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24C H A P T E R

Probability Theory

In decision-making problems, one is often faced with making decisions based upon phe-
nomena that have uncertainty associated with them. This uncertainty is caused by in-

herent variation due to sources of variation that elude control or the inconsistency of nat-
ural phenomena. Rather than treat this variability qualitatively, one can incorporate it into
the mathematical model and thus handle it quantitatively. This generally can be accom-
plished if the natural phenomena exhibit some degree of regularity, so that their variation
can be described by a probability model. The ensuing sections are concerned with meth-
ods for characterizing these probability models.

� 24.1 SAMPLE SPACE

Suppose the demand for a product over a period of time, say a month, is of interest. From
a realistic point of view, demand is not generally constant but exhibits the type of varia-
tion alluded to in the introduction. Suppose an experiment that will result in observing the
demand for the product during the month is run. Whereas the outcome of the experiment
cannot be predicted exactly, each possible outcome can be described. The demand during
the period can be any one of the values 0, 1, 2, . . . , that is, the entire set of nonnegative
integers. The set of all possible outcomes of the experiment is called the sample space and
will be denoted by �. Each outcome in the sample space is called a point and will be de-
noted by �. Actually, in the experiment just described, the possible demands may be
bounded from above by N, where N would represent the size of the population that has
any use for the product. Hence, the sample space would then consist of the set of the in-
tegers 0, 1, 2, . . . , N. Strictly speaking, the sample space is much more complex than
just described. In fact, it may be extremely difficult to characterize precisely. Associated
with this experiment are such factors as the dates and times that the demands occur, the
prevailing weather, the disposition of the personnel meeting the demand, and so on. Many
more factors could be listed, most of which are irrelevant. Fortunately, as noted in the
next section, it is not necessary to describe completely the sample space, but only to record
those factors that appear to be necessary for the purpose of the experiment.

Another experiment may be concerned with the time until the first customer arrives at
a store. Since the first customer may arrive at any time until the store closes (assuming an
8-hour day), for the purpose of this experiment, the sample space can be considered to be all
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points on the real line between zero and 8 hours. Thus, � consists of all points � such that

0 � � � 8.†

Now consider a third example. Suppose that a modification of the first experiment is
made by observing the demands during the first 2 months. The sample space � consists
of all points (x1,x2), where x1 represents the demand during the first month, x1 � 0, 1, 2,
. . . , and x2 represents the demand during the second month, x2 � 0, 1, 2, . . . . Thus, �
consists of the set of all possible points �, where � represents a pair of nonnegative in-
teger values (x1,x2). The point � � (3,6) represents a possible outcome of the experiment
where the demand in the first month is 3 units and the demand in the second month is 6 units.
In a similar manner, the experiment can be extended to observing the demands during the
first n months. In this situation � consists of all possible points � � (x1, x2, . . . , xn), where
xi represents the demand during the ith month.

The experiment that is concerned with the time until the first arrival appears can also
be modified. Suppose an experiment that measures the times of the arrival of the first cus-
tomer on each of 2 days is performed. The set of all possible outcomes of the experiment
� consists of all points (x1,x2), 0 � x1, x2 � 8, where x1 represents the time the first cus-
tomer arrives on the first day, and x2 represents the time the first customer arrives on the
second day. Thus, � consists of the set of all possible points �, where � represents a point
in two space lying in the square shown in Fig. 24.1.

This experiment can also be extended to observing the times of the arrival of the first
customer on each of n days. The sample space � consists of all points � � (x1, x2, . . . , xn),
such that 0 � xi � 8 (i � 1, 2, . . . , n), where xi represents the time the first customer ar-
rives on the ith day.

An event is defined as a set of outcomes of the experiment. Thus, there are many
events that can be of interest. For example, in the experiment concerned with observing
the demand for a product in a given month, the set {� � 0, � � 1, � � 2, . . . , � � 10}
is the event that the demand for the product does not exceed 10 units. Similarly, the set
{� � 0} denotes the event of no demand for the product during the month. In the exper-
iment which measures the times of the arrival of the first customer on each of 2 days, the
set {� � (x1, x2); x1 � 1, x2 � 1} is the event that the first arrival on each day occurs be-
fore the first hour. It is evident that any subset of the sample space, e.g., any point, col-
lection of points, or the entire sample space, is an event.

Events may be combined, thereby resulting in the formation of new events. For any
two events E1 and E2, the new event E1 � E2, referred to as the union of E1 and E2, is
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†It is assumed that at least one customer arrives each day.

� FIGURE 24.1
The sample space of the
arrival time experiment over
two days.
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defined to contain all points in the sample space that are in either E1 or E2, or in both E1

and E2. Thus, the event E1 � E2 will occur if either E1 or E2 occurs. For example, in the
demand experiment, let E1 be the event of a demand in a single month of zero or 1 unit,
and let E2 be the event of a demand in a single month of 1 or 2 units. The event E1 � E2

is just {� � 0, � � 1, � � 2}, which is just the event of a demand of 0, 1, or 2 units.
The intersection of two events E1 and E2 is denoted by E1 � E2 (or equivalently by

E1E2). This new event E1 � E2 is defined to contain all points in the sample space that
are in both E1 and E2. Thus, the event E1 � E2 will occur only if both E1 and E2 occur.
In the aforementioned example, the event E1 � E2 is {� � 1}, which is just the event of
a demand of 1 unit.

Finally, the events E1 and E2 are said to be mutually exclusive (or disjoint) if their in-
tersection does not contain any points. In the example, E1 and E2 are not disjoint. How-
ever, if the event E3 is defined to be the event of a demand of 2 or 3 units, then E1 � E3

is disjoint. Events that do not contain any points, and therefore cannot occur, are called
null events. (Or course, all these definitions can be extended to any finite number of events.)

24.2 RANDOM VARIABLES 24-3

� 24.2 RANDOM VARIABLES

It may occur frequently that in performing an experiment one is not interested directly in
the entire sample space or in events defined over the sample space. For example, suppose
that the experiment which measures the times of the first arrival on 2 days was performed
to determine at what time to open the store. Prior to performing the experiment, the store
owner decides that if the average of the arrival times is greater than an hour, thereafter he
will not open his store until 10 A.M. (9 A.M. being the previous opening time). The aver-
age of x1 and x2 (the two arrival times) is not a point in the sample space, and hence he
cannot make his decision by looking directly at the outcome of his experiment. Instead, he
makes his decision according to the results of a rule that assigns the average of x1 and x2

to each point (x1,x2) in �. This resultant set is then partitioned into two parts: those points
below 1 and those above 1. If the observed result of this rule (average of the two arrival
times) lies in the partition with points greater than 1, the store will be opened at 10 A.M.;
otherwise, the store will continue to open at 9 A.M. The rule that assigns the average of
x1 and x2 to each point in the sample space is called a random variable. Thus, a random
variable is a numerically valued function defined over the sample space. Note that a func-
tion is, in a mathematical sense, just a rule that assigns a number to each value in the do-
main of definition, in this context the sample space.

