chapter5 Selection Statements

Introduction

ecisions, decisions, decisions. From the moment we are awake until the time
we go to sleep, we are making decisions. Should I eat cereal or toast? What
should T wear to school today? Should I eat at the cafeteria today? And so
forth. We make many of these decisions by evaluating some criteria. If the
number of students in line for registration seems long, then come back tomorrow
for another try. If today is Monday, Wednesday, or Friday, then eat lunch at the
cafeteria.

Computer programs are no different. Any practical computer program con-
tains many statements that make decisions. Often a course of action is determined
by evaluating some kind of a test (e.g., Is the remaining balance of a meal card
below the minimum?). Statements in programs are executed in sequence, which is
sequential called sequential execution or sequential control flow. However, we can add
execution decision-making statements to a program to alter this control flow. For example,
we can add a statement that causes a portion of a program to be skipped if
an input value is greater than 100. Or we can add a statement to disallow the pur-
chase of food items if the balance of a meal card goes below a certain minimum.

il The statement that alters the control flow is called a control statement. In this

statement chapter we describe some important control statements, called selection state-
ments. In Chapter 6 we will describe other control statements, called repetition
statements.

5.1 | The if Statement

if statement There are two versions of the if statement, called if-then—else and if—then. We begin
with the first version. Suppose we wish to enter a student’s test score and print out
the message You did not pass if the score is less than 70 and You did pass if the score
is 70 or higher. Here’s how we express this logic in Java:

Scanner scanner = new Scanner (System.in) ;
System.out.print ("Enter test score: ");
int testScore = scanner.nextInt();

if (testScore < 70)
This statement is
executed if testScore System.out.println("You did not pass");
is less than 70.
else
This statement is
executed if testScore System.out.println("You did pass");
is 70 or higher.

We use an if statement to specify which block of code to execute. A block of code
may contain zero or more statements. Which block is executed depends on the

5.1 The if Statement 215

r—————————————————+ Boolean Expression

Figure 5.1 Mapping of the sample if-then-else statement to the general format.

boolean
expression

if-then-else
syntax

relational
operators

result of evaluating a test condition, called a boolean expression. The if-then—else
statement follows this general format:

if (<boolean expression>)
<then block>

else
<else block>

Figure 5.1 illustrates the correspondence between the if-then—else statement we
wrote and the general format.

The <boolean expression> is a conditional expression that is evaluated
to either true or false. For example, the following three expressions are all
conditional:

testScore < 80
testScore * 2 > 350
30 <w / (h * h)

The six relational operators we can use in conditional expressions are:

< // less than

<= // less than or equal to

== // equal to

1= // not equal to

> // greater than

>= // greater than or equal to

Here are some more examples:
a * a <= c //true if a * a is less than or equal to c

X +y =z //true 1f x + y is not equal to z
a ==Db //true 1f a is equal to b

216 Chapter 5

Hints,
Tips,
Pitfalls

selection
statement

Selection Statements

One very common error in writing programs is to mix up the assignment and
equality operators. We frequently make the mistake of writing

If the boolean expression evaluates to true, then the statements in the <then
block> are executed. Otherwise, the statements in the <else block> are executed.
We will cover more complex boolean expressions in Section 5.2. Notice that we can
reverse the relational operator and switch the then and else blocks to derive the
equivalent code, for example,

if (testScore >= 70)
System.out.println("You did pass");

else
System.out.println("You did not pass");

Notice that the reverse of < is >=, not >.
The if statement is called a selection or branching statement because it selects
(or branches to) one of the alternative blocks for execution. In our example, either

System.out.println("You did not pass");
or

System.out.println("You did pass");

is executed depending on the value of the boolean expression. We can illustrate a
branching path of execution with the diagram shown in Figure 5.2.

l

false true

testScore < 70?

System.out.println System.out.println
("You did pass") ; ("You did not pass");

Figure 5.2 The diagram showing the control flow of the sample if-then—else statement.

Compound
Statements

5.1 The if Statement 217

In the preceding if statement, both blocks contain only one statement. The
then or else block can contain more than one statement. The general format for both
the <then block> and the <else block> is either a

<single statement>

<compound statement>

where <single statement> is a Java statement and <compound statement> is a
sequence of Java statements surrounded by braces, as shown below with n = 0
statements:

{
<statement 1>
<statement 2>
<statement n>
}

If multiple statements are needed in the <then block> or the <else block>, they must
be surrounded by braces { and }. For example, suppose we want to print out addi-
tional messages for each case. Let’s say we also want to print Keep up the good
work when the student passes and print Try harder next time when the student fails.
Here’s how:

if (testScore < 70)

i1 i
i System.out.println("You did not pass"); :
i System.out.println("Try harder next time"); !
L i
else

o :
: System.out.println("You did pass"); :
E System.out.println("Keep up the good work")ﬁ
i) ;

The braces are necessary to delineate the statements inside the block. Without
the braces, the compiler will not be able to tell whether a statement is part of the
block or part of the statement that follows the if statement.

Notice the absence of semicolons after the right braces. A semicolon is never
necessary immediately after a right brace. A compound statement may contain zero

218

Chapter 5

Selection Statements

or more statements, so it is perfectly valid for a compound statement to include only
one statement. Indeed, we can write the sample if statement as

if (testScore < 70)
{
System.out.println("You did not pass");

}

else

{
System.out.println("You did pass");
}

Although it is not required, many programmers prefer to use the syntax for the com-
pound statement even if the then or else block includes only one statement. In this
textbook, we use the syntax for the compound statement regardless of the number
of statements inside the then and else blocks. Following this policy is beneficial for
a number of reasons. One is the ease of adding temporary output statements inside
the blocks. Frequently, we want to include a temporary output statement to verify
that the boolean expression is written correctly. Suppose we add output statements
such as these:

if (testScore < 70)

{
System.out.println("inside then: " + testScore);
System.out.println("You did not pass");

}

else

{
System.out.println("inside else: " + testScore);
System.out.println("You did pass");

}

If we always use the syntax for the compound statement, we just add and delete
the temporary output statements. However, if we use the syntax of the single state-
ment, then we have to remember to add the braces when we want to include a
temporary output statement. Another reason for using the compound statement
syntax exclusively is to avoid the dangling else problem. We discuss this problem
in Section 5.2.

The placement of left and right braces does not matter to the compiler. The
compiler will not complain if you write the earlier if statement as

if (testScore < 70)
{ System.out.println("You did not pass");
System.out.println("Try harder next time");} else

System.out.println("You did pass");
System.out.println("Keep up the good work");}

5.1 The if Statement 219

However, to keep your code readable and easy to follow, you should format
your if statements using one of the two most common styles:

if (<boolean expression>) {
} else {
}

if (<boolean expression>)

In this book, we will use style 1, mainly because this style adheres to the code con-
ventions for the Java programming language. If you prefer style 2, then go ahead
and use it. Whichever style you choose, be consistent, because a consistent look and
feel is very important to make your code readable.

The document that provides the details of code conventions for Java can be found at
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

This document describes the Java language coding standards dictated in the Java
Language Specification. It is important to follow the code conventions as closely as
possible to increase the readability of the software.

There is a second variation of style 1 in which we place the reserved word else
on a new line as

if (<boolean expression>) {

}
else {

}

Many programmers prefer this variation of style 1 because the reserved word else
aligns with the matching if. However, if we nitpick, style 3 goes against the logic
behind the recommended style 1 format, which is to begin a new statement at one
position with a reserved word. The reserved word else is a part of the if statement,
not the beginning of a new statement. Thus style 1 places the reserved word else to
the right of the matching if.

220

if-then syntax

Chapter5 Selection Statements

Again, the actual format is not that important. Consistent use of the same for-
mat is. So, whichever style you use, use it consistently. To promote consistency
among all programmers, we recommend that everybody to adopt the code conven-
tions. Even though the recommended format may look peculiar at first, with some
repeated use, the format becomes natural in no time.

Let’s summarize the key points to remember:

hings to Remember
Rules for writing the then and else blocks:

1. Left and right braces are necessary to surround the statements if the then or
else block contains multiple statements.

2. Braces are not necessary if the then or else block contains only one statement.

3. Asemicolon is not necessary after a right brace.

Now let’s study a second version of the if statement called if~then. Suppose
we want to print out the message You are an honor student if the test score is 95 or
above and print out nothing otherwise. For this type of testing, we use the second
version of the if statement, whose general format is

if (<boolean expression>)
<then block>

The second version contains only the <then block>. Using this version and the
compound statement syntax, we express the selection control as

if (testScore >= 95) {
System.out.println("You are an honor student");
}

Figure 5.3 shows the diagram that illustrates the control flow for this if-then state-
ment. We will refer collectively to both versions as the if statement.

Notice that the if—then statement is not necessary, because we can write any
if—then statement using if—then—else by including no statement in the else block. For
instance, the sample if-then statement can be written as

if (testScore >= 95) {
System.out.println("You are an honor student");

} else { }

In this book, we use if-then statements whenever appropriate.
Let’s conclude this section with a sample class that models a circle. We
will name the class Ch5Circle, and its instances are capable of computing the

5.1 The if Statement 221

true

testScore >= 95?

System.out.println
("You are an honor student") ;

false

Figure 5.3 The diagram showing the control flow of the second version of the if statement.

circumference and area. We will include a test in this class so the methods such
as getArea and getCircumference return the constant INVALID_DIMENSION when
the dimension of the radius is invalid. Here’s the Ch5Circle class (most comments
are removed for the sake of brevity):

/* As the number of methods gets larger,
Chapter 5 The Circle class we will use this marker to quickly locate
the program components. Shaded icon
File: Chb5Circle.java is used for a private element.
*/

class Ch5Circle {

public static final int INVALID_DIMENSION = -1;

Data Members
private double radius;
public Chb5Circle(double r) {

setRadius(r) ;

}

public double getArea() {
getArea

[

double result = INVALID_DIMENSION;
if (isRadiusvalid()) {

result = Math.PI * radius * radius;
}

return result;

Chapter5 Selection Statements

public double getCircumference() {
double result = INVALID_DIMENSION;
if (isRadiusvalid()) {

result = 2.0 * Math.PI * radius;
}

return result;
}

public double getDiameter() {
double diameter = INVALID_DIMENSION;
if (isRadiusValid()) {

diameter = 2.0 * radius;

}

return diameter;

}

public double getRadius() {
return radius;

}
public void setDiameter (double d) {

if (d > 0) {
setRadius(d/2.0);
} else {
setRadius (INVALID_DIMENSION) ;

}

public void setRadius (double r) {

if (r > 0) {
radius = r;
} else {

radius = INVALID_DIMENSION;

}
private boolean isRadiusValid() {

return radius != INVALID_DIMENSION;

getCircumference

|

getDiameter

|

getRadius

setDiameter

setRadius

isRadiusValid

bl

5.1 The if Statement 223

Notice the if statement in the getArea method is written as

if (isRadiusValid()) {

The <boolean expression> in the if statement can be any expression that evaluates
to true or false, including a call to a method whose return type is boolean,
such as the isRadiusValid method. The use of such a boolean method often
makes the code easier to read, and easier to modify if the boolean method is called
from many methods (e.g., there are three methods calling the isRadiusValid
method).

Here’s a short main class to test the functionality of the Ch5Circle class:

/*
Chapter 5 Sample Program: Computing Circle Dimensions

File: ChbSamplel.java
*/
import java.util.*;
class Ch5Samplel {
public static void main(Stringl[] args) {
double radius, circumference, area;
Ch5Circle circle;
Scanner scanner = new Scanner (System.in);

System.out.print ("Enter radius: ");
radius = scanner.nextDouble();

circle = new Ch5Circle(radius);

circumference = circle.getCircumference();

area = circle.getAreal();
System.out.println("Input radius: " + radius);
System.out.println("Circumference: " + circumference);
System.out.println("Area: " + area);

224 Chapter5 Selection Statements

Notice that the program will display -1.0 when the input radius is invalid. We
can improve the display by adding an if test in the main program as follows:

System.out.print ("Circumference: ");

if (circumference == Chb5Circle.INVALID DIMENSION) {
System.out.println("Cannot compute. Input invalid");

} else {

System.out.println(circumference) ;

}

Another possible improvement in the main program is to check the input value first.
For instance,

radius = ... ;
if (radius > 0) {
//do the computation as the sample main method
} else {
//print out the error message
}

Even when a client programmer does not include appropriate tests in his program,
we must define a reusable class in a robust manner so it will not crash or produce
erroneous results. For the Ch5Circle class, we add a test so the data member radius
is set to either a valid datum or a specially designated value (INVALID_DIMENSION)
for any invalid data. By designing the class in this manner, we protect the class from
a possible misuse (e.g., attempting to assign a negative radius) and producing mean-
ingless results, such as —5.88. We always strive for a reliable and robust reusable
class that will withstand the abuse and misuse of client programmers.