Random variables play an extremely important role in probability theory. Experiments
are usually very complex and contain information that may or may not be superfluous.
For example, in measuring the arrival time of the first customer, the color of his shoes
may be pertinent. Although this is unlikely, the prevailing weather may certainly be rele-
vant. Hence, the choice of the random variable enables the experimenter to describe the
factors of importance to him and permits him to discard the superfluous characteristics
that may be extremely difficult to characterize.

There is a multitude of random variables associated with each experiment. In the ex-
periment concerning the arrival of the first customer on each of 2 days, it has been pointed
out already that the average of the arrival times X� is a random variable. Notationally, ran-
dom variables will be characterized by capital letters, and the values the random variable
takes on will be denoted by lowercase letters. Actually, to be precise, X� should be writ-
ten as X�(�), where � is any point shown in the square in Fig. 24.1 because X� is a func-
tion. Thus, X�(1,2) � (1 � 2)�2 � 1.5, X�(1.6,1.8) � (1.6 � 1.8)�2 � 1.7, X�(1.5,1.5) �
(1.5 � 1.5)�2 � 1.5, X�(8,8) � (8 � 8)�2 � 8. The values that the random variable X� takes
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on are the set of values x� such that 0 � x� � 8. Another random variable, X1, can be de-
scribed as follows: For each � in �, the random variable (numerically valued function)
disregards the x2 coordinate and transforms the x1 coordinate into itself. This random vari-
able, then, represents the arrival time of the first customer on the first day. Hence, X1(1,2)
� 1, X1(1.6,1.8) � 1.6, X1(1.5,1.5) � 1.5, X1(8,8) � 8. The values the random variable
X1 takes on are the set of values x1 such that 0 � x1 � 8. In a similar manner, the random
variable X2 can be described as representing the arrival time of the first customer on the
second day. A third random variable, S2, can be described as follows: For each � in �,
the random variable computes the sum of squares of the deviations of the coordinates
about their average; that is, S2(�) � S2(x1, x2) � (x1 � x�)2 � (x2 � x�)2. Hence, S2(1,2) �
(1 � 1.5)2 � (2 � 1.5)2 � 0.5, S2(1.6,1.8) � (1.6 � 1.7)2 � (1.8 � 1.7)2 � 0.02,
S2(1.5,1.5) � (1.5 � 1.5)2 � (1.5 � 1.5)2 � 0, S2(8,8) � (8 � 8)2 � (8 � 8)2 � 0. It is
evident that the values the random variable S2 takes on are the set of values s2 such that
0 � s2 � 32.

All the random variables just described are called continuous random variables be-
cause they take on a continuum of values. Discrete random variables are those that take
on a finite or countably infinite set of values.1 An example of a discrete random variable
can be obtained by referring to the experiment dealing with the measurement of demand.
Let the discrete random variable X be defined as the demand during the month. (The 
experiment consists of measuring the demand for 1 month). Thus, X(0) � 0, X(1) � 1,
X(2) � 2, . . . , so that the random variable takes on the set of values consisting of the
integers. Note that � and the set of values the random variable takes on are identical, so
that this random variable is just the identity function.

From the above paragraphs it is evident that any function of a random variable is it-
self a random variable because a function of a function is also a function. Thus, in the pre-
vious examples X� � (X1 � X2)�2 and S2 � (X1 � X�)2 � (X2 � X�)2 can also be recognized
as random variables by noting that they are functions of the random variables X1 and X2.

This text is concerned with random variables that are real-valued functions defined
over the real line or a subset of the real line.
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1A countably infinite set of values is a set whose elements can be put into one-to-one correspondence with the
set of positive integers. The set of odd integers is countably infinite. The 1 can be paired with 1, 3 with 2, 5
with 3, . . . , 2n � 1 with n. The set of all real numbers between 0 and 1�2 is not countably infinite because there
are too many numbers in the interval to pair with the integers.

� 24.3 PROBABILITY AND PROBABILITY DISTRIBUTIONS

Returning to the example of the demand for a product during a month, note that the ac-
tual demand is not a constant; instead, it can be expected to exhibit some “variation.” In
particular, this variation can be described by introducing the concept of probability 
defined over events in the sample space. For example, let E be the event {� � 0, � � 1,
� � 2, . . . , � � 10}. Then intuitively one can speak of P{E}, where P{E} is referred
to as the probability of having a demand of 10 or less units. Note that P{E} can be thought
of as a numerical value associated with the event E. If P{E} is known for all events E in
the sample space, then some “information” is available about the demand that can be ex-
pected to occur. Usually these numerical values are difficult to obtain, but nevertheless
their existence can be postulated. To define the concept of probability rigorously is be-
yond the scope of this text. However, for most purposes it is sufficient to postulate the ex-
istence of numerical values P{E} associated with events E in the sample space. The value
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P{E} is called the probability of the occurrence of the event E. Furthermore, it will be
assumed that P{E} satisfies the following reasonable properties:

1. 0 � P{E} � 1. This implies that the probability of an event is always nonnegative and
can never exceed 1.

2. If E0 is an event that cannot occur (a null event) in the sample space, then P{E0} � 0.
Let E0 denote the event of obtaining a demand of �7 units. Then P{E0} � 0.

3. P{�} � 1. If the event consists of obtaining a demand between 0 and N, that is, the en-
tire sample space, the probability of having some demand between 0 and N is certain.

4. If E1 and E2 are disjoint(mutually exclusive) events in �, then P{E1 � E2} � P{E1}
� P{E2}. Thus, if E1 is the event of 0 or 1, and E2 is the event of a demand of 4 or 5,
then the probability of having a demand of 0, 1, 4, or 5, that is, {E1 � E2}, is given
by P{E1} � P{E2}.

Although these properties are rather formal, they do conform to one’s intuitive notion
about probability. Nevertheless, these properties cannot be used to obtain values for P{E}.
Occasionally the determination of exact values, or at least approximate values, is desirable.
Approximate values, together with an interpretation of probability, can be obtained through
a frequency interpretation of probability. This may be stated precisely as follows. Denote
by n the number of times an experiment is performed and by m the number of successful
occurrences of the event E in the n trials. Then P{E} can be interpreted as

P{E} � lim
n → 	



m
n


,

assuming the limit exists for such a phenomenon. The ratio m�n can be used to approxi-
mate P{E}. Furthermore, m�n satisfies the properties required of probabilities; that is,

1. 0 � m�n � 1.
2. 0/n � 0. (If the event E cannot occur, then m � 0.)
3. n/n � 1. (If the event E must occur every time the experiment is performed, then m � n.)
4. (m1 � m2)/n � m1/n � m2/n if E1 and E2 are disjoint events. (If the event E1 occurs

m1 times in the n trials and the event E2 occurs m2 times in the n trials, and E1 and
E2 are disjoint, then the total number of successful occurrences of the event E1 or E2

is just m1 � m2.)

Since these properties are true for a finite n, it is reasonable to expect them to be
true for

P{E} � lim
n → 	



m
n


.

The trouble with the frequency interpretation as a definition of probability is that it is not
possible to actually determine the probability of an event E because the question “How
large must n be?” cannot be answered. Furthermore, such a definition does not permit a
logical development of the theory of probability. However, a rigorous definition of prob-
ability, or finding methods for determining exact probabilities of events, is not of prime
importance here.