PSS

" 1. Identify the invalid if statements:
Quick

a. if (a < b) then ¢c. if (a < b)
CHECK .y B
else else {
X Z; X = z;

b. if (a < b)

elsex = vy; d. if (a < b) {
X =vy; }else
X = Z;

2. Are the following two if statements equivalent?

/*A*/ if (x <y)
System.out.println("Hello");
else
System.out.println("Bye");

/*B*/ if (x >y)
System.out.println("Bye");
else
System.out.println("Hello");

5.2 Nested if Statements

5.2 | Nested if Statements

The then and else blocks of an if statement can contain any statement including
another if statement. An if statement that contains another if statement in either its
nested if then or else block is called a nested if statement. Let’s look at an example. In the
Statement earlier example, we printed out the messages You did pass or You did not pass
depending on the test score. Let’s modify the code to print out three possible mes-
sages. If the test score is lower than 70, then we print You did not pass, as before. If
the test score is 70 or higher, then we will check the student’s age. If the age is less
than 10, we will print You did a great job. Otherwise, we will print You did pass,
as before. Figure 5.4 is a diagram showing the logic of this nested test. The code

is written as follows:

if (testScore >= 70) {
if (studentAge < 10) {
System.out.println("You did a great job");
} else {

System.out.println("You did pass");//test score >= 70

} //and age >= 10

} else { //test score < 70

System.out.println("You did not pass");

l Another if

false
testScore >= 707?

. true
System.out.println

("You did not pass");

studentAge < 10°?

statement in the
true then block of
the outer if

System.out.println System.out.println
("You did pass") ; ("You did a great

job") ;

Figure 5.4 A diagram showing the control flow of the example nested if statement.

225

226

Chapter5 Selection Statements

Since the then block of the outer if contains another if statement, the
outer if is called a nested if statement. It is possible to write if tests in different
ways to achieve the same result. For example, the preceding code can also be
expressed as

if (testScore >= 70 && studentAge < 10) {
System.out.println("You did a great job");
} else {
//either testScore < 70 OR studentAge >= 10

if (testScore >= 70) {
System.out.println("You did pass");

} else {
System.out.println("You did not pass");

Several other variations can also achieve the same result. As a general rule, we
strive to select the one that is most readable (i.e., most easily understood) and most
efficient. Often no one variation stands out, and the one you choose depends on your
preferred style of programming.

Here’s an example in which one variation is clearly a better choice. Suppose
we input three integers and determine how many of them are negative. Here’s
the first variation. To show the structure more clearly, we purposely do not use the
braces in the then and else blocks.

if (numl < 0)

In this and the following
examples, we purposely

if (num2 < 0)
if (num3 < 0)

do not use the braces so negativeCount = 3; //all three are negative
we can provide a better else
illustration of the topics negativeCount = 2; //numl and num2 are negative
we are presenting.
else
if (num3 < 0)
negativeCount = 2; //numl and num3 are negative
else
negativeCount = 1; //numl is negative
else

if (num2 < 0)
if (num3 < 0)

negativeCount = 2; //num2 and num3 are negative
else
negativeCount = 1; //num2 is negative
else
if (num3 < 0)
negativeCount = 1; //num3 is negative
else

negativeCount = 0; //no negative numbers

increment and
decrement
operators

5.2 Nested if Statements 227

It certainly did the job. But elegantly? Here’s the second variation:

negativeCount = 0;

if (numl < 0)

negativeCount = negativeCount + 1;
if (num2 < 0)

negativeCount = negativeCount + 1;
if (num3 < 0)

negativeCount = negativeCount + 1;

Which version should we use? The second variation is the only reasonable
way to go. The first variation is not a viable option because it is very inefficient and
very difficult to read. We apply the nested if structure if we have to test conditions
in some required order. In this example these three tests are independent of one an-
other, so they can be executed in any order. In other words, it doesn’t matter whether
we test num1 first or last.

The statement

negativeCount = negativeCount + 1;

increments the variable by 1. This type of statement that changes the value of a vari-
able by adding a fixed number occurs frequently in programs. Instead of repeating
the same variable name twice, we can write it succinctly as

negativeCount++;
Similarly, a statement such as

count = count - 1;
can be written as

count--;

The double plus operator (+ +) is called the increment operator, and the double
minus operator (——) is the decrement operator (which decrements the variable
by 1). The increment and decrement operators have higher precedence than unary
operators. See Table 5.3 on page 235. Note: There are prefix and postfix increment/
decrement operators in which the operators come before and after the variable (or an
expression), respectively. We only use the postfix operators in this book, and the
precedence rules presented in the table apply to the postfix operators only.

Notice that we indent the then and else blocks to show the nested structure
clearly. Indentation is used as a visual guide for the readers. It makes no difference to
a Java compiler. For example, we make our intent clear by writing the statement as

if (x < v)
if (z !'= w)
a=>»b + 1;
else

a=c¢+ 1;
else
a=>b * c;

228 Chapter 5 Selection Statements

Hints, It takes some practice before you can write well-formed if statements. Here are
'_I'Ips, some rules to help you write the if statements.
Pitfalls

Rule 1: Minimize the number of nestings.

Rule 2: Avoid complex boolean expressions. Make them as simple as possible.
Don't include many ANDs and ORs.

Rule 3: Eliminate any unnecessary comparisons.

Rule4: Don't be satisfied with the first correct statement. Always look for
improvement.

Rule 5: Read your code again.Can you follow the statement easily? If not, try to
improve it.

But to the Java compiler, it does not matter if we write the same code as
if (x < y)if (z !=w)a = b + 1l;else a = c + 1; else a = b * ¢c;

Although indentation is not required to run the program, using proper inden-
tation is an important aspect of good programming style. Since the goal is to make
your code readable, not to follow any one style of indentation, you are free to
choose your own style. We recommend style 1 shown on page 219.

The next example shows a style of indentation accepted as standard for a
nested if statement in which nesting occurs only in the else block. Instead of deter-
mining whether a student passes or not, we will now display a letter grade based on
the following formula:

Test Score Grade

90 = score A
80 = score <90
70 = score < 80
60 = score < 70

score < 60

m O N w

The statement can be written as

if (score >= 90)
System.out.println("Your grade is A");
else
if (score >= 80)
System.out.println("Your grade is B");
else
if (score >= 70)
System.out .println("Your grade is C");

dangling else
problem

5.2 Nested if Statements 229

else
if (score >= 60)
System.out.println("Your grade is D");
else
System.out.println("Your grade is F");

However, the standard way to indent the statement is as follows:

if (score >= 90)
System.out.println("Your grade is A");

else if (score >= 80)
System.out.println("Your grade is B");

else if (score >= 70)
System.out.println("Your grade is C");

else if (score >= 60)
System.out.println("Your grade is D");

else
System.out.println("Your grade is F");

We mentioned that indentation is meant for human eyes only. For example, we
can clearly see the intent of a programmer just by looking at the indentation when
we read

if (x < vy)
if (x < z)
System.out.println("Hello"); (IndmﬂﬁbnxweA J

else
System.out.println("Good bye");

A Java compiler, however, will interpret the above as

if (x < v)
if (x < 2)
System.out.println("Hello"); (Indentation style B J
else
System.out.println("Good bye");

This example has a dangling else problem. The Java compiler matches an else
with the previous unmatched if, so the compiler will interpret the statement
by matching the else with the inner if (if (x < z)), whether you use indentation
style A or B. If you want to express the logic of indentation style A, you have to
express it as

if (x <y) {
if (x < 2z)
System.out.println("Hello");
} else
System.out.println("Good bye");

230 Chapter 5 Selection Statements

This dangling else problem is another reason why we recommend that beginners
use the syntax for <compound statement> in the then and else blocks. In other
words, always use the braces in the then and else blocks.

Let’s conclude this section by including tests inside the add and deduct methods
of the Account class from Chapter 4. For both methods, we will update the balance
only when the amount passed is positive. Furthermore, for the deduct method, we will
update the balance only if it does not become a negative number after the deduction.
This will require the use of a nested if statement. The following is the class declaration.
The name is Ch5Account, and this class is based on AccountVer2 from Chapter 4. We
only list the two methods here because other parts are the same as in AccountVer2.

—

class Chb5Account {

//Adds the passed amount to the balance
public void add(double amt) { add

//add if amt is positive; otherwise, do nothing
if (amt > 0) {
balance = balance + amt;

}

//Deducts the passed amount from the balance

public void deduct (double amt) { l deduct

//deduct if amt is positive; do nothing otherwise
if (amt > 0) {
double newbalance = balance - amt;

if (newbalance >= 0) { //1f a new balance is positive, then
balance = newbalance; //update the balance; otherwise,
} //do nothing.

PP

Q ; k 1. Rewrite the following nested if statements without using any nesting.
uic

a. if (a < ¢)
X = y;
else

X = 7;

boolean
operator

5.3 Boolean Expressions and Variables 231

else
X = Z;
b. if (a == b)
X =Y
else
if(a>Db)
X =Y
else
X Z;

c. if (a < b))
if (a >= b)

X = Z;
else
X =Y
else
X = Z;

2. Format the following if statements with indentation.

a. if (a<b)if (¢ >d) x = vy;
elsex = z;

b.if (a<b){if (c>d) x =vy; }
elsex = z;

C.if(a<b)x=vy;if(a<c) x = z;
else if (c < d) z = vy;

5.3 | Boolean Expressions and Variables

In addition to the arithmetic operators introduced in Chapter 3 and relational oper-
ators introduced in Section 5.2, boolean expressions can contain conditional and
boolean operators. A boolean operator, also called a logical operator, takes boolean
values as its operands and returns a boolean value. Three boolean operators are
AND, OR, and NOT. In Java, the symbols &&, Il, and ! represent the AND, OR, and
NOT operators, respectively. Table 5.1 explains how these operators work.

The AND operation results in true only if both P and Q are true. The OR op-
eration results in true if either P or Q is true. The NOT operation is true if A is false
and is false if P is true. Combining boolean operators with relational and arithmetic
operators, we can come up with long boolean expressions such as

(x + 150) == v || x <y && !'(y < 2z && z < X)
(x <y) & (a == b || a == ¢)
a !=0&& b !'=0 && (a + b < 10)

In Section 5.1 we stated that we can reverse the relational operator and switch
the then and else blocks to derive the equivalent code. For example,

if (age < 0) {

System.out.println("Invalid age is entered");
} else {

System.out.println("valid age is entered");

Selection Statements

Table 5.1 Boolean operators and their meanings

P Q P&&Q Pl|Q 1P
false false false false true
false true false true true
true false false true false
true true true true false

is equivalent to

if (!(age < 0)) {
System.out.println("valid age is entered");
} else {
System.out.println("Invalid age is entered");

}
which can be written more naturally as

if (age >= 0) {

System.out.println("vValid age is entered");
} else {

System.out.println("Invalid age is entered");
}

Reversing the relational operator means negating the boolean expression.
In other words, !(age < 0) is equivalent to (age >= 0). Now, consider the following
if-then-else statement:

if (temperature >= 65 && distanceToDestination < 2) {
System.out.println("Let's walk");

} else {
System.out.println("Let's drive");

}

If the temperature is greater than or equal to 65 degrees and the distance to
the destination is less than 2 mi., we walk. Otherwise (it’s too cold or too far
away), we drive. How do we reverse the if-then-else statement? We can rewrite
the statement by negating the boolean expression and switching the then and else
blocks as

if (! (temperature >= 65 && distanceToDestination < 2)) {
System.out.println("Let's drive");

} else {
System.out.println("Let's walk");

5.3 Boolean Expressions and Variables 233

or more directly and naturally as

if (temperature < 65 || distanceToDestination >= 2) {
System.out.println("Let's drive");
} else {

System.out.println("Let's walk");
}

The expression
| (temperature >= 65 && distanceToDestination < 2)
is equivalent to
! (temperature >= 65) || !(distanceToDestination < 2)
which, in turn, is equivalent to
(temperature < 65 || distanceToDestination >= 2)

The logical equivalence is derived by applying the following DeMorgan’s law:

Rulel: ! (p && Q) <— !P || !Q

Rule2: (P || Q) <> '!P && !Q

Equivalence symbol
Table 5.2 shows their equivalence.
Now consider the following expression:
x /vy >z |l vy =20

What will be the result if y is equal to 0? Easy, the result is true, many of you might

arithmetic say. Actually a runtime error called an arithmetic exception will result, because the
exception expression
x /'y

Table 5.2 The truth table illustrating DeMorgan’s law

P Q I(P && Q) P||'Q P||Q IP &&!Q
false false true true true true
false true true true false false
true false true true false false
true true false false false false

234 Chapter5

divide-by-zero
error

short-circuit
evaluation

Selection Statements

causes a problem known as a divide-by-zero error. Remember that you cannot divide
a number by zero.
However, if we reverse the order to

y ==0 1l x /vy >z

then no arithmetic exception will occur because the test x / y > z will not be evalu-
ated. For the OR operator I, if the left operand is evaluated to true, then the right
operand will not be evaluated, because the whole expression is true, whether the
value of the right operand is true or false. We call such an evaluation method a
short-circuit evaluation. For the AND operator &&, the right operand need not be
evaluated if the left operand is evaluated to false, because the result will then
be false whether the value of the right operand is true or false.

Just as the operator precedence rules are necessary to evaluate arithmetic
expressions unambiguously, they are required for evaluating boolean expressions.
Table 5.3 expands Table 3.3 by including all operators introduced so far.