The existence of probabilities, defined over events E in the sample space, has been
described, and the concept of a random variable has been introduced. Finding the relation
between probabilities associated with events in the sample space and “probabilities” as-
sociated with random variables is a topic of considerable interest.

Associated with every random variable is a cumulative distribution function (CDF).
To define a CDF it is necessary to introduce some additional notation. Define the symbol
Eb

X � {�|X(�) � b} (or equivalently, {X � b}) as the set of outcomes � in the sample
space forming the event Eb

X such that the random variable X takes on values less than or
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equal to b.† Then P{Eb
X} is just the probability of this event. Note that this probability is well

defined because Eb
X is an event in the sample space, and this event depends upon both the

random variable that is of interest and the value of b chosen. For example, suppose the ex-
periment that measures the demand for a product during a month is performed. Let N � 99,
and assume that the events {0}, {1}, {2}, . . . , {99} each has probability equal to 1�100;
that is, P{0} � P{1} � P{2} � . . . � P{99} � 1�100. Let the random variable X be the
square of the demand, and choose b equal to 150. Then

EX
150 � {�X(�) � 150} � {X � 150}

is the set EX
150 � {0,1,2,3,4,5,6,7,8,9,10,11,12} (since the square of each of these num-

bers is less than 150). Furthermore,

P{EX
150} � 


1
1
00

 � 


1
1
00

 � 


1
1
00

 � 


1
1
00

 � 


1
1
00

 � 


1
1
00

 � 


1
1
00

 � 


1
1
00

 � 


1
1
00



� 

1
1
00

 � 


1
1
00

 � 


1
1
00

 � 


1
1
00

 � 


1
1
0
3
0


.

Thus, P{EX
150} � P{X � 150} � 13�100.

For a given random variable X, P{X � b}, denoted by FX(b), is called the CDF of the
random variable X and is defined for all real values of b. Where there is no ambiguity,
the CDF will be denoted by F(b); that is,

F(b) � FX(b) � P{Eb
X} � P{�X(�) � b} � P{X � b}.

Although P{X � b} is defined through the event Eb
X in the sample space, it will often be

read as the “probability” that the random variable X takes on a value less than or equal
to b. The reader should interpret this statement properly, i.e., in terms of the event Eb

X.
As mentioned, each random variable has a cumulative distribution function associ-

ated with it. This is not an arbitrary function but is induced by the probabilities associ-
ated with events of the form Eb

X defined over the sample space �. Furthermore, the CDF
of a random variable is a numerically valued function defined for all b, � 	 � b � 	,
having the following properties:

1. FX(b) is a nondecreasing function of b,
2. lim

b→�	
FX(b) � FX(�	) � 0,

3. lim
b→�	

FX(b) � FX(�	) � 1.

The CDF is a versatile function. Events of the form

{�a � X(�) � b},

that is, the set of outcomes � in the sample space such that the random variable X takes
on values greater than a but not exceeding b, can be expressed in terms of events of the
form Eb

X. In particular, Eb
X can be expressed as the union of two disjoint sets; that is,

Eb
X � Ea

X � {�a � X(�) � b}.

Thus, P{�a � X(�) � b} � P{a � X � b} can easily be seen to be

FX(b) � FX(a).

As another example, consider the experiment that measures the times of the arrival of the
first customer on each of 2 days. � consists of all points (x1, x2) such that 0 � x1, x2 � 8,
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†The notation {X � b} suppresses the fact that this is really an event in the sample space. However, it is sim-
pler to write, and the reader is cautioned to interpret it properly, i.e., as the set of outcomes � in the sample
space, {�X(�) � b}.
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where x1 represents the time the first customer arrives on the first day, and x2 represents the
time the first customer arrives on the second day. Consider all events associated with this
experiment, and assume that the probabilities of such events can be obtained. Suppose X�,
the average of the two arrival times, is chosen as the random variable of interest and that
Eb

X� is the set of outcomes � in the sample space forming the event Eb
X� such that X� � b.

Hence, FX� (b) � P{Eb
X�} � P{X� � b}. To illustrate how this can be evaluated, suppose that

b � 4 hours. All the values of x1, x2 are sought such that (x1 � x2)/2 � 4 or x1 � x2 � 8.
This is shown by the shaded area in Fig. 24.2. Hence, FX�(b) is just the probability of a suc-
cessful occurrence of the event given by the shaded area in Fig. 24.2. Presumably FX�(b) can
be evaluated if probabilities of such events in the sample space are known.

Another random variable associated with this experiment is X1, the time of the arrival
of the first customer on the first day. Thus, FX1

(b) � P{X1 � b}, which can be obtained
simply if probabilities of events over the sample space are given.

There is a simple frequency interpretation for the cumulative distribution function of
a random variable. Suppose an experiment is repeated n times, and the random variable
X is observed each time. Denote by x1, x2, . . . , xn the outcomes of these n trials. Order
these outcomes, letting x(1) be the smallest observation, x(2) the second smallest, . . . , x(n)

the largest. Plot the following step function Fn(x):

For x � x(1), let Fn(x) � 0.

For x(1) � x � x(2), let Fn(x) � 

1
n


.

For x(2) � x � x(3), let Fn(x) � 

2
n


.

For x(n � 1) � x � x(n), let Fn(x) � 

n �

n
1


.

For x � x(n), let Fn(x) � 

n
n


 � 1.

Such a plot is given in Fig. 24.3 and is seen to “jump” at the values that the random vari-
able takes on.

Fn(x) can be interpreted as the fraction of outcomes of the experiment less than or equal
to x and is called the sample CDF. It can be shown that as the number of repetitions n of
the experiment gets large, the sample CDF approaches the CDF of the random variable X.
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� FIGURE 24.2
The shaded area represents
the event Eb

X� � {X� � 4}.
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In most problems encountered in practice, one is not concerned with events in the sam-
ple space and their associated probabilities. Instead, interest is focused on random vari-
ables and their associated cumulative distribution functions. Generally, a random variable
(or random variables) is chosen, and some assumption is made about the form of the CDF
or about the random variable. For example, the random variable X1, the time of the first
arrival on the first day, may be of interest, and an assumption may be made that the form
of its CDF is exponential. Similarly, the same assumption about X2, the time of the first
arrival on the second day, may also be made. If these assumptions are valid, then the CDF
of the random variable X� � (X1 � X2)/2 can be derived. Of course, these assumptions
about the form of the CDF are not arbitrary and really imply assumptions about proba-
bilities associated with events in the sample space. Hopefully, they can be substantiated
by either empirical evidence or theoretical considerations.
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� FIGURE 24.3
A sample cumulative
distribution function.
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� 24.4 CONDITIONAL PROBABILITY AND INDEPENDENT EVENTS

Often experiments are performed so that some results are obtained early in time and some
later in time. This is the case, for example, when the experiment consists of measuring
the demand for a product during each of 2 months; the demand during the first month is
observed at the end of the first month. Similarly, the arrival times of the first two cus-
tomers on each of 2 days are observed sequentially in time. This early information can
be useful in making predictions about the subsequent results of the experiment. Such in-
formation need not necessarily be associated with time. If the demand for two products
during a month is investigated, knowing the demand of one may be useful in assessing
the demand for the other. To utilize this information the concept of “conditional proba-
bility,” defined over events occurring in the sample space, is introduced.