In mathematics, we specify the range of values for a variable as

80 = x < 90

In Java, to test that the value for x is within the specified lower and upper bounds,
we express it as

80 <= x && x < 90

You cannot specify it as
80 <= x < 90 Wrong

This is a syntax error because the relational operators (<, <=, etc.) are binary
operators whose operands must be numerical values. Notice that the result of the
subexpression

80 <= x

is a boolean value, which cannot be compared to the numerical value 90. Their data
types are not compatible.

The result of a boolean expression is either true or false, which are the two
values of data type boolean. As is the case with other data types, a value of a data
type can be assigned to a variable of the same data type. In other words, we can
declare a variable of data type boolean and assign a boolean value to it. Here are
examples:

boolean pass, done;

pass = 70 < x;
done = true;

One possible use of boolean variables is to keep track of the program settings
or user preferences. A variable (of any data type, not just boolean) used for this

flag

5.3 Boolean Expressions and Variables 235

Operator precedence rules. Groups are listed in descending order of prece-

Table 5.3 dence.An operator with a higher precedence will be evaluated first. If two
operators have the same precedence, then the associativity rule is applied

Group Operator Precedence Associativity
Subexpression () 10 Left to right
(If parentheses are nested,
then innermost subexpres-
sion is evaluated first.)

Postfix ++ 9 Right to left
increment and --
decrement
operators
Unary - 8 Right to left
operators !
Multiplicative * 7 Left to right
operators /
Additive + 6 Left to right
operators -
Relational < 5 Left to right
operators =

>

-
Equality == 4 Left to right
operators =
Boolean AND && 3 Left to right
Boolean OR || 2 Left to right
Assignment = 1 Right to left

purpose is called a flag. Suppose we want to allow the user to display either short
or long messages. Many people, when using a new program, prefer to see long
messages, such as Enter a person’s age and press the Enter key to continue. But
once they are familiar with the program, many users prefer to see short messages,
such as Enter age. We can use a boolean flag to remember the user’s preference. We
can set the flag longMessageFormat at the beginning of the program to true or false
depending on the user’s choice. Once this boolean flag is set, we can refer to the
flag at different points in the program as follows:

if (longMessageFormat) {

//display the message in long format

236 Chapter 5 Selection Statements

} else {

//display the message in short format

Notice the value of a boolean variable is true or false, so even though it is
valid, we do not write a boolean expression as

if (isRaining == true) {
System.out.println("Store is open");
} else {

System.out.println("Store is closed");

but more succinctly as

if (isRaining) {
System.out.println("Store is open");

} else {
System.out.println("Store is closed");

Another point that we have to be careful about in using boolean variables is
the choice of identifier. Instead of using a boolean variable such as motionStatus, it
is more meaningful and descriptive to use the variable isMoving. For example, the
statement

if (isMoving) {
//the mobile robot is moving
} else {
//the mobile robot is not moving

is much clearer than the statement

if (motionStatus) {
//the mobile robot is moving
} else {
//the mobile robot is not moving

When we define a boolean data member for a class, it is a Java convention to
use the prefix is instead of get for the accessor.

We again conclude the section with a sample class. Let’s improve the
Ch5Account class by adding a boolean data member active to represent the state of
an account. When an account is first open, it is set to an active state. Deposits and

5.3 Boolean Expressions and Variables 237

withdrawals can be made only when the account is active. If the account is inactive,
then the requested opertion is ignored. Here’s how the class is defined (the actual
class name is Ch5AccountVer2):

—

class Ch5AccountVer?2 {

// Data Members Data Memb
private String ownerName; ata Members

private double balance;

private boolean active;

//Constructor
public Chb5AccountVer2 (String name, double startingBalance) {

ownerName = name;
balance = startingBalance;

setActive (true) ;

}

//Adds the passed amount to the balance
public void add(double amt) { add
//add if amt is positive; do nothing otherwise
if (isActive() && amt > 0) {
balance = balance + amt;

//Closes the account; set 'active' to false
public void close() { close

setActive(false);

//Deducts the passed amount from the balance
public void deduct (double amt) { deduct

o

//deduct if amt is positive; do nothing otherwise
if (isActive() && amt > 0) {
double newbalance = balance - amt;

if (newbalance >= 0) { //don't let the balance become negative
balance = newbalance;

238 Chapter 5 Selection Statements

//Returns the current balance of this account
public double getCurrentBalance() { getCurrentBalance
return balance;

}

//Returns the name of this account's owner
public String getOwnerName() { getOwnerName

return ownerName;
}

//Is the account active?
public boolean isActive() { isActive
return active;

}

//Assigns the name of this account's owner
public void setOwnerName (String name) { setOwnerName

ownerName = name;

}

//Sets 'active' to true or false
private void setActive(boolean state) { setActive

ARy

active = state;

—

. 1. Evaluate the following boolean expressions. Assume X, y, and z have some
Qule numerical values.

CHEK a. 4 <5 || 6 ==6
b. 2 < 4 && (false || 5 <= 4)
C. X <=vy && !(z !'=2z) || x >y
d x<v Il z <y &y <=2z

2. Identify errors in the following boolean expressions and assignments. Assume
x and y have some numerical values.

a. boolean done;

done = x = vy;
b. 2 <4 & (3 <5) + 1 ==3
C. boolean quit;

quit = true;

quit == (34 == 20) && quit;

5.4 Comparing Objects 239

Hi“tsg We introduced the logical AND and OR operations using the symbols && and |].
P.irtli!)asiis In Java, there are single ampersand and single vertical bar operations. For exam-

ple, if we write an if statement as
R0 > & x < 90)

it will compile and run. Unlike the double ampersand, the single ampersand will
not do a short-circuit evaluation. It will evaluate both left and right operands.The
single vertical bar works in an analogous manner. So, which one should we use?
Use double ampersand for AND and double vertical bars for OR.We will most likely
never encounter a situation where we cannot use the double ampersand or the
double vertical bars.

5.4 | Comparing Objects

With primitive data types, we have only one way to compare them, but with objects
(reference data type), we have two ways to compare them. We discuss the ways
the objects can be compared in this section. First, let’s review how we compare
primitive data types. What would be the output of the following code?

int numl, num2;

numl = 15;

num2 = 15;

if (numl == num2) {
System.out.println("They are equal");

} else {

System.out.println("They are not equal");
}

Because the two variables hold the same value, the output is
They are equal

Now, let’s see how the objects can be compared. We will use String objects for
illustration. Since we use string data all the time in our programs, it is very impor-
tant for us to understand perfectly how String objects can be compared.

Consider the following code that attempts to compare two String objects:

String strl, str2;

strl = new String("Java");
str2 = new String("Java");

if (strl == str2) {
System.out .println("They are equal");

240

Chapter 5

Selection Statements

} else {
System.out.println("They are not equal");
}

What would be an output? The answer is
They are not equal

The two objects are constructed with the same sequence of characters, but the result
of comparison came back that they were not equal. Why?

When two variables are compared, we are comparing their contents. In the
case of primitive data types, the content is the actual value. In case of reference data
types, the content is the address where the object is stored. Since there are two dis-
tinct String objects, stored at different addresses, the contents of str1 and str2 are
different, and therefore, the equality testing results in false. If we change the code to

String strl, str2;

strl = new String("Java");

No new object is created here.The content
str2 = strl;

(address) of str1 is copied to str2, making
them both point to the same object.

if (strl == str2) {
System.out.println("They are equal");
} else {

System.out.println("They are not equal");
}

then the output would be
They are equal

because now we have one String object and both variables str1 and str2 point to this
object. This means the contents of str1 and str2 are the same because they refer to
the same address. Figure 5.5 shows the distinction.

What can we do if we need to check whether two distinct String objects have
the same sequence of characters? Many standard classes include different types
of comparison methods. The String class, for example, includes the equals and
equalslgnoreCase comparison methods. The equals method returns true if two String
objects have the exact same sequence of characters. The equalsignoreCase method
does the same as the equals method, but the comparison is done in a case-insensitive
manner. Using the equals method, we can rewrite the first sample code as

String strl, str2;

strl = new String("Java");
str2 = new String("Java");
Use the equals

if (strl.equals(str2)) { method

System.out.println("They are equal");
} else {
System.out.println("They are not equal");

5.4 Comparing Objects 241

Case A: Two variables refer to two different objects.

strl str2 String strl, str2;
strl = new String("Java");
str2 = new String("Java");

:String :String
strl == str2 — false
Case B: Two variables refer to the same object.

strl str2 String strl, str2;
strl = new String("Java");
str2 = strl;
strl == str2 — true

Figure 5.5 How the equality == testing works with the objects.

and get the result
They are equal

Just as the String and many standard classes provide the equals method, it is
common to include such an equals method in programmer-defined classes also.
Consider a Fraction class. We say two Fraction objects are equal if they have the
same value for the numerator and the denominator. Here’s how we can define the
equals method for the Fraction class:

class Fraction {
private int numerator;

private int denominator;

//constructor and other methods

public int getNumerator() {
return numerator;

242 Chapter 5 Selection Statements

public int getDenominator() {
return denominator;

}

public boolean equals(Fraction number) {

return (numerator == number.getNumerator ()
&& denominator == number.getDenominator());
} Compare this object’s values to the
} values of number

Notice that the body of the equals method is a concise version of

if (numerator == number.getNumerator()
&& denominator == number.getDenominator()) {

return true;
} else {

return false;

}

Using the equals method, we can compare two Fraction objects in the follow-
ing manner:

Fraction fracl, frac2;

//create fracl and frac2 objects

if (fracl.equals(frac2)) {
}

or equivalently as
if (frac2.equals(fracl)) {
}

Note that the equals method as defined is incomplete. For example, if we
compare fractions 4/8 and 3/6, using this equals method, we get false as the result
because the method does not compare the fractions in their simplified form. The
method should have reduced both 4/8 and 3/6 to 1/2 and then compared. To
implement a method that reduces a fraction to its simplest form, we need to use a
repetition control statement. We will revisit this problem when we learn how to
write repetition control statements in Chapter 6. Also, we will provide the complete
definition of the Fraction class in Chapter 7.

We conclude this section by presenting an exception to the rule for comparing
objects. This exception applies to the String class only. We already mentioned in

5.4 Comparing Objects 243

Chapter 2 that for the String class only, we do not have to use the new operator to
create an instance. In other words, instead of writing

String str = new String("Java");
we can write
String str = "Java";

which is a more common form. These two statements are not identical in terms
of memory allocation, which in turn affects how the string comparisons work.
Figure 5.6 shows the difference in assigning a String object to a variable. If we do
not use the new operator, then string data are treated as if they are a primitive data
type. When we use the same literal String constants in a program, there will be
exactly one String object.

This means we can use the equal symbol == to compare String objects when
no new operators are used. However, regardless of how the String objects are cre-
ated, it is always correct and safe to use the equals and other comparison methods
to compare two strings.

Always use the equals and other comparison methods to compare String objects.

Do not use == even though it may work correctly in certain cases.

String wordl, word2; word1 word2
wordl = new String("Java") ; E\ /El
word2 = new String("Java") ; :String String
[Whenever the new operator is used, J

there will be a new object.

wordl == word2 — false

String wordl, word2; word1 word2
wordl = "Java'"; E\ /El
word2 = "Java'"; mg
[Literal string constant such as “Java” WillJ

always refer to one object.

wordl == word2 — true

Figure 5.6 Difference between using and not using the new operator for String.

244 Chapter5 Selection Statements

—

g 1. Determine the output of the following code.
Quick

CHECK String strl = "Java";
String str2 = "Java";
boolean resultl = strl == str2;
boolean result2 = strl.equals(str2);

System.out.println(resultl);
System.out.println(result2);

2. Determine the output of the following code.

String strl = new String("latte");
String str2 = new String("LATTE");

boolean resultl = strl == str2;
boolean result2 = strl.equals(str2);

System.out.println(resultl);
System.out.println(result2);

3. Show the state of memory after the following statements are executed.

String strl, str2, str3;
strl = "Jasmine";

str2 = "Oolong";

str3 = str2;

str2 = strl;

5.5 | The switch Statement

switch Another Java statement that implements a selection control flow is the switch

statement statement. Suppose we want to direct the students to the designated location for
them to register for classes. The location where they register is determined by their
grade level. The user enters 1 for freshman, 2 for sophomore, 3 for junior, and 4 for
senior. Using the switch statement, we can write the code as

int gradelevel;

Scanner scanner = new Scanner (System.in);
System.out.print ("Grade (Frosh-1,Soph-2,...): ");
gradeLevel = scanner.nextInt();

switch (gradeLevel) {

case 1: System.out.println("Go to the Gymnasium") ;
break;

case 2: System.out.println("Go to the Science Auditorium") ;
break;

switch
statement
syntax

default
reserved word

5.5 The switch Statement 245

case 3: System.out.println("Go to Halligan Hall Rm 104");
break;

case 4: System.out.println("Go to Root Hall Rm 101");
break;

The syntax for the switch statement is

switch (<integer expression>) {

<case label 1> : <case body 1>

<case label n> : <case body n>

Figure 5.7 illustrates the correspondence between the switch statement we wrote
and the general format.
The <case label i> has the form

case <integer constant> or default

and <case body i> is a sequence of zero or more statements. Notice that <case body i>
is not surrounded by left and right braces. The <constant> can be either a named or
literal constant.

The data type of <arithmetic expression> must be char, byte, short, or int.
(Note: We will cover the data type char in Chap. 9.) The value of <arithmetic
expression> is compared against the constant value i of <case label i>. If there is a

Integer
Expression

CB - case body
CL - case label

switch (f\/ gradelLevel |) {

(@)
-
TN
Q!
o
w
o
]
[
o |
i
-5
w0 !
]
ﬁ\
I
S
®
3
T
ol
&
o
o |
B
H-
B
ool
=1
B
<
o
i
ol
o
o
]
D
Q
=
B
5\
0!
P
(=l
=
=
<
-~ |
]
I
]
]
I
]
]
I
]
]
)
n
=2

L3 l—{r case 3: | i System.out.println("Go to Halligan Hall Rm 104"); B3
h I
H

break;

CL4 l—{ case 4:) | System.out.println("Go to Root Hall Rm 101"); 5 Ba

””””” ! break;

\

}

Figure 5.7 Mapping of the sample switch statement to the general format.

246 Chapter 5

break
statement

Selection Statements

matching case, then its case body is executed. If there is no matching case, then
the execution continues to the statement that follows the switch statement. No two
cases are allowed to have the same value for <constant>, and the cases can be
listed in any order.

Notice that each case in the sample switch statement is terminated with the
break statement. The break statement causes execution to continue from the state-
ment following this switch statement, skipping the remaining portion of the switch
statement. The following example illustrates how the break statement works:

//Assume necessary declaration and object creation are done
selection = 1;

switch (selection) {
case 0: System.out.println(0);
case 1: System.out.println(l);
case 2: System.out.println(2);
case 3: System.out.println(3);
}

When this code is executed, the output is

1
2
3

because after the statement in case 1 is executed, statements in the remaining cases
will be executed also. To execute statements in one and only one case, we need
to include the break statement at the end of each case, as we have done in the first
example. Figure 5.8 shows the effect of the break statement.

The break statement is not necessary in the last case, but for consistency we
place it in every case. Also, by doing so we don’t have to remember to include the
break statement in the last case when we add more cases to the end of the switch
statement.

Individual cases do not have to include a statement, SO we can write some-
thing like this:

Scanner scanner = new Scanner (System.in) ;
System.out .print ("Input: ");

int ranking = scanner.nextInt();

switch (ranking) {

case 10:

case 9:

case 8: System.out.println("Master");
break;

case 7:

case 6: System.out.println("Journeyman");
break;

switch (N) { switch (N) {
case 1: x = 10; case 1: x = 10; break;
case 2: X 20; case 2: x = 20; break;
case 3: x = 30; case 3: x = 30; break;
} }
true true
N == 17 x = 10; N == 17 x = 10;
false false
true true
N == 27 x = 20; N == 27 x = 20;
false false —>
true
N == 3? x = 30; N == 3? x = 30;
false false break; |—>

5.5 The switch Statement

247

Figure 5.8 A diagram showing the control flow of the switch statement with and without the break statements.

case b5:
case 4:

}

System.out.println("Apprentice");

break;

The code will print Master if the value of ranking is 10, 9, or 8; Journeyman if the
value of ranking is either 7 or 6; or Apprentice if the value of ranking is either 5 or 4.

We may include a default case that will always be executed if there is no
matching case. For example, we can add a default case to print out an error message
if any invalid value for ranking is entered.

switch (ranking) {

case
case
case

case
case

case

10:
9:
8:

System.out.println("Master") ;

break;

System.out.println("Journeyman") ;

break;

248 Chapter 5

defensive
programming

Selection Statements

case 4: System.out.println("Apprentice");
break;
default: System.out.println("Error: Invalid Data");

break;
}

There can be at most one default case. Since the execution continues to the next
statement if there is no matching case (and no default case is specified), it is safer to
always include a default case. By placing some kind of output statement in the
default case, we can detect an unexpected switch value. Such a style of program-
ming is characterized as defensive programming. Although the default case does not
have to be placed as the last case, we recommend you do so, in order to make the
switch statement more readable.

PSS

Quick
CHECK

1. What’s wrong with the following switch statement?

switch (N) {

case O:
case 1: x = 11;
break;
default: System.out.println("Switch Error");
break;
case 2: x = 22;
break;
case 1l: x = 33;
break;

}

2. What’s wrong with the following switch statement?

switch (ranking) {
case >4.55: pay = pay * 0.20;
break;
case =4.55: pay = pay * 0.15;
break;
default: pay = pay * 0.05;
break;

5.6 | Drawing Graphics

We introduce four standard classes related to drawing geometric shapes on a
window. These four standard classes will be used in Section 5.7 on the sample
development. We describe their core features here. More details can be found in the
online Java API documentation.

java.awt.
Graphics

content pane
of a frame

5.6 Drawing Graphics 249

java.awt.Graphics

We can draw geometric shapes on a frame window by calling appropriate methods
of the Graphics object. For example, if g is a Graphics object, then we can write

g.drawRect (50, 50, 100, 30);

to display a rectangle 100 pixels wide and 30 pixels high at the specified position
(50, 50). The position is determined as illustrated in Figure 5.9. The complete pro-
gram is shown below. The top left corner, just below the window title bar, is posi-
tion (0, 0), and the x value increases from left to right and the y value increases from
top to bottom. Notice that the direction in which the y value increases is opposite to
the normal two-dimensional graph.

The area of a frame which we can draw is called the content pane of a frame.
The content pane excludes the area of a frame that excludes the regions such as the
border, scroll bars, the title bar, the menu bar, and others. To draw on the content
pane of a frame window, first we must get the content pane’s Graphic object. Then
we call this Graphics method to draw geometric shapes. Here’s a sample:

—

/*
Chapter

File: C
*/

import java
import java

class Chb5Sa
public

JFr
Con
Gra

win

win.
win.
win.

con
g =
g.d

5 Sample Program: Draw a rectangle on a frame
window's content pane

h5SampleGraphics. java

x.swing.*; //for JFrame
.awt.*; //for Graphics and Container

mpleGraphics {
static void main(Stringl[] args) {

ame win;
tainer contentPane;
phics g;

= new JFrame("My First Rectangle");
setSize (300, 200);
setLocation(100,100);

setVisible(true) ;
win must be visible on the
tentPane = win.getContentPanel() ; screen before you get its
contentPane.getGraphics () ; content pane.
rawRect (50,50,100,30) ;

250 Chapter 5 Selection Statements

Syntax

A rectangle <width>
wide and <height> graphic.drawRect (<x>, <y>, <width>, <heights>);

high is displayed at

position (<x>, <y>).

Example: graphic.drawRect (50, 50, 100, 30);

+x

Position (50, 50)

To

Ty | |

! 100 '

Figure 5.9 The diagram illustrates how the position of the rectangle is determined by the drawRect method.

Here are the key points to remember in drawing geometric shapes on the con-
tent pane of a frame window.

hings to Remember

To draw geometric shapes on the content pane of a frame window:

1. The content pane is declared as a Container, for example,

Container contentPane;

2. The frame window must be visible on the screen before we can get its content
pane and the content pane’s Graphics object.

Depending on the speed of your PC, you may have to include the following try
statement

try {Thread.sleep(200);} catch (Exception e) {}

to put a delay before drawing the rectangle. Place this try statement before the
last statement. The argument in the sleep method specifies the amount of delay
in milliseconds (1000 ms = 1 s). If you still do not see a rectangle drawn in the
window after including the delay statement, increase the amount of delay until
you see the rectangle drawn.We will describe the try statement in Chapter 8.

5.6 Drawing Graphics 251

A If there is a window that covers the area in which the drawing takes place or the draw-

g ing window is minimized and restored to its normal size, the drawn shape (or portion of
ol\llltight it, in the case of the overlapping windows) gets erased. The DrawingBoard class used in
Want to the sample development (Sec. 5.7) eliminates this problem. For information on the

Know technique to avoid the disappearance of the drawn shape, please check our website at
www.drcaffeine.com

Table 5.4 lists some of the available graphic drawing methods.

Table 5.4 A partial list of drawing methods defined for the Graphics class

Method Meaning
drawLine (x1,y1l,x2,y2) Draws a line between (x1,y1) and
(x2,v2).
/ (Xzyz)
(xl,yl)
drawRect (x,y,w, h) Draws a rectangle with width w and height h
at (x,y).
xy)
h

w

drawRoundRect (x,y,w,h,aw, ah) | Draws a rounded-corner rectangle with
width w and height h at (x,y).Parameters
aw and ah determine the angle for the
rounded corners.

(x,y)

252 Chapter 5

Selection Statements

Table5.4 A partial list of drawing methods defined for the Graphics class (Continued)

Method Meaning
drawOval (x,y,w,h) Draws an oval with width w and height h at
(x,v).
(x.y)
\ |
I W |
drawString("text",x,y) Draws the string text at (x,y).
xy) — |
fillRect (x,y,w,h) Same as the drawRect method but fills the
region with the currently set color.
fillRoundRect (x,y,w,h,aw,ah) | Same as the drawRoundRect method
but fills the region with the currently
set color.
filloval(x,y,w,h) Same as the drawOval method but fills the
region with the currently set color.

java.awt.Color

Notice the distinction between the draw and fill methods. The draw method
will draw the boundary only, while the fill method fills the designated area with the
currently selected color. Figure 5.10 illustrates the difference.

java.awt.Color

To designate the color for drawing, we will use the Color class from the standard
java.awt package. A Color object uses a coloring scheme called the RGB scheme,
which specifies a color by combining three values, ranging from 0 to 255, for red,
green, and blue. For example, the color black is expressed by setting red, green,
and blue to 0, and the color white by setting all three values to 255. We create, for
example, a Color object for the pink color by executing

Color pinkColor;
pinkColor = new Color(255,175,175);

5.6 Drawing Graphics 253

g.drawRect (50, 50, g.fillRect (175, 50, 100, 30);

100, 30);
e A= %

Figure 5.10 The diagram illustrates the distinction between the draw and fill methods. We assume the
currently selected color is black (default).

Instead of dealing with the three numerical values, we can use the public class
constants defined in the Color class. The class constants for common colors are

Color.BLACK Color .MAGENTA
Color.BLUE Color.ORANGE
Color.CYAN Color.PINK
Color.DARK_GRAY Color.RED
Color.GRAY Color .WHITE
Color.GREEN Color.YELLOW

Color.LIGHT_GRAY

The class constants in lowercase letters are also defined (such as Color.black,
Color.blue, and so forth). In the older versions of Java, only the constants in
lowercase letters were defined. But the Java convention is to name constants using
only the uppercase letters, so the uppercase color constants are added to the class
definition.

Each of the above is a Color object with its RGB values correctly set up. We
will pass a Color object as an argument to the setColor method of the Graphics class
to change the color. To draw a blue rectangle, for example, we write

//Assume g is set correctly
g.setColor(Color.BLUE) ;
g.drawRect (50, 50, 100, 30);

We can also change the background color of a content pane by using the
setBackground method of Container as

contentPane.setBackground(Color.LIGHT_GRAY) ;

254 Chapter5 Selection Statements

Figure 5.11 A frame with a white background content pane and two rectangles.

Running the following program will result in the frame shown in Figure 5.11.

/*
Chapter 5 Sample Program: Draw one blue rectangle and
one filled red rectangle on light gray
background content pane
File: ChbSampleGraphics2.java
*/

import javax.swing.*;
import java.awt.*;

class Ch5SampleGraphics2 {
public static void main(Stringl[] args) {

JFrame win;
Container contentPane;
Graphics g;

win = new JFrame("Rectangles");
win.setSize (300, 200);
win.setLocation(100,100);
win.setVisible(true);

contentPane = win.getContentPanel() ;
contentPane.setBackground(Color.LIGHT_GRAY) ;

g = contentPane.getGraphics();
g.setColor (Color.BLUE) ;
g.drawRect (50,50,100,30);

5.6 Drawing Graphics 255

g.setColor(Color.RED) ;
g.fillRect(175,50,100,30);

java.awt.Point

A Point object is used to represent a point in two-dimensional space. It contains x
and y values, and we can access these values via its public data member x and y.
Here’s an example to assign a position (10, 20):

Point pt = new Point();
pt.x = 10;
pt.y = 20;

It is also possible to set the position at the creation time as follows:

Point pt = new Point (10, 20);

java.awt.Dimension

In manipulating shapes, such as moving them around a frame’s content pane, the
concept of the bounding rectangle becomes important. A bounding rectangle is a
rectangle that completely surrounds the shape. Figure 5.12 shows some examples of
bounding rectangles.

Just as the (x, y) values are stored as a single Point object, we can store the width
and height of a bounding rectangle as a single Dimension object. The Dimension class
has the two public data members width and height to maintain the width and height
of a bounding rectangle. Here’s an example to create a 40 pixels by 70 pixels high
bounding rectangle:

Dimension dim = new Dimension();
dim.width = 40;
dim.height = 70;

1 Bounding rectangle

----of arectangleis the i_ __ | Bounding rectangle
' rectangle itself.