Consider two events in the sample space E1 and E2, where E1 represents the event
that has occurred, and E2 represents the event whose occurrence or nonoccurrence is of
interest. Furthermore, assume that P{E1} � 0. The conditional probability of the occur-
rence of the event E2, given that the event E1 has occurred, P{E2E1}, is defined to be

P{E2E1} � ,

where {E1 � E2} represents the event consisting of all points � in the sample space com-
mon to both E1 and E2. For example, consider the experiment that consists of observing

P{E1 � E2}




P{E1}
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the demand for a product over each of 2 months. Suppose the sample space consists
of all points (x1,x2), where x1 represents the demand during the first month, and x2

represents the demand during the second month, x1, x2 0, 1, 2, . . . , 99. Furthermore,
it is known that the demand during the first month has been 10. Hence, the event E1, which
consists of the points (10,0), (10,1), (10,2), . . . , (10,99), has occurred. Consider the event
E2, which represents a demand for the product in the second month that does not exceed
1 unit. This event consists of the points (0,0), (1,0), (2,0), . . . , (10,0), . . . , (99,0), (0,1),
(1,1), (2,1), . . . , (10,1), . . . , (99,1). The event {E1 E2} consists of the points (10,0)
and (10,1). Hence, the probability of a demand which does not exceed 1 unit in the sec-
ond month, given that a demand of 10 units occurred during the first month, that is,
P{E2⏐E1}, is given by

P{E2⏐E1}

.

The definition of conditional probability can be given a frequency interpretation. De-
note by n the number of times an experiment is performed, and let n1 be the number of
times the event E1 has occurred. Let n12 be the number of times that the event {E1 E2}
has occurred in the n trials, The ratio n12/n1 is the proportion of times that the event E2

occurs when E1 has also occurred; that is, n12/n1 is the conditional relative frequency of
E2, given that E1 has occurred. This relative frequency n12/n1 is then equivalent to
(n12/n)/(n1/n). Using the frequency interpretation of probability for large n, n12/n is ap-
proximately P{E1 E2}, and n1/n is approximately P{E1}, so that the conditional rela-
tive frequency of E2, given E1, is approximately P{E1 E2}/P{E1}.

In essence, if one is interested in conditional probability, he is working with a re-
duced sample space, i.e., from to E1, modifying other events accordingly. Also note
that conditional probability has the four properties described in Sec. 24.3; that is,

1. 0 P{E2⏐E1} 1.
2. If E2 is an event that cannot occur, then P{E2

E2

⏐E1} 0.
3. If the event E2 is the entire sample space , then P{ ⏐E1} 1.
4. If E2 and E3 are disjoint events in , then

P{(E2 E3)⏐E1} P{E2⏐E1} P{E3⏐E1}.

In a similar manner, the conditional probability of the occurrence of the event E1, given
that the event E2 has occurred, can be defined. If P{E2} 0, then

P{E1⏐E2} P{E1 E2}/P{E2}.

The concept of conditional probability was introduced so that advantage could be
taken of information about the occurrence or nonoccurrence of events. It is conceivable
that information about the occurrence of the event E1 yields no information about the oc-
currence or nonoccurrence of the event E2. If P{E2⏐E1} P{E2}, or P{E1⏐E2} P{E1},
then E1 and E2 are said to be independent events. It then follows that if E1 and E2 are
independent and P{E1} 0, then P{E2⏐E1} P{E1 E2}/P{E1} P{E2}, so that P{E1

E2} P{E1} P{E2}. This can be taken as an alternative definition of independence of
the events E1 and E2. It is usually difficult to show that events are independent by using
the definition of independence. Instead, it is generally simpler to use the information avail-
able about the experiment to postulate whether events are independent. This is usually
based upon physical considerations. For example, if the demand for a product during a

P{ (10,0), (10,1)}
P{ (10,0), (10,1), . . . , (10,99)}

P{E1 E2}
P{E1}
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month is “known” not to affect the demand in subsequent months, then the events E1 and
E2 defined previously can be said to be independent, in which case

P{E2E1} �

� ,

� � P{E2}

� P{� � (0,0), � � (1,0), . . . , � � (99,0), � � (0,1),

� � (1,1), . . . , � � (99,1)}.

The definition of independence can be extended to any number of events. E1, E2, . . . ,
En are said to be independent events if for every subset of these events E*

1, E*
2, . . . , Ek

*,

P{E*
1 � E*

2 � . . . � Ek
*} � P{E*

1}P{E*
2}. . .P{Ek

*}.

Intuitively, this implies that knowledge of the occurrence of any of these events has no
effect on the probability of occurrence of any other event.

P{E1}P{E2}




P{E1}

P(� � (10,0), � � (10,1)}






P{� � (10,0), � � (10,1), . . . , � � (10,99)}

P{E1 � E2}




P{E1}
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� 24.5 DISCRETE PROBABILITY DISTRIBUTIONS

It was pointed out in Sec. 24.2 that one is usually concerned with random variables and
their associated probability distributions, and discrete random variables are those which
take on a finite or countably infinite set of values. Furthermore, Sec. 24.3 indicates that
the CDF for a random variable is given by

FX(b) � P{�X(�) � b}.

For a discrete random variable X, the event {�X(�) � b} can be expressed as the union
of disjoint sets; that is,

{�X(�) � b} � {�X(�) � x1} � {�X(�) � x2} � . . . � {�X(�) � x[b]},

where x[b] denotes the largest integer value of the x’s less than or equal to b. It then fol-
lows that for the discrete random variable X, the CDF can be expressed as

FX(b) � P{�X(�) � x1} � P{�X(�) � x2} � . . . � P{�X(�) � x[b]}
� P{X � x1} � P{X � x2} � . . . � P{X � x[b]}.

This last expression can also be expressed as

FX(b) � �
all k � b

P{X � k},

where k is an index that ranges over all the possible x values which the random variable
X can take on.

Let PX(k) for a specific value of k denote the probability P{X � k}, so that

FX(b) � �
all k � b

PX(k).

This PX(k) for all possible values of k are called the probability distribution of the dis-
crete random variable X. When no ambiguity exists, PX(k) may be denoted by P(k).

As an example, consider the discrete random variable that represents the demand for
a product in a given month. Let N � 99. If it is assumed that PX(k) � P{X � k} � 1�100
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for all k � 0, 1, . . . , 99, then the CDF for this discrete random variable is given in Fig. 24.4.
The probability distribution of this discrete random variable is shown in Fig. 24.5. Of
course, the heights of the vertical lines in Fig. 24.5 are all equal because PX(0) � PX(1)
� Px(2) � . . . � PX(99) in this case. For other random variables X, the PX(k) need not
be equal, and hence the vertical lines will not be constant. In fact, all that is required for
the PX(k) to form a probability distribution is that PX(k) for each k be nonnegative and

�
all k 

PX(k) � 1.