Figure 5.12 Bounding rectangles of various shapes.

256 Chapter 5 Selection Statements
IIEII|IIHI IIII

Figure 5.13 Sample output of Ch5RoomWinner program.

It is also possible to set the values at the creation time as follows:
Dimension dim = new Dimension (40, 70);

Let’s apply the drawing techniques to an early sample program. In Chapter 4,
we wrote the RoomWinner program that randomly selects and displays the dorm
room lottery cards. The display was only in text, something like this:

Winning Card Combination:
1 - red; 2 - green; 3 - blue

color number
Card 1: 2 13
Card 2: 2 12
Card 3: 1 14

We will make a graphical version of the program. Figure 5.13 shows a sample

output.
Here’s the main class Ch5RoomWinner, which has a structure similar to the

one for Ch5SampleGraphics2.

—

import java.awt.*;
import javax.swing.*;

class Ch5RoomWinner {
public static void main(Stringl[] args) {

JFrame win;
Container contentPane;
Graphics g;

5.6 Drawing Graphics 257

GraphicLotteryCard one, two, three;

win = new JFrame("Room Winner");
win.setSize (300, 200);
win.setLocation(100,100);
win.setVisible(true) ;

contentPane = win.getContentPane() ;
contentPane.setBackground(Color .WHITE) ;

g = contentPane.getGraphics();

one new GraphicLotteryCard();
two new GraphicLotteryCard();
three = new GraphicLotteryCard();

one.spin();
two.spin();
three.spin() ;

one.draw(g, 10, 20);
two.draw(g, 50, 20);
three.draw(g, 90, 20);

These objects will draw themselves
on g at the specified positions.

}
}
|

We modify the LotteryCard class from Chapter 4 by adding code that will draw a
card on a given Graphics context. The name of the new class is GraphicLotteryCard.
Here’s the class definition (we list only the portions that are new):

—

import java.awt.*;
class GraphicLotteryCard {
// Data Members

//width of this card for drawing
public static final int WIDTH = 30;

//height of this card for drawing
public static final int HEIGHT = 40;

//the other data members and methods are the same as before
public void draw(Graphics g, int xOrigin, int yOrigin) ({

switch (color) {
case 1: g.setColor(Color.RED);
break;

258 Chapter 5 Selection Statements

case 2: g.setColor(Color.GREEN) ;
break;

case 3: g.setColor(Color.BLUE) ;
break;
}

g.fillRect (xOrigin, yOrigin, WIDTH, HEIGHT) ;
g.setColor(Color.WHITE); //draw text in white

g.drawString("" + number, xOrigin + WIDTH/4, yOrigin + HEIGHT/2);

} This is a quick way to convert a
numerical value to String

Notice that the statements in Ch5RoomWinner

one.draw(g, 10, 20);
two.draw(g, 50, 20);
three.draw(g, 90, 20);

are not as flexible as they can be. If the values for the constant WIDTH and HEIGHT
in the GraphicLotteryCard class are changed, these three statements could result in
drawing the card inadequately (such as overlapping cards). The two constants are
declared public for a reason. Using the WIDTH constant, for example, we can rewrite
the three statements as

int cardwidth = GraphicLotteryCard.WIDTH;
one.draw(g, 10, 20);

two.draw(g, 10 + cardwidth + 5, 20);
three.draw(g, 10 + 2*(cardwidth+ 5), 20);

The statements will draw cards with a 5-pixel interval between cards. This code will
continue to work correctly even after the value of WIDTH is modified.

5.7 | Enumerated Constants

We learned in Section 3.3 how to define numerical constants and the benefits of
using them in writing readable programs. In this section, we will introduce an
enumerated additional type of constant called enumerated constants that were added to the Java
constants language from Version 5.0. Let’s start with an example. Suppose we want to define
a Student class and define constants to distinguish four undergraduate grade

enumerated
type

5.7 Enumerated Constants 259

levels—freshman, sophomore, junior, and senior. Using the numerical constants,
we can define the grade levels as such:

class Student {
public static final int FRESHMAN = 0;
public static final int SOPHOMORE = 1;
public static final int JUNIOR = 2;
public static final int SENIOR

Il
w

}

With the new enumerated constants, this is how we can define the grade lev-
els in the Student class:

class Student {
public static enum GradeLevel
{FRESHMAN, SOPHOMORE, JUNIOR, SENIOR}

}

The word enum is a new reserved word, and the basic syntax for defining enumer-
ated constants is

enum <enumerated type> { <constant values> }

where <enumerated type> is an identifier and <constant values> is a list of identi-
fiers separated by commas. Notice that for the most common usage of enumerated
constants, we append the modifiers public and static; but they are not a required part
of defining enumerated constants. Here are more examples:

enum Month {JANUARY, FEBRUARY, MARCH, APRIL,
MAY, JUNE, JULY, AUGUST,
SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER}

enum Gender {MALE, FEMALE}

enum SkillLevel {NOVICE, INTERMEDIATE, ADVANCED, EXPERT}

One restriction when declaring an enumerated type is that it cannot be a local
declaration. In other words, we must declare it outside of any method, just as for the
other data members of a class.

Unlike numerical constants, which are simply identifiers with fixed numerical
values, enumerated constants do not have any assigned numerical values. They are
said to belong to, or be members of, the associated enumerated type. For example,
two enumerated constants MALE and FEMALE belong to the enumerated type
Gender. (Note: We keep the discussion of the enumerated type to its simplest form
here. It is beyond the scope of an introductory programming textbook to discuss
Java’s enumerated type in full detail.)

260 Chapter 5

type safety

Selection Statements

Just as with any other data types, we can declare variables of an enumerated
type and assign values to them. Here is an example (for the sake of brevity, we list
the enum declaration and its usage together, but remember that the declaration in
the actual use cannot be a local declaration):

enum Fruit {APPLE, ORANGE, BANANA}

Fruit f1, f2, f£3;
NOTE: The constant value is prefixed

£l = Fruit.APPLE; by the name of the enumerated type.

f2 = Fruit.BANANA;

£f3 = f1;

Because variables f1, f2, and f3 are declared to be of the type Fruit, we can only
assign one of the associated enumerated constants to them. This restriction supports
a desired feature called fype safety. So what is the big deal? Consider the following
numerical constants and assignment statements:

final int APPLE
final int ORANGE = 2;
final int BANANA = 3;

1l
=

int fOne, fTwo, fThree;
fOne = APPLE;
fTwo = ORANGE;
fThree = fOne;

The code may look comparable to the one that uses enumerated constants, but
what will happen if we write the following?

fOne = 45;

The assignment is logically wrong. It does not make any sense to assign meaning-
less value such as 45 to the variable fOne if it is supposed to represent one of the de-
fined fruit. However, no compiler error will result because the data type of fOne is
int. The statement may or may not cause the runtime error depending on how the
variable fOne is used in the rest of the program. In either case, the program cannot
be expected to produce a correct result because of the logical error.

By defining an enumerated type, a variable of that type can only accept the
associated enumerated constants. Any violation will be detected by the compiler.
This will eliminate the possibility of assigning a nonsensical value as seen in
the case for the numerical constants. Type safety means that we can assign only
meaningful values to a declared variable.

Another benefit of the enumerated type is the informative output values. As-
suming the variables fTwo and f2 retain the values assigned to them in the sample
code, the statement

System.out.println("Favorite fruit is " + £Two);

5.7 Enumerated Constants 261

will produce a cryptic output:

Favorite fruit is 2

In contrast, the statement
System.out.println("Favorite fruit is " + £2);

will produce a more informative output:

Favorite fruit is BANANA

We will describe other advantages of using enumerated types later in the book.
As shown, when referring to an enumerated constant in the code, we must pre-
fix it with its enumerated type name, for example,

Fruit f = Fruit.APPLE;

if (£ == Fruit.ORANGE) {
System.out.println("I like orange, too.");

A case label for a switch statement is the only exception to this rule. Instead of
writing, for example,

Fruit fruit;

fruit = ... ;

switch (fruit) {
case Fruit.APPLE: . . .;
break;
case Fruit.ORANGE: . . .;
break;
case Fruilt.BANANA: . . .;
break;
}

we can specify the case labels without the prefix as in

Fruit fruit;
fruit = ...;
switch (fruit) {

case APPLE: . . .;
break;

262 Chapter 5

Hints,
Tips,
Pitfalls

Selection Statements

case ORANGE: . . .;
break;

case BANANA: . . .;
break;

It is not necessary to prefix the enumerated constant with its enumerated type
name when it is used as a case label in a switch statement.

The enumerated type supports a useful method named valueOf. The method
accepts one String argument and returns the enumerated constant whose value
matches the given argument. For example, the following statement assigns the enu-
merated constant APPLE to the variable fruit:

Fruit fruit = Fruit.valueOf ("APPLE");

In which situations could the valueOf method be useful? One is the input rou-
tine. Consider the following:

Scanner scanner = new Scanner (System.in);

System.out.print ("Enter your favorite fruit " +
" (APPLE, ORANGE, BANANA): ");

String fruitName = scanner.next();

Fruit favoriteFruit = Fruit.valueOf (fruitName) ;

Be aware, however, that if you pass a String value that does not match any of the de-
fined constants, it will result in a runtime error. This means if the user enters
Orange, for example, it will result in an error (the input has to be all capital letters
to match). We will discuss how to handle such runtime errors without causing the
program to terminate abruptly in Chapter 8.

To access the enumerated constants in a programmer-defined class from outside
the class, we must reference them through the associated enumerated type (assuming,
of course, the visibility modifier is public). Consider the following Faculty class:

class Faculty {

public static enum Rank
{LECTURER, ASSISTANT, ASSOCIATE, FULL}

private Rank rank;

5.7 Enumerated Constants 263

public void setRank(Rank r) {
rank = r;

}

public Rank getRank() {
return rank;

}

Notice how the enumerate type Rank is used in the setRank and getRank methods.
It is treated just as any other types are. To access the Rank constants from outside of
the Faculty class, we write

Faculty.Rank.ASSISTANT

Faculty.Rank.FULL

and so forth. Here’s an example that assigns the rank of ASSISTANT to a Faculty
object:

Faculty prof = new Faculty(...);
prof.setRank (Faculty.Rank.ASSISTANT) ;

And here’s an example to retrieve the rank of a Faculty object:
Faculty teacher;
//assume 'teacher' is properly created
Faculty.Rank rank;

rank = teacher.getRank();

P

Quick
CHECK

1. Define an enumerated type Day that includes the constants SUNDAY through
SATURDAY.

2. What is the method that returns an enumerated constant, given the matching
String value?

3. Detect the error(s) in the following code:

enum Fruit {APPLE, ORANGE, BANANA}

Fruit f1, £2;
int £3;

f1 = 1;

£f2 = ORANGE;
£3 = £1;

f1 = "BANANA";

264 Chapter5 Selection Statements

Sample Development

Drawing Shapes

When a certain period of time passes without any activity on a computer,a screensaver be-
comes active and draws different types of geometric patterns or textual messages.
In this section we will develop an application that simulates a screensaver.We will learn a
development skill very commonly used in object-oriented programming. Whether we
develop alone or as a project team member, we often find ourselves writing a class that
needs to behave in a specific way so that it works correctly with other classes. The other
classes may come from standard Java packages or could be developed by the other team
members.

In this particular case, we use the DrawingBoard class (written by the author). This
is a helper class that takes care of programming aspects we have not yet mastered, such as
moving multiple geometric shapes in a smooth motion across the screen.lt is not an issue
of whether we can develop this class by ourselves, because no matter how good we be-
come as programmers, we would rarely develop an application completely on our own.

We already used many predefined classes from the Java standard libraries, but
the way we will use the predefined class here is different. When we developed programs
before, the classes we wrote called the methods of predefined classes. Our main method
creating a GregorianCalendar object and calling its methods is one example.Here, for us
to use a predefined class, we must define another class that provides necessary services
to this predefined class. Figure 5.14 differentiates the two types of predefined classes.
The first type does not place any restriction other than calling the methods correctly,
while the second type requires us to implement helper classes in a specific manner to
support it.

In our case, the predefined class DrawingBoard will require another class named
DrawableShape that will assume the responsibility of drawing individual geometric
shapes. So, to use the DrawingBoard class in our program, we must implement the class
named DrawableShape. And we must implement the DrawableShape class in a specific
way.The use of the DrawingBoard class dictates that we define a set of fixed methods in
the DrawableShape class. We can add more, but we must at the minimum provide the
specified set of fixed methods because the DrawingBoard class will need to call these
methods.The methods are “fixed”in the method signature—method name, the number of
parameters and their types, and return type—but the method body can be defined in any
way we like.This is how the flexibility is achieved. For example, the DrawableShape class we
define must include a method named draw with the dictated signature.But it’s up to us to
decide what we put in the method body.So we can choose, for example, to implement the
method to draw a circle, rectangle, or any other geometric shape of our choosing.

As always, we will develop this program following incremental development steps.
The incremental development steps we will take here are slightly different in character
from those we have seen so far. In the previous incremental developments, we knew all
the ingredients, so to speak.Here we have to include a step to explore the DrawingBoard
class.We will find out shortly that to use the DrawingBoard class, we will have to deal with
some Java standard classes we have not seen yet. Pedagogically, a textbook may try to

5.8 Sample Development 265

MyClass1 TypelClass
There's no restriction in
> using type 1 predefined
classes other than calling
0 6, their methods correctly.
MyClass2 Type2Class MyHelperClass
- > - >
To use type 2 predefined

classes, we must define

() A class we implement

6’ A class given to us

helper classes required by
the predefined classes.

Figure 5.14 Two types of predefined classes. The first type does not require us to do anything more
than use the predefined classes by calling their methods.The second type requires us to define helper
classes for the predefined classes we want to use.

program
tasks

explain beforehand everything that is necessary to understand the sample programs.
But no textbook can explain everything.When we develop programs, there will always be
a time when we encounter some unknown classes. We need to learn how to deal with
such a situation in our development steps.

Problem Statement

Write an application that simulates a screensaver by drawing various geometric
shapes in different colors. The user has the option of choosing a type (ellipse or
rectangle), color,and movement (stationary, smooth, or random).

Overall Plan

We will begin with our overall plan for the development. Let’s begin with the outline of
program logic. We first let the user select the shape, its movement, and its color, and we
then start drawing.We express the program flow as having four tasks:

1. Get the shape the user wants to draw.
2. Get the color of the chosen shape.
3. Get the type of movement the user wants to use.

4, Start the drawing.

266

Chapter5 Selection Statements

Sample Development—continued

Let’s look at each task and determine an object that will be responsible for handling
the task. For the first three tasks, we can use our old friend Scanner. We will get into the
details of exactly how we ask the users to input those values in the later incremental
steps. For the last task of actually drawing the selected shape, we need to define our own
class. The task is too specific to the program, and there is no suitable object in the stan-
dard packages that does the job. As discussed earlier, we will use a given predefined class
DrawingBoard and define the required helper class DrawableShape.

We will define a top-level control object that manages all these objects. We will call
this class Ch5DrawShape. As explained in Section 4.10, we will make this control object
the main class. Here’s our working design document:

Z;"Sg:m Design Document: Ch5DrawShape

Class Purpose

Ch5DrawShape The top-level control object that manages other objects
in the program.This is the main class, as explained in
Section 4.10.

DrawingBoard The given predefined class that handles the movement of
DrawableShape objects.

DrawableShape The class for handling the drawing of individual shapes.

Scanner The standard class for handling input routines.

Figure 5.15 is the program diagram for this program.

Ch5DrawShape Scanner
-
T
l
I
vV
DrawingBoard DrawableShape
-

Figure 5.15 The program diagram for the Ch5DrawShape program.

development
steps

step 1
design

5.8 Sample Development 267

We will implement this program in the following six major steps:
1. Start with a program skeleton. Explore the DrawingBoard class.
2. Define an experimental DrawableShape class that draws a dummy shape.

3. Add code to allow the user to select a shape. Extend the DrawableShape and
other classes as necessary.

4. Add code to allow the user to specify the color.Extend the DrawableShape and
other classes as necessary.

5. Add code to allow the user to specify the motion type. Extend the DrawableShape
and other classes as necessary.

6. Finalize the code by tying up loose ends.

Our first task is to find out about the given class. We could have designed the input rou-
tines first, but without knowing much about the given class, it would be difficult to design
suitable input routines.When we use an unknown class, it is most appropriate to find out
more about this given class before we plan any input or output routines. Just as the de-
velopment steps are incremental, our exploration of the given class will be incremental.
Instead of trying to find out everything about the class at once, we begin with the basic
features and skeleton code. As we learn more about the given class incrementally, we
extend our code correspondingly.

Step 1 Development: Program Skeleton

We begin the development with the skeleton main class.The main purpose in step 1 is to
use the DrawingBoard class in the simplest manner to establish the launch pad for the
development. To do so, we must first learn a bit about the given DrawingBoard class.
Here’s a brief description of the DrawingBoard class. In a real-world situation, we would
be finding out about the given class by reading its accompanying documentation or
some other external sources. The documentation may come in form of online javadoc
documents or reference manuals.

DrawingBoard

An instance of this class will support the drawing of Drawabl eShape objects. Shapes
can be drawn at fixed stationary positions, at random positions, or in a smooth motion
at the specified speed.The actual drawing of the individual shapes is done inside the
DrawableShape class.The client programmer decides which shape to draw.

public void addShape (DrawableShape shape)
Adds shape to this DrawingBoard object.You can add an unlimited number
of DrawableShape objects.

(Continued)

268

Chapter5 Selection Statements

Sample Development—continued

public void setBackground(java.awt.Color color)
Sets the background color of this DrawingBoard object to the designated
color.The default background color is black.

DrawingBoard (Continued)

public void setDelayTime(double delay)
Sets the delay time between drawings to delay seconds.The smaller the delay
time, the faster the shapes move. If the movement type is other than SMOOTH,
then setting the delay time has no visual effect.

public void setMovement (Movement type)
Sets the movement type to type.Class constants for three types of motion are
Movement . STATTIONARY—draw shapes at fixed positions,
Movement . RANDOM—draw shapes at random positions, and
Movement . SMOOTH—draw shapes in a smooth motion.

public void setVisible(boolean state)
Makes this DrawingBoard object appear on or disappear from the screen
if stateis true or false,respectively. To simulate the screensaver,
setting it visible will cause a maximized window to appear on the screen.

public void start()
Starts the drawing. If the window is not visible yet, it will be made visible before
the drawing begins.

Among the defined methods, we see the setVisible method is the one to make
it appear on the screen. All other methods pertain to adding DrawableShape objects
and setting the properties of a DrawingBoard object. We will explain the standard
java.awt.Color class when we use the setBackground method in the later step. In this
step, we will keep the code very simple by only making it appear on the screen. We will
deal with other methods in the later steps.

Our working design document for the Ch5DrawShape class is as follows:

Design Document: The Ch5DrawShape Class

Method Visibility Purpose

<constructor> Public Creates a DrawingBoard object.
main Public This is main method of the class.
start Public Starts the program by opening a

DrawingBoard object.

5.8 Sample Development 269

S| @il Since this is a skeleton code, it is very basic. Here’s the code:

—

/*
Chapter 5 Sample Development: Drawing Shapes (Step 1)

The main class of the program.
*/

class Ch5DrawShape {
private DrawingBoard canvas;
public ChS5DrawShape() {

canvas = new DrawingBoard();

}

public void start() {
canvas.setVisible(true) ;

}

public static void main(String[] args) {
Ch5DrawShape screensaver = new ChS5DrawShape();

screensaver.start();

step 1 test The purpose of step 1 testing is to verify that a DrawingBoard object appears
correctly on the screen. Since this is our first encounter with the DrawingBoard class,
it is probable that we are not understanding its documentation fully and completely.
We need to verify this in this step. When a maximized window with the black back-
ground appears on the screen, we know the main class was executed properly.
After we verify the correct execution of the step 1 program, we will proceed to imple-
ment additional methods of Ch5DrawShape and gradually build up the required
DrawableShape class.

Step 2 Development: Draw a Shape
step 2 In the second development step, we will implement a preliminary DrawableShape
design class and make some shapes appear on a DrawingBoard window. To draw shapes,
we need to add them to a DrawingBoard window. And to do so, we need to define the

270

Chapter5 Selection Statements

Sample Development—continued

200

DrawableShape class with the specified set of methods. Here are the required methods
and a brief description of what to accomplish in them:

Required Methods of Drawableshape

public void draw(java.awt.Graphics)
Draw a geometric shape on the java.awt .Graphics. The DrawingBoard
window calls the draw method of DrawableShape objects added to it.

public java.awt.Point getCenterPoint ()
Return the center point of this shape.

public java.awt.Dimension getDimension()
Return the bounding rectangle of this shape as a Dimension.

public void setCenterPoint(java.awt.Point)
Set the center point of this shape.The DrawingBoard window calls the
setCenterPoint method of DrawableShape objects to update their
positions in the SMOOTH movement type.

At this stage, the main task is for us to confirm our understanding of the require-
ments in implementing the DrawableShape class.Once we get this confirmation, we can
get into the details of the full-blown DrawableShape class.

To keep the preliminary class simple, we draw three filled circles of a fixed size and
color. The DrawableShape class includes a single data member centerPoint to keep
track of the shape’s center point. If we fix the radius of the circles to 100 pixels, that is, the
bounding rectangle is 200 pixels by 200 pixels, and the color to blue, then the draw
method can be written as follows:

public void draw(Graphics g) {

2
00 g.setColor(Color.blue) ;

g.filloval (centerPoint .x-100, centerPoint.y-100, 200, 200);
}

Since the size is fixed, we simply return a new Dimension object for the
getDimension method:

public Dimension getDimension() {

return new Dimension (200, 200);

}

For the setCenterPoint and getCenterPoint methods, we assign the passed para-
meter to the data member centerPoint and return the current value of the data member
centerPoint, respectively.

5.8 Sample Development 271

We are now ready to modify the Ch5DrawShape class to draw three filled circles.
We will implement this by modifying the start method. First we need to create three
DrawableShape objects and add them to the DrawingBoard object canvas:

DrawableShape shapel new DrawableShape();
DrawableShape shape2 = new DrawableShape() ;
DrawableShape shape3 = new DrawableShape();

shapel.setCenterPoint (new Point (250,300));
shape2.setCenterPoint (new Point (500,300));
shape3.setCenterPoint (new Point (750,300));

canvas.addShape (shapel) ;
canvas.addShape (shape2) ;
canvas.addShape (shape3) ;

Then we set the motion type to SMOOTH movement, make the window appear on the
screen, and start the drawing:

canvas.setMovement (DrawingBoard.Movement . SMOOTH) ;
canvas.setVisible(true);
canvas.start();

step 2 code Here's the code for the preliminary DrawableShape class:

—

import java.awt.*;

/*
Step 2: Add a preliminary DrawableShape class

A class whose instances know how to draw themselves.
*/
class DrawableShape {

Data Members
private Point centerPoint;

public DrawableShape() {
Constructors

centerPoint = null;
}

public void draw(Graphics g) {
draw

[[

g.setColor (Color.blue) ;
g.fillOval (centerPoint.x-100, centerPoint.y-100, 200, 200);

272 Chapter 5 Selection Statements

5.8 Sample Development—continued

public Point getCenterPoint() { l getCenterPoint I
return centerPoint;

}

public Dimension getDimension() { l getDimension I
return new Dimension (200, 200);

}

public void setCenterPoint (Point point) { l setCenterPoint I
centerPoint = point;

}

The Ch5DrawShape class now has the modified start method as designed (the rest of
the class remains the same):

—

import java.awt.*;

/*
Chapter 5 Sample Development: Start drawing shapes (Step 2)

The main class of the program.
*/

class Ch5DrawShape {

public void start() { start I

DrawableShape shapel = new DrawableShape();
DrawableShape shape?2 = new DrawableShape();
DrawableShape shape3 = new DrawableShape() ;

shapel.setCenterPoint (new Point (250,300));
shape2.setCenterbPoint (new Point (500,300));
shape3.setCenterPoint (new Point (750,300));

canvas.addShape (shapel) ;
canvas.addShape (shape2) ;
canvas.addShape (shape3) ;

5.8 Sample Development 273
canvas.setMovement (DrawingBoard.Movement . SMOOTH) ;

canvas.setVisible(true);
canvas.start () ;

Now we run the program and verify the three bouncing circles moving around.To

step 2 test
test other options of the DrawingBoard class, we will try the other methods with different
parameters:
Method Test Parameter
setMovement Try both DrawingBoard. STATIONARY and
DrawingBoard.RANDOM
setDelayTime Try values ranging from 0.1 to 3.0.
setBackground Try several different Color constants such
asColor.white, Color.red,and
Color.green

We insert these testing statements before the statement
canvas.setVisible(true);

in the start method.
Another testing option we should try is the drawing of different geometric shapes.
We can replace the drawing statement inside the draw method from

g.fillOval (centerPoint.x-100, centerPoint.y-100,

200, 200);
to
g.fillRect (centerPoint.x-100, centerPoint.y-100,
200, 200);
or

g.fillRoundRect (centerPoint .x-100, centerPoint.y-100,
200, 200, 50, 50);

to draw a filled rectangle or a filled rounded rectangle, respectively.

274

Chapter 5

Selection Statements

Sample Development—continued

step 3
design

design
alternative 1

design
alternative 2

Step 3 Development: Allow the User to Select a Shape

Now that we know how to interact with the DrawingBoard class, we can proceed to
develop the user interface portion of the program. There are three categories in which
the user can select an option: shape, color, and motion. We will work on the shape selec-
tion here and on the color and motion selection in the next two steps.Once we are done
with this step, the next two steps are fairly straightforward because the idea is essentially
the same.

Let’s allow the user to select one of three shapes—ellipse, rectangle, and rounded
rectangle—the shapes we know how to draw at this point.We can add more fancy shapes
later. In what ways should we allow the user to input the shape? There are two possible
alternatives: The first would ask the user to enter the text and spell out the shape, and the
second would ask the user to enter a number that corresponds to the shape (1 for ellipse,
2 for rectangle, 3 for rounded rectangle, e.g.). Which is the better alternative?