There are several important discrete probability distributions used in operations re-
search work. The remainder of this section is devoted to a study of these distributions.

Binomial Distribution

A random variable X is said to have a binomial distribution if its probability distribution
can be written as

P{X � k} � PX(k) � 

k!(n

n
�

!
k)!


 pk(1 � p)n � k,

where p is a constant lying between zero and 1, n is any positive integer, and k is also an
integer such that 0 � k � n. It is evident that Px(k) is always nonnegative, and it is eas-
ily proven that

�
n

k�0
PX(k) � 1.
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� FIGURE 24.4
CDF of the discrete random
variable for the example.
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� FIGURE 24.5
Probability distribution of the
discrete random variable for
the example.
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Note that this distribution is a function of the two parameters n and p. The probability
distribution of this random variable is shown in Fig. 24.6. An interesting interpretation of
the binomial distribution is obtained when n � 1:

P{X � 0} � PX(0) � 1 � p,

and

P{X � 1} � PX(1) � p.

Such a random variable is said to have a Bernoulli distribution. Thus, if a random vari-
able takes on two values, say, 0 or 1, with probability 1 � p or p, respectively, a Bernoulli
random variable is obtained. The upturned face of a flipped coin is such an example: If a
head is denoted by assigning it the number 0 and a tail by assigning it a 1, and if the coin
is “fair” (the probability that a head will appear is 1�2), the upturned face is a Bernoulli
random variable with parameter p � 1�2. Another example of a Bernoulli random variable
is the quality of an item. If a defective item is denoted by 1 and a nondefective item by 0,
and if p represents the probability of an item being defective, and 1 � p represents the
probability of an item being nondefective, then the “quality” of an item (defective or non-
defective) is a Bernoulli random variable.

If X1, X2, . . . , Xn are independent1 Bernoulli random variables, each with parameter
p, then it can be shown that the random variable

X � X1 � X2 � . . . � Xn

is a binomial random variable with parameters n and p. Thus, if a fair coin is flipped 10
times, with the random variable X denoting the total number of tails (which is equivalent
to X1 � X2 � . . . � X10), then X has a binomial distribution with parameters 10 and 1�2;
that is,

P{X � k} � 

k!(1

1
0
0
�

!
k)!


 �

1
2


�
k

�

1
2


�
10 � k

.

Similarly, if the quality characteristics (defective or nondefective) of 50 items are inde-
pendent Bernoulli random variables with parameter p, the total number of defective items
in the 50 sampled, that is, X � X1 � X2 � . . . � X50, has a binomial distribution with
parameters 50 and p, so that

P{X � k} � 

k!(5

5
0
0
�

!
k)!


 pk(1 � p)50 � k.

24-12 CHAPTER 24 PROBABILITY THEORY

1The concept of independent random variables is introduced in Sec. 24.12. For the present purpose, random vari-
ables can be considered independent if their outcomes do not affect the outcomes of the other random variables.

� FIGURE 24.6
Binomial distribution with
parameters n and p.

P
{X

 =
 k

}
0 1 2 3 4 (n −1)n

k
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Poisson Distribution

A random variable X is said to have a Poisson distribution if its probability distribution
can be written as

P{X � k} � PX(k) � 

�k

k
e
!

��


,

where � is a positive constant (the parameter of this distribution), and k is any nonnega-
tive integer. It is evident that PX(k) is nonnegative, and it is easily shown that

�
	

k�0


�k

k
e
!

��


 � 1.

An example of a probability distribution of a Poisson random variable is shown in Fig. 24.7.
The Poisson distribution is often used in operations research. Heuristically speaking,

this distribution is appropriate in many situations where an “event” occurs over a period
of time when it is as likely that this “event” will occur in one interval as in any other and
the occurrence of an event has no effect on whether or not another occurs. As discussed
in Sec. 17.4, the number of customer arrivals in a fixed time is often assumed to have a
Poisson distribution. Similarly, the demand for a given product is also often assumed to
have this distribution.

Geometric Distribution

A random variable X is said to have a geometric distribution if its probability distribution
can be written as

P{X � k} � PX(k) � p(1 � p)k�1,

where the parameter p is a constant lying between 0 and 1, and k takes on the values 
1, 2, 3, . . . . It is clear that PX(k) is nonnegative, and it is easy to show that

�
	

k�1
p(1 � p)k�1 � 1.

The geometric distribution is useful in the following situation. Suppose an experi-
ment is performed that leads to a sequence of independent1 Bernoulli random variables,
each with parameter p; that is, P{X1 � 1} � p and P(X1 � 0) � 1 � p, for all i. The ran-
dom variable X, which is the number of trials occurring until the first Bernoulli random
variable takes on the value 1, has a geometric distribution with parameter p.

24.5 DISCRETE PROBABILITY DISTRIBUTIONS 24-13

1The concept of independent random variables is introduced in Sec. 24.12. For now, random variables can be
considered independent if their outcomes do not affect the outcomes of the other random variables.

� FIGURE 24.7
Poisson distribution.
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 k
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Section 24.2 defined continuous random variables as those random variables that take on
a continuum of values. The CDF for a continuous random variable FX(b) can usually be
written as

FX(b) � P{X(�) � b} � �b

�	
fX(y)dy,

where fX(y) is known as the density function of the random variable X. From a notational
standpoint, the subscript X is used to indicate the random variable that is under consider-
ation. When there is no ambiguity, this subscript may be deleted, and fX(y) will be de-
noted by f(y). It is evident that the CDF can be obtained if the density function is known.
Furthermore, a knowledge of the density function enables one to calculate all sorts of
probabilities, for example,

P{a � X � b} � F(b) � F(a) � �b

a
fX(y) dy.

Note that strictly speaking the symbol P{a � X � b} relates to the probability that the
outcome � of the experiment belongs to a particular event in the sample space, namely,
that event such that X(�) is between a and b whenever � belongs to the event. However,
the reference to the event will be suppressed, and the symbol P will be used to refer to
the probability that X falls between a and b. It becomes evident from the previous ex-
pression for P{a � X � b} that this probability can be evaluated by obtaining the area
under the density function between a and b, as illustrated by the shaded area under the
density function shown in Fig. 24.8. Finally, if the density function is known, it will be
said that the probability distribution of the random variable is determined.

Naturally, the density function can be obtained from the CDF by using the relation



dF

d
X

y
(y)

 � 


d
d
y

 �y

�	
fX(t) dt � fX(y).

For a given value c, P{X � c} has not been defined in terms of the density function.
However, because probability has been interpreted as an area under the density function,
P{X � c} will be taken to be zero for all values of c. Having P{X � c} � 0 does not mean
that the appropriate event E in the sample space (E contains those � such that X(�) � c)
is an impossible event. Rather, the event E can occur, but it occurs with probability zero.
Since X is a continuous random variable, it takes on a continuum of possible values, so
that selecting correctly the actual outcome before experimentation would be rather star-
tling. Nevertheless, some outcome is obtained, so that it is not unreasonable to assume that
the preselected outcome has probability zero of occurring. It then follows from P{X � c}
being equal to zero for all values c that for continuous random variables, and any a and b,

P{a � X � b} � P{a � X � b} � P{a � X � b} � P{a � X � b}.

Of course, this is not true for discrete random variables.

24-14 CHAPTER 24 PROBABILITY THEORY

� 24.6 CONTINUOUS PROBABILITY DISTRIBUTIONS

� FIGURE 24.8
An example of a density
function of a random
variable.

a b
y

fX(y)
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In defining the CDF for continuous random variables, it was implied that fX(y) was
defined for values of y from minus infinity to plus infinity because

FX(b)
b

fX(y) dy.

This causes no difficulty, even for random variables that cannot take on negative values
(e.g., the arrival time of the first customer) or are restricted to other regions, because fX(y)
can be defined to be zero over the inadmissible segment of the real line. In fact, the only
requirements of a density function are that

1. fX(y) be nonnegative,

2. fX(y) dy 1.

It has already been pointed out that fX(y) cannot be interpreted as P{X y} because
this probability is always zero. However, fX(y) dy can be interpreted as the probability that
the random variable X lies in the infinitesimal interval (y, y dy), so that, loosely speak-
ing, fX(y) is a measure of the frequency with which the random variable will fall into a
“small” interval near y.

There are several important continuous probability distributions that are used in opera-
tions research work. The remainder of this section is devoted to a study of these distributions.

The Exponential Distribution

As was discussed in Sec. 17.4, a continuous random variable whose density is given by

fX(y)

is known as an exponentially distributed random variable. The exponential distribution is
a function of the single parameter
used α = 1/   as the parameter instead, but it will be convenient to use    as the parameter in

, where is any positive constant. (In Sec. 17.4, we 

fX(ythis chapter.) ) is a density function because it is nonnegative and integrates to 1; that is,

fX(y) dy
0

1
e y/ dy e y/ ?0 1.

The exponential density function is shown in Fig. 24.9.
The CDF of an exponentially distributed random variable fX(b) is given by

FX(b)
b

fX(y) dy

and is shown in Fig. 24.10.

for b 0

for b 0,

0,
b

0

1
e y/ dy 1 e b/ ,

for y 0

for y 0

1
e y/ ,

0,
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FIGURE 24.9
Density function of the
exponential distribution.
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The exponential distribution has had widespread use in operations research. The
time between customer arrivals, the length of time of telephone conversations, and the
life of electronic components are often assumed to have an exponential distribution.
Such an assumption has the important implication that the random variable does not
“age.” For example, suppose that the life of a vacuum tube is assumed to have an ex-
ponential distribution. If the tube has lasted 1,000 hours, the probability of lasting an
additional 50 hours is the same as the probability of lasting an additional 50 hours, given
that the tube has lasted 2,000 hours. In other words, a brand new tube is no “better”
than one that has lasted 1,000 hours. This implication of the exponential distribution is
quite important and is often overlooked in practice.

The Gamma Distribution

A continuous random variable whose density is given by

fX(y) � �
is known as a gamma-distributed random variable. This density is a function of the two
parameters � and �, both of which are positive constants. (�) is defined as

(�) � �	

0
t��1e�t dt, for all � � 0.

If � is an integer, then repeated integration by parts yields

(�) � (� � 1)! � (� � 1)(� � 2)(� � 3) . . . 3 � 2 � 1.

With � an integer, the gamma distribution is known in queueing theory as the Erlang dis-
tribution (as discussed in Sec. 17.7), in which case � is referred to as the shape parameter.

A graph of a typical gamma density function is given in Fig. 24.11.

for y � 0

for y � 0



(�

1
)��
y(��1)e�y��,

0,
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� FIGURE 24.10
CDF of the exponential
distribution.

F
X

(b
)

0
b

1

+ ∞

� FIGURE 24.11
Gamma density function.
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A random variable having a gamma density is useful in its own right as a mathe-
matical representation of physical phenomena, or it may arise as follows: Suppose a cus-
tomer’s service time has an exponential distribution with parameter �. The random vari-
able T, the total time to service n (independent) customers, has a gamma distribution with
parameters n and � (replacing � and �, respectively); that is,

P{T � t} ��t

0


(n

1
)�n
 y(n�1)e�y/� dy.

Note that when n � 1 (or � � 1) the gamma density becomes the density function of an
exponential random variable. Thus, sums of independent, exponentially distributed ran-
dom variables have a gamma distribution.

Another important distribution, the chi square, is related to the gamma distribution.
If X is a random variable having a gamma distribution with parameters � � 1 and � �
v/2 (v is a positive integer), then a new random variable Z � 2X is said to have a chi-
square distribution with v degrees of freedom. The expression for the density function is
given in Table 24.1 at the end of Sec. 24.8.

The Beta Distribution

A continuous random variable whose density function is given by

fX(y) � �
is known as a beta-distributed random variable. This density is a function of the two pa-
rameters � and �, both of which are positive constants. A graph of a typical beta density
function is given in Fig. 24.12.

Beta distributions form a useful class of distributions when a random variable is re-
stricted to the unit interval. In particular, when � � � � 1, the beta distribution is called
the uniform distribution over the unit interval. Its density function is shown in Fig. 24.13,
and it can be interpreted as having all the values between zero and 1 equally likely to oc-
cur. The CDF for this random variable is given by

FX(b) � � for b � 0
for 0 � b � 1
for b � 1.

0,
b,
1,

for 0 � y � 1

elsewhere







(
(
�

�)
�

(�
�

)
)


 y(��1)(1 � y)(��1),

0,

24.6 CONTINUOUS PROBABILITY DISTRIBUTIONS 24-17

� FIGURE 24.12
Beta density function.
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If the density function is to be constant over some other interval, such as the interval
[c, d], a uniform distribution over this interval can also be obtained.1 The density func-
tion is given by

fX(y) � �
Although such a random variable is said to have a uniform distribution over the interval
[c, d], it is no longer a special case of the beta distribution.

Another important distribution, Students t, is related to the beta distribution. If X is a
random variable having a beta distribution with parameters � � 1/2 and � � v/2 (v is a
positive integer), then a new random variable Z � �vX�(1�� X)� is said to have a Students
t (or t) distribution with v degrees of freedom. The percentage points of the t distribution
are given in Table 27.6. (Percentage points of the distribution of a random variable Z are
the values z� such that

P{Z � z�}� �,

where z� is said to be the 100� percentage point of the distribution of the random variable Z.)
A final distribution related to the beta distribution is the F distribution. If X is a ran-

dom variable having a beta distribution with parameters � � v1/2 and � � v2/2 (v1 and
v2 are positive integers), then a new random variable Z � v2 X/v1(1 � X) is said to have
an F distribution with v1 and v2 degrees of freedom.