We anticipate at least two problems with the first input style. When we need to get
a user’s name, for example, there’s no good alternative other than asking the user to enter
his or her name.But when we want the user to select one of the few available choices, it is
cumbersome and too much of a burden for the user. Moreover, it is prone to mistyping.

To allow the user to make a selection quickly and easily, we can let the user select
one of the available choices by entering a corresponding number.We will list the choices
with numbers 1,2,and 3 and get the user’s selection as follows:

System.out.print ("Selection: Enter the Shape number\n" +
" 1 - Ellipse \n" +
" 2 - Rectangle \n" +
" 3 - Rounded Rectangle \n");

int selection = scanner.nextInt();

For getting the dimension of the shape, we accept the width and height values
from the user. The values cannot be negative, for sure, but we also want to restrict the
values to a certain range.We do not want the shape to be too small or too large. Let’s set
the minimum to 100 pixels and the maximum to 500 pixels. If the user enters a value
outside the acceptable range, we will set the value to 100.The input routine for the width
can be written as follows:

System.out.print ("Enter the width of the shape\n" +
"between 100 and 500 inclusive: ");

int width = scanner.nextInt();

if (width < 100 || width > 500) {
width = 100;
}

The input routine for the height will work in the same manner.

5.8 Sample Development 275

For getting the x and y values of the shape’s center point, we follow the pattern of
getting the width and height values. We will set the acceptable range for the x value to
200 and 800, inclusive, and the y value to 100 and 600, inclusive.

Our next task is to modify the DrawableShape class so it will be able to draw three
different geometric shapes. First we change the constructor to accept the three input
values:

public DrawableShape (Type sType, Dimension sDim,
Point sCenter) {

type = sType;
dimension = sDim;
centerPoint = sCenter;

}

The variables type, dimension, and centerPoint are data members for keeping track of
necessary information.
Next, we define the data member constants as follows:
public static enum Type {ELLIPSE, RECTANGLE, ROUNDED_RECTANGLE}

private static final Dimension DEFAULT_DIMENSION
= new Dimension (200, 200);

private static final Point DEFAULT_CENTER_PT
= new Point (350, 350);

In the previous step, the draw method drew a fixed-size circle.We need to modify it
to draw three different geometric shapes based on the value of the data member type.
We can modify the method to

public void draw(Graphics g) {

g.setColor(Color.blue);

drawShape (g) ;
}

with the private method drawShape defined as

private void drawShape(Graphics g) {
switch (type) {

case ELLIPSE:
//code to draw a filled oval comes here
break;

case RECTANGLE:
//code to draw a filled rectangle comes here
break;

276 Chapter5 Selection Statements

5.8 Sample Development—continued

case ROUNDED_RECTANGLE:
//code to draw a filled rounded rectangle
//comes here
break;

}

step 3 code Here’s the modified main class Ch5DrawShape:

—

import java.awt.*;
import java.util.*;

/*
Chapter 5 Sample Development: Handle User Input for Shape Type (Step 3)

The main class of the program.
*/

class Ch5DrawShape {

public void start() { start

!

DrawableShape shapel = getShapel();
canvas .addShape (shapel) ;
canvas.setMovement (DrawingBoard.SMOOTH) ;

canvas.setVisible(true);
canvas.start () ;

}

private DrawableShape getShape() { getShape

!

DrawableShape.Type type = inputShapeTypel();

Dimension dim = inputDimension() ;

Point centerPt = inputCenterPoint();

DrawableShape shape = new DrawableShape(type, dim, centerPt);

return shape;

5.8 Sample Development 277

private DrawableShape.Type inputShapeType() { (inputShapeType]

System.out.print ("Selection: Enter the Shape number\n" +
" 1 - Ellipse \n" +
" 2 - Rectangle \n" +
" 3 - Rounded Rectangle \n");

int selection = scanner.nextInt();
DrawableShape.Type type;
switch (selection) {

case 1: type = DrawableShape.Type.ELLIPSE;
break;

case 2: type = DrawableShape.Type.RECTANGLE;
break;

case 3: type = DrawableShape.Type.ROUNDED_RECTANGLE;
break;

default: type = DrawableShape.Type.ELLIPSE;
break;
}

return type;
}

private Dimension inputDimension() { ‘ inputDimension

System.out.print ("Enter the width of the shape\n" +
"between 100 and 500 inclusive: ");

int width = scanner.nextInt();

if (width < 100 || width > 500) {
width = 100;

}

System.out.print ("Enter the height of the shape\n" +
"between 100 and 500 inclusive: ");

int height = scanner.nextInt();

if (height < 100 || height > 500) {
height 100;

}

return new Dimension(width, height);

278 Chapter 5 Selection Statements

5.8 Sample Development—continued
private Point inputCenterPoint() { l inputCenterPoint l

System.out.print ("Enter the x value of the center point\n" +
"between 200 and 800 inclusive: ");

int X = scanner.nextInt();

if (x < 200 || x > 800) {
x = 200;
}

System.out.print ("Enter the y value of the center point\n" +
"between 100 and 500 inclusive: ");

int v = scanner.nextInt();

if (v < 100 || y > 500) {
vy = 100;
}

return new Point(x, y);
}
}
|
The DrawableShape class is now modified to this:

—

import java.awt.*;

/*
Step 3: Draw different shapes

A class whose instances know how to draw themselves.
*/

class DrawableShape ({ l Data Members I

public static enum Type {ELLIPSE, RECTANGLE, ROUNDED_RECTANGLE}

private static final Dimension DEFAULT_DIMENSION
= new Dimension (200, 200);

5.8 Sample Development 279

private static final Point DEFAULT CENTER_PT = new Point (350, 350);

private Point centerPoint;
private Dimension dimension; ‘ Constructor
private Type type;

public DrawableShape (Type sType, Dimension sDim, Point sCenter) {

type = sType;
dimension = sDim;
centerPoint = sCenter;

}

public void draw(Graphics g) { ‘ draw
g.setColor (Color.blue) ;
drawShape (g) ;

}

public void setType(Type shapeType) { ‘ setType
type = shapeType;

}

private void drawShape (Graphics g) { ‘ drawShape
switch (type) {

case ELLIPSE:
g.fillOval (centerPoint.x - dimension.width/2,
centerPoint.y - dimension.height/2,
dimension.width,
dimension.height) ;
break;

case RECTANGLE:
g.fillRect (centerPoint.x - dimension.width/2,
centerPoint.y - dimension.height/2,
dimension.width,
dimension.height) ;
break;

case ROUNDED_RECTANGLE:
g.fillRoundRect (centerPoint.x - dimension.width/2,
centerPoint.y - dimension.height/2,
dimension.width,
dimension.height,

280 Chapter 5

Selection Statements

5.8 | Sample Development—continued

(int) (dimension.width * 0.3),
(int) (dimension.height * 0.3));
break;

step 3 test

step 4
design

Notice how we add code for handling the case when an invalid number is entered in
the inputShapeType method. We use the default case to set the shape type to ELLIPSE
if an invalid value is entered. In addition to handling the invalid entries, it is critical for us
to make sure that all valid entries are handled correctly. For example, we cannot leave the
type undefined or assigned to a wrong value when one of the valid data is entered.

When we write a selection control statement, we must make sure that all possible

cases are handled correctly.

Now we run the program multiple times, trying various shape types, dimensions,
and center points. After we verify that everything is working as expected, we proceed to
the next step.

Step 4 Development: Allow the User to Select a Color

In the fourth development step, we add a routine that allows the user to specify the color
of the selected shape. We adopt the same input style for accepting the shape type as in
step 3.We list five different color choices and let the user select one of them by entering
the corresponding number. We use a default color when an invalid number is entered.
Analogous to the shape selection routine, we will add a method named inputColor to the
Ch5DrawShape class.The structure of this method is identical to that of the input meth-
ods, except the return type is Color. Using the inputColor method, we can define the
getShape method as follows:

private DrawableShape getShape() {
DrawableShape.Type type = inputShapeTypel();

Dimension dim = inputDimension() ;

5.8 Sample Development 281

Point centerPt = inputCenterPoint();
Color color = inputColor();
DrawableShape shape
= new DrawableShape (type, dim, centerPt, color);

return shape;

}

We make a small extension to the DrawableShape class by changing the con-
structor to accept a color as its fourth argument and adding a data member to keep track
of the selected color.

step 4 code Here’s the modified Ch5DrawShape class:

—

import java.awt.*;
import java.util.*;

/*
Chapter 5 Sample Development: Color selection (Step 4)

The main class of the program.
*/

class Ch5DrawShape {

private DrawableShape getShape() { getShape

!

DrawableShape.Type type = inputShapeTypel();
Dimension dim = inputDimension() ;

Point centerPt = inputCenterPoint();

Color color = inputColor();

DrawableShape shape
= new DrawableShape(type, dim, centerPt, color);

return shape;

}

private Color inputColor() { inputColor

System.out.print ("Selection: Enter the Color number\n" +
" 1 - Red \n" +

- Green \n" +

- Blue \n" +

- Yellow \n" +

- Magenta \n");

U W N

int selection = scanner.nextInt();

282 Chapter 5 Selection Statements

5.8 Sample Development—continued

Color color;
switch (selection) {

case 1: color
break;

Color.red;

case 2: color = Color.green;
break;

case 3: color = Color.blue;
break;

case 4: color
break;

Color.yellow;

case 5: color = Color.magenta;
break;

default: color = Color.red;
break;
}

return color;

}
}
|
The DrawableShape class is now modified to this:

import java.awt.*;

/*
Step 4: Adds the color choice

A class whose instances know how to draw themselves.

*/
class DrawableShape {

private static final Color DEFAULT_COLOR = Color.BLUE;

Data Members

5.8 Sample Development 283

private Color fillColor;

public DrawableShape (Type sType, Dimension sDim, Constructor
Point sCenter, Color sColor) {
type = sType;
dimension = sDim;
centerPoint = sCenter;
fillColor = sColor;
}
public void draw(Graphics g) { ‘ draw
g.setColor(fillColor);
drawShape (g) ;
}
}
step 4 test Now we run the program several times, each time selecting a different color,and we

verify that the shape is drawn in the chosen color. After we verify the program, we move
on to the next step.

Step 5 Development: Allow the User to Select a Motion Type

step 5 In the fifth development step, we add a routine that allows the user to select the motion

design type. We give three choices to the user: stationary, random, or smooth. The same design
we used in steps 3 and 4 is applicable here, so we adopt it for the motion type selection
also. Since we adopt the same design, we can ease into the coding phase.

step 5 code Here's the modified main class Ch5DrawShape:

—

import java.awt.*;
import java.util.*;

/*
Chapter 5 Sample Development: Color selection (Step 5)
The main class of the program.

*/
class Ch5DrawShape {

284 Chapter5 Selection Statements

5.8 | Sample Development—continued

public void start() {

start

!

DrawableShape shapel = getShapel();
canvas .addShape (shapel) ;
canvas.setMovement (inputMotionType()) ;

canvas.setVisible(true) ;
canvas.start();

. . . . |' MotionT I
private DrawingBoard.Movement inputMotionType() { inputMotionType

System.out.print ("Selection: Enter the Motion number\n" +
" 1 - Stationary (no movement) \n" +
" 2 - Random Movement \n" +
" 3 - Smooth Movement \n");

int selection = scanner.nextInt();

DrawingBoard.Movement type;
switch (selection) {

case 1: type = DrawingBoard.Movement .STATIONARY;
break;

case 2: type = DrawingBoard.Movement .RANDOM;
break;

case 3: type = DrawingBoard.Movement .SMOOTH;
break;

default: type = DrawingBoard.Movement .SMOOTH;
break;
}

return type;

No changes are required for the DrawableShape class, as the DrawingBoard class
is the one responsible for the shape movement.

Summary 285

Now we run the program multiple times and test all three motion types. From what
we have done, we can't imagine the code we have already written in the earlier steps to
cause any problems; but if we are not careful, a slight change in one step could cause the
code developed from the earlier steps to stop working correctly (e.g.,erroneously reusing
data members in newly written methods). So we should continue to test all aspects of the
program diligently. After we are satisfied with the program, we proceed to the final step.

step 5 test

Step 6 Development: Finalize

program We will perform a critical review of the program, looking for any unfinished method,

review inconsistency or error in the methods, unclear or missing comments, and so forth. We
should also not forget to improve the program for cleaner code and better readability.
Another activity we can pursue in the final step is to look for extensions.

possible There are several interesting extensions we can make to the program. First is the

extensions morphing of an object. In the current implementation, once the shape is selected, it will
not change. It would be more fun to see the shape changes; for example, the width and
height of the shape’s dimension can be set to vary while the shape is drawn. Another
interesting variation is to make a circle morph into a rectangle and morph back into a
circle. Second is the drawing of multiple shapes. Third is the variation in color while the
shape is drawn. Fourth is the drawing of a text (we “draw” a text on the Graphics context
just as we draw geometric shapes). You can make the text scroll across the screen from
right to left by setting the motion type of DrawingBoard to STATIONARY and updating
the center point value within our DrawableShape class. All these extensions are left as
exercises.