The Normal Distribution

One of the most important distributions in operations research is the normal distribution.
A continuous random variable whose density function is given by

fX(y) � e�(y��)2/2	2

, for �	 � y � 	

is known as a normally distributed random variable. The density is a function of the two pa-
rameters � and 	, where � is any constant, and 	 is positive. A graph of a typical normal
density function is given in Fig. 24.14. This density function is a bell-shaped curve that is

1


�2
�	

for c � y � d

otherwise.



d �

1
c


,

0,

� FIGURE 24.13
Uniform distribution over the
unit interval.

1

1

f X
(y

)

y
0

1The beta distribution can also be generalized by defining the density function over some fixed interval other
than the unit interval.
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symmetric around �. The CDF for a normally distributed random variable is given by

FX(b) � �b

�	
e�(y��)2�2	2

dy.

By making the transformation z � (y � �)�	, the CDF can be written as

FX(b) � �(b��)�	

�	


�

1
2
�

 e�z2�2 dz.

Hence, although this function is not integrable, it is easily tabulated. Table A5.1 presented
in Appendix 5 is a tabulation of

� � �	

K�



�

1
2
�

 e�z2�2 dz

as a function of K�. Hence, to find FX(b) (and any probability derived from it), Table A5.1
is entered with K� � (b � �)/	, and

� � �	

K�



�

1
2
�

 e�z2�2 dz

is read from it. FX(b) is then just 1 � �. Thus, if P{14 � X � 18} � FX(18) � FX(14) is
desired, where X has a normal distribution with � � 10 and 	 � 4, Table A5.1 is entered
with (18 � 10)/4 � 2, and 1 � FX(18) � 0.0228 is obtained. The table is then entered
with (14 � 10)/4 � 1, and 1 � FX(14) � 0.1587 is read. From these figures, FX(18) �
FX(14) � 0.1359 is found. If K� is negative, use can be made of the symmetry of the nor-
mal distribution because

FX(b) � �(b��)�	

�	
e�z2�2 dz � �	

�(b��)�	
e�z2�2 dz.

In this case �(b � �)/	 is positive, and FX(b) � � is thereby read from the table by en-
tering it with �(b � �)/	. Thus, suppose it is desired to evaluate the expression

P{2 � X � 18} � FX(18) � FX(2).

FX(18) has already been shown to be equal to 1 � 0.0228 � 0.9772. To find FX(2) it is
first noted that (2 � 10)/4 � �2 is negative. Hence, Table A5.1 is entered with K� � �2,
and FX(2) � 0.0228 is obtained. Thus,

FX(18) � FX(2) � 0.9772 � 0.0228 � 0.9544.

As indicated previously, the normal distribution is a very important one. In particu-
lar, it can be shown that if X1, X2, . . . , Xn are independent,1 normally distributed random

1


�2
�

1


�2
�

1


�2
�	

1The concept of independent random variables is introduced in Sec. 24.12. For now, random variables can be
considered independent if their outcomes do not affect the outcomes of the other random variables.

� FIGURE 24.14
Normal density function.
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variables with parameters (�1, 	1), (�2, 	2), . . . , (�n, 	n), respectively, then X � X1 �
X2 � . . . � Xn is also a normally distributed random variable with parameters

�
n

i�1
�i

and

	�
n

i�1
	i

2
.

In fact, even if X1, X2, . . . , Xn are not normal, then under very weak conditions

X � �
n

i�1
Xi

tends to be normally distributed as n gets large. This is discussed further in Sec. 24.14.
Finally, if C is any constant and X is normal with parameters � and 	, then the ran-

dom variable CX is also normal with parameters C� and C	. Hence, it follows that if X1,
X2, . . . , Xn are independent, normally distributed random variables, each with parame-
ters � and 	, the random variable

X� � �
n

i�1


X
n

i


is also normally distributed with parameters � and 	/�n�.
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� 24.7 EXPECTATION

Although knowledge of the probability distribution of a random variable enables one to
make all sorts of probability statements, a single value that may characterize the random
variable and its probability distribution is often desirable. Such a quantity is the expected
value of the random variable. One may speak of the expected value of the demand for a
product or the expected value of the time of the first customer arrival. In the experiment
where the arrival time of the first customer on two successive days was measured, the
expected value of the average arrival time of the first customers on two successive days
may be of interest.

Formally, the expected value of a random variable X is denoted by E(X) and is given by

E(X) � �
For a discrete random variable it is seen that E(X) is just the sum of the products of

the possible values the random variable X takes on and their respective associated prob-
abilities. In the example of the demand for a product, where k � 0, 1, 2, . . . , 98, 99 and
PX(k) � 1�100 for all k, the expected value of the demand is

E(X) � �
99

k�0
kPX(k) � �

99

k�0
k 


1
1
00

 � 49.5.

Note that E(X) need not be a value that the random variable can take on.

if X is a discrete random variable

if X is a continuous random variable.

�
all k

kP{X � k} � �
all k

kPX(k),

�	

�	
y fX(y) dy,
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If X is a binomial random variable with parameters n and p, the expected value of X
is given by

E(X) � �
n

k�0
k


k!(n
n
�

!
k)!


pk(1 � p)n�k

and can be shown to equal np.
If the random variable X has a Poisson distribution with parameter �,

E(X) � �
	

k�0
k 


�k

k
e
!

��




and can be shown to equal �.
Finally, if the random variable X has a geometric distribution with parameter p,

E(X) � �
	

k�1
kp(1 � p)k�1

and can be shown to equal 1/p.
For continuous random variables, the expected value can also be obtained easily. If

X has an exponential distribution with parameter �, the expected value is given by

E(X) � �	

�	
yfX(y) dy � �	

0
y 


1
�


 e�y�� dy.

This integral is easily evaluated to be

E(X) � �.

If the random variable X has a gamma distribution with parameter � and � the ex-
pected value of X is given by

�	

�	
yfX(y) dy � �	

0
y 


(�
1
)��
 y(��1)e�y�� dy � ��.

If the random variable X has a beta distribution with parameters � and �, the expected
value of X is given by

�	

�	
yfX(y) dy � �1

0
y y(��1)(1 � y)(��1) dy � 


� �

�

�

.

Finally, if the random variable X has a normal distribution with parameters � and 	,
the expected value of X is given by

�	

�	
yfX(y) dy � �	

�	
y e�(y��)2�2	2

dy � �.

The expectation of a random variable is quite useful in that it not only provides some
characterization of the distribution, but it also has meaning in terms of the average of a
sample. In particular, if a random variable is observed again and again and the arithmetic
mean X� is computed, then X� tends to the expectation of the random variable X as the num-
ber of trials becomes large. A precise statement of this property is given in Sec. 24.13.
Thus, if the demand for a product takes on the values k � 0, 1, 2, . . . , 98, 99, each with
PX(k) � 1�100 for all k, and if demands of x1, x2, . . . , xn are observed on successive days,
then the average of these values, (x1 � x2 � . . . � xn)/n, should be close to E(X) � 49.5
if n is sufficiently large.

It is not necessary to confine the discussion of expectation to discussion of the ex-
pectation of a random variable X. If Z is some function of X, say, Z � g(X), then g(X) is
also a random variable. The expectation of g(X) can be defined as

1


�2
�	

(� � �)



(�)(�)
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An interesting theorem, known as the “theorem of the unconscious statistician,”1 states
that if X is a continuous random variable having density fX(y) and Z � g(X) is a function
of X having density hZ(y), then

E(Z) � �	

�	
yhZ(y) dy � �	

�	
g(y)fX(y) dy.