. A selection control statement is used to alter the sequential flow of control.
. The if and switch statements are two types of selection control.
. The two versions of the if statement are if—then—else and if—then.

. A boolean expression contains conditional and boolean operators and
evaluates to true or false.

. Three boolean operators in Java are AND (&&), OR (ll), and NOT ().

o DeMorgan’s laws state !(P &&Q) and !P Il !Q are equivalent and !(P Il Q) and
IP && !Q are equivalent.

. Logical operators && and Il are evaluated by using the short-circuit
evaluation technique.

. A boolean flag is useful in keeping track of program settings.

. An if statement can be a part of the then or else block of another if statement
to formulate nested if statements.

. Careful attention to details is important to avoid illogically constructed
nested if statements.

286 Chapter 5 Selection Statements

. When the equality symbol == is used in comparing the variables of reference
data type, we are comparing the addresses.

. The switch statement is useful for expressing a selection control based on
equality testing between data of type char, byte, short, or int.

. The break statement causes the control to break out of the surrounding
switch statement (note. also from other control statements introduced in
Chap. 6).

. The standard classes introduced in this chapter are
java.awt.Graphics java.awt.Point
java.awt.Color java.awt.Dimension
. The java.awt.Graphics class is used to draw geometric shapes.
. The java.awt.Color class is used to set the color of various GUI components.
. The java.awt.Point class is used to represent a point in two-dimensional space.

. The java.awt.Dimension class is used to represent a bounding rectangle of
geometric shapes and other GUI components.

. The enumerated constants provide type safety and increase the program
readability.

sequential execution increment and decrement operators

control statements boolean operators

if statement switch statements

boolean expressions break statements

relational operators defensive programming

selection statements content pane of a frame

nested if statements enumerated constants

1. Indent the following if statements properly.

a. if (a == b) if (¢ == d) a = 1; else b = 1; else c = 1;
b. if (a == b) a = 1; if (c == d) b = 1; else c = 1;

C. if (a == b) {if (c == d) a = 1; b = 2; }else b = 1;
d. if (a == b) {

if (¢ == d) a =1; b = 2;1}
else {b = 1; if (a == d) d = 3;}

2. Which two of the following three if statements are equivalent?
a. if (a == b)

if (¢ == d) a = 1;
else b = 1;

Exercises 287

b. if (a == b) {
if (c ==d) a = 1; }

else b = 1;
c. if (a == Db)
if (¢ == d) a = 1;
else b = 1;

3. Evaluate the following boolean expressions. For each of the following
expressions, assume x is 10, y is 20, and z is 30. Indicate which of the
following boolean expressions are always true and which are always false,
regardless of the values for x, y, or z.

a. x < 10 |1 x > 10
b. x >v & v > x

C. (X <y + z) && (x + 10 <= 20)

d. z - v == x && Math.abs(y - z) == x

e. x < 10 && x > 10

f.x>v |l v>x

g !(x <y + 2z) Il '(x + 10 <= 20)

h. '(x == y)) && (x I=y) & (x <y ||l v < x)

4. Express the following switch statement by using nested if statements.

switch (grade) {

case 10:

case 9: a = 1;
b = 2;
break;

case 8: a = 3;
b = 4;
break;

default: a = 5;
break;
}
5. Write an if statement to find the smallest of three given integers without
using the min method of the Math class.

6. Draw control flow diagrams for the following two switch statements.

switch (choice) { switch (choice) {
case 1: a = 0; case 1: a = 0;
break;

case 2: b = 1;
case 2: b = 1; case 3: ¢ = 2;
break;
default: d = 3;

case 3: Cc = 2;)

break;

default: d = 3;
break;

288 Chapter 5 Selection Statements

7. Write an if statement that prints out a message based on the following rules:

If the Total Points Are Message to Print

=100 You won a free cup of coffee.

=200 You won a free cup of coffee and a regular-size doughnut.

=300 You won a free cup of coffee and a regular-size
doughnut and a 12-oz orange juice.

= 400 You won a free cup of coffee and a regular-size dough-
nut and a 12-0z orange juice and a combo breakfast.

=500 You won a free cup of coffee and a regular-size

doughnut and a 12-oz orange juice and a combo
breakfast and a reserved table for one week.

8. Rewrite the following if statement, using a switch statement.

selection = scanner.nextInt();

if (selection == 0)
System.out.println("You selected Magenta");

else if (selection == 1)
System.out.println("You selected Cyan");

else if (selection == 2)
System.out.println("You selected Red");

else if (selection == 3)
System.out.println("You selected Blue");

else if (selection == 4)
System.out.println("You selected Green");
else

System.out.println("Invalid selection");

9. At the end of movie credits you see the year movies are produced in Roman
numerals, for example, MCMXCVII for 1997. To help the production staff
determine the correct Roman numeral for the production year, write an applet
or application that reads a year and displays the year in Roman numerals.

Roman Numeral Number

1

5

10
50
100
500
1000

2o X<~

Remember that certain numbers are expressed by using a “subtraction,” for
example, IV for 4, CD for 400, and so forth.

10.

11.

12.

13.

14.

Exercises 289

Write a program that replies either Leap Year or Not a Leap Year, given a
year. It is a leap year if the year is divisible by 4 but not by 100 (for
example, 1796 is a leap year because it is divisible by 4 but not by 100). A
year that is divisible by both 4 and 100 is a leap year if it is also divisible by
400 (for example, 2000 is a leap year, but 1800 is not).

One million is 10° and 1 billion is 10°. Write a program that reads a power
of 10 (6, 9, 12, etc.) and displays how big the number is (Million, Billion,
etc.). Display an appropriate message for the input value that has no
corresponding word. The table below shows the correspondence between
the power of 10 and the word for that number.

Power of 10 Number

6 Million

9 Billion
12 Trillion
15 Quadrillion
18 Quintillion
21 Sextillion
30 Nonillion

100 Googol

Write a program RecommendedWeightWithTest by extending the
RecommendedWeight (see Exercise 8 on page 209). The extended program
will include the following test:

if (the height is between 140cm and 230cm)
compute the recommended weight
else

display an error message

Extend the RecommendedWeightWithTest program in Exercise 12 by
allowing the user to enter his or her weight and printing out the message You
should exercise more if the weight is more than 10 Ib over the ideal weight
and You need more nourishment if the weight is more than 20 Ib under the
recommended weight.

Employees at MyJava Lo-Fat Burgers earn the basic hourly wage of $7.25.
They will receive time-and-a-half of their basic rate for overtime hours. In
addition, they will receive a commission on the sales they generate while
tending the counter. The commission is based on the following formula:

Sales Volume Commission

$1.00 to $99.99 5% of total sales
$100.00 to $299.99 10% of total sales
= $300.00 15% of total sales

Write an application that inputs the number of hours worked and the total
sales and computes the wage.

290

Chapter 5

Selection Statements

15.

16.

17.

Using the DrawingBoard class, write a screensaver that displays a scrolling
text message. The text messages moves across the window, starting from the
right edge toward the left edge. Set the motion type to stationary, so the
DrawingBoard does not adjust the position. You have to adjust the text’s
position inside your DrawableShape.

Define a class called Triangle that is capable of computing the perimeter and
area of a triangle, given its three sides a, b, and ¢, as shown below. Notice
that side b is the base of the triangle.

Perimeter =a + b + ¢

a C
Area = Vs(s — a)(s — b)(s — ¢)
a+b+c
where S =——————""
b 2

The design of this class is identical to that for the Ch5Circle class from
Section 5.1. Define a private method isValid to check the validity of three
sides. If any one of them is invalid, the methods getArea and getPerimeter
will return the constant INVALID_DIMENSION.

Modify the Ch5RoomWinner class so the three dorm lottery cards are drawn
vertically. Make the code for drawing flexible by using the HEIGHT constant
in determining the placement of three cards.

Development Exercises

For the following exercises, use the incremental development methodology to
implement the program. For each exercise, identify the program tasks, create

a design document with class descriptions, and draw the program diagram.
Map out the development steps at the start. Present any design alternatives and
justify your selection. Be sure to perform adequate testing at the end of each
development step.

18.

MylJava Coffee Outlet (see Exercise 25 from Chap. 3) decided to give
discounts to volume buyers. The discount is based on the following table:

Order Volume Discount
= 25 bags 5% of total price
= 50 bags 10% of total price
= 100 bags 15% of total price
= 150 bags 20% of total price
= 200 bags 25% of total price
= 300 bags 30% of total price

Exercises 291

Each bag of beans costs $5.50. Write an application that accepts the number
of bags ordered and prints out the total cost of the order in the following
style:

Number of Bags Ordered: 173 - $ 951.50

Discount:
20% - $ 190.30

Your total charge is: $ 761.20

19. Combine Exercises 18 and 25 of Chap. 3 to compute the total charge
including discount and shipping costs. The output should look like the
following:

Number of Bags Ordered: 43 - $ 236.50

Discount:
5% - $ 11.83

Boxes Used:
1 Large - $1.80
2 Medium - $2.00

Your total charge is: $ 228.47

Note: The discount applies to the cost of beans only.

20. You are hired by Expressimo Delivery Service to develop an application
that computes the delivery charge. The company allows two types of
packaging—Ietter and box—and three types of service—Next Day Priority,
Next Day Standard, and 2-Day. The following table shows the formula for
computing the charge:

Package Next Day Next Day

Type Priority Standard 2-Day

Letter $12.00,up to 8 oz $10.50,up to 8 oz Not available

Box $15.75 for the first $13.75 for the first $7.00 for the first
pound.Add $1.25 pound.Add $1.00 pound. Add $0.50
for each additional for each additional for each additional
pound over the first pound over the first pound over the first
pound. pound. pound.

The program will input three values from the user: type of package, type of
service, and weight of the package.

292 Chapter 5 Selection Statements

21. Ms. Latte’s Mopeds ‘R Us rents mopeds at Monterey Beach Boardwalk. To
promote business during the slow weekdays, the store gives a huge discount.
The rental charges are as follows:

Moped Type Weekday Rental Weekend Rental

50cc Mopette $15.00 for the first 3 h, $30.00 for the first 3 h,
$2.50 per hour after the $7.50 per hour after the
first 3 h. first 3 h.

250cc Mohawk $25.00 for the first $35.00 for the first 3 h,
3 h,$3.50 per hour after $8.50 per hour after the
the first 3 h. first 3 h.

Write a program that computes the rental charge, given the type of moped,
when it is rented (either weekday or weekend), and the number of hours
rented.

22. Write an application program that teaches children how to read a clock. Use
JOptionPane to enter the hour and minute. Accept only numbers between
0 and 12 for hour and between 0 and 59 for minute. Print out an appropriate

error message for an invalid input value. Draw a clock that looks something
like this:

To draw a clock hand, you use the drawLine method of the Graphics class.
The endpoints of the line are determined as follows:

(0y + K cos 0, 0, — K sin 6)

(0, 0y)

Note: We subtract here because
the y value in pixel coordinates
for windows increases in the
downward direction.

Exercises 293

The value for constant K determines the length of the clock hand. Make the
K larger for the minute hand than for the hour hand. The angle 0 is expressed
in radians. The angle 0,,;, of the minute hand is computed as

(90 — Minute X 6.0) ——
180

and the angle 6y, of the hour hand is computed as

0 H Minute 0.0 T
(9 _(0HI'+—60.0)X)@

where Hour and Minute are input values. The values 6.0 and 30.0 designate
the degrees for 1 min and 1 h (i.e., the minute hand moves 6 degrees in
1 min and the hour hand moves 30.0 degrees in 1 h). The factor /180
converts a degree into the radian equivalent.

You can draw the clock on the content pane of a frame window by
getting the content pane’s Graphic object as described in the chapter. Here’s
some sample code:

import javax.swing.*;
import java.awt.*; //for Graphics

JFrame win;
Container contentPane;
Graphics g;

win = new JFrame() ;
win.setSize (300, 300);
win.setLocation(100,100);
win.setVisible(true);

contentPane = win.getContentPane() ;
g = contentPane.getGraphics();
g.drawOval (50,50,200,200) ;

23. Extend the application in Exercise 22 by drawing a more realistic, better-
looking clock, such as this one:

294

Chapter 5

Selection Statements

24. After starting a successful coffee beans outlet business, MyJava Coffee

Outlet is now venturing into the fast-food business. The first thing the
management decides is to eliminate the drive-through intercom. MyJava
Lo-Fat Burgers is the only fast-food establishment in town that provides a
computer screen and mouse for its drive-through customers. You are hired as
a freelance computer consultant. Write a program that lists items for three
menu categories: entree, side dish, and drink. The following table lists the
items available for each entry and their prices. Choose appropriate methods

for input and output.

Entree Side Dish Drink
Tofu Burger $3.49 | Rice Cracker $0.79 | Cafe Mocha $1.99
Cajun Chicken $4.59 | No-Salt Fries $0.69 | Cafe Latte $1.99
Buffalo Wings $3.99 | Zucchini $1.09 | Espresso $2.49
Rainbow Fillet $2.99 | Brown Rice $0.59 | Oolong Tea $0.99