Thus, the expectation of Z can be found by using its definition in terms of the density of
Z or, alternatively, by using its definition as the expectation of a function of X with respect
to the density function of X. The identical theorem is true for discrete random variables.

24-22 CHAPTER 24 PROBABILITY THEORY

1The name for this theorem is motivated by the fact that a statistician often uses its conclusions without con-
sciously worrying about whether the theorem is true.

� 24.8 MOMENTS

If the function g described in the preceding section is given by

Z � g(X) � Xj,

where j is a positive integer, then the expectation of Xj is called the jth moment about the
origin of the random variable X and is given by

E(Xj) � �
Note that when j � 1 the first moment coincides with the expectation of X. This is usu-
ally denoted by the symbol � and is often called the mean or average of the distribution.

Using the theorem of the unconscious statistician, the expectation of Z � g(X) � CX
can easily be found, where C is a constant. If X is a continuous random variable, then

E(CX) � �	

�	
CyfX(y) dy � C �	

�	
yfX(y) dy � CE(X).

Thus, the expectation of a constant times a random variable is just the constant times the
expectation of the random variable. This is also true for discrete random variables.

If the function g described in the preceding section is given by Z � g(X) � (X � E(X))j

� (X � �) j, where j is a positive integer, then the expectation of (X � �)j is called the jth
moment about the mean of the random variable X and is given by

E(X�E(X)) j � E(X � �) j � �
Note that if j � 1, then E(X � �) � 0. If j � 2, then E(X � �)2 is called the variance
of the random variable X and is often denoted by 	2. The square root of the variance 	

�
all k

(k � �) jPX(k),

�	

�	
(y � �) jfX(y) dy,

if X is a discrete random variable

if X is a continuous random variable.

�
all k

k jPX(k),

�	

�	
y jfX(y) dy,

if X is a discrete random variable

if X is a continuous random variable.

E[g(X)] � � if X is a discrete random variable

if X is a continuous random variable.

�
all k

g(k)P{X � k} ��
all k

g(k)PX(k),

�	

�	
g(y) fX(y) dy,
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is called the standard deviation of the random variable X. It is easily shown, in terms of
definitions, that

2 E(X )2 E(X2) 2;

that is, the variance can be written as the second moment about the origin minus the square
of the mean.

It has already been shown that if Z g(X) CX, then E(CX) CE(X) C , where
C is any constant and is E(X). The variance of the random variable Z g(X) CX is
also easily obtained. By definition, if X is a continuous random variable, the variance of
Z is given by

E(Z E(Z))2 E(CX CE(X))2
(Cy C )

2fX(y) dy

C2
(y )

2fX(y) dy C2 2.

Thus, the variance of a constant times a random variable is just the square of the constant
times the variance of the random variable. This is also true for discrete random variables.
Finally, the variance of a constant is easily seen to be zero.

It has already been shown that if the demand for a product takes on the values 0, 1,
2, . . . , 99, each with probability 1

100, then E(X) 49.5. Similarly,

2
99

k 0
(k )2PX(k)

99

k 0
k2PX(k) 2

99

k 0 1
k
0

2

0
(49.5)2 833.25.

Table 24.1 gives the means and variances of the random variables that are often use-
ful in operations research. Note that for some random variables a single moment, the mean,
provides a complete characterization of the distribution, e.g., the Poisson random variable.
For some random variables the mean and variance provide a complete characterization of
the distribution, e.g., the normal. In fact, if all the moments of a probability distribution
are known, this is usually equivalent to specifying the entire distribution.

It was seen that the mean and variance may be sufficient to completely characterize
a distribution, e.g., the normal. However, what can be said, in general, about a random
variable whose mean and variance 2 are known, but nothing else about the form of
the distribution is specified? This can be expressed in terms of Chebyshev’s inequality,
which states that for any positive number C,

P{ C X C } 1
C
1

2 ,

where X is any random variable having mean and variance 2. For example, if C 3,
if follows that P{ 3 X 3 } 1 1/9 0.8889. However, if X is known
to have a normal distribution, then P{ 3 X 3 } 0.9973. Note that the
Chebyshev inequality only gives a lower bound on the probability (usually a very con-
servative one), so there is no contradiction here.

24.9 BIVARIATE PROBABILITY DISTRIBUTION

Thus far the discussion has been concerned with the probability distribution of a single
random variable, e.g., the demand for a product during the first month or the demand for
a product during the second month. In an experiment that measures the demand during
the first 2 months, it may well be important to look at the probability distribution of the
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vector random variable (X1, X2), the demand during the first month, and the demand dur-
ing the second month, respectively,

Define the symbol

Eb1, b2

X
1
, X

2 � {�|X1(�) � b1, X2(�) � b2},

or equivalently,

Eb1, b2

X
1
, X

2 � {X1 � b1, X2 � b2},

as the set of outcomes � in the sample space forming the event Eb1, b2

X
1
, X

2, such that the ran-
dom variable X1 taken on values less than or equal to b1, and X2 takes on values less than
or equal to b2. Then P{Eb1, b2

X
1
, X

2} denotes the probability of this event. In the above exam-
ple of the demand for a product during the first 2 months, suppose that the sample space
� consists of the set of all possible points �, where � represents a pair of nonnegative
integer values (x1,x2). Assume that x1 and x2 are bounded by 99. Thus, there are (100)2�
points in �. Suppose further that each point � has associated with it a probability equal
to 1/(100)2, except for the points � � (0,0) and � � (99,99). The probability associated
with the event {0,0} will be 1.5/(100)2, that is, P{0,0} � 1.5/(100)2, and the probability
associated with the event {99,99} will be 0.5/(100)2; that is, P{99,99} � 0.5/(100)2. Thus,
if there is interest in the “bivariate” random variable (X1, X2), the demand during the first
and second months, respectively, then the event

{X1 � 1, X2 � 3}

is the set

E1,3
X1, X2 � {(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3)}.

Furthermore,

P{E1,3
X1, X2} � 


(1
1
0
.
0
5
)2
 � 


(10
1
0)2
 � 


(10
1
0)2
 � 


(10
1
0)2
 � 


(10
1
0)2
 � 


(10
1
0)2
� 


(10
1
0)2


� 

(10

1
0)2


� 

(1

8
0
.
0
5
)2
,

so that

P{X1 � 1, X2 � 3} � P{E1,3
X1, X2} � 


(1
8
0
.
0
5
)2
.

A similar calculation can be made for any value of b1 and b2.
For any given bivariate random variable (X1, X2), P{X1 � b1, X2 � b2} is denoted by

FX1X2
(b1,b2) and is called the joint cumulative distribution function (CDF) of the bi-

variate random variable (X1, X2) and is defined for all real values of b1 and b2. Where
there is no ambiguity the joint CDF may be denoted by F(b1, b2). Thus, attached to every
bivariate random variable is a joint CDF. This is not an arbitrary function but is induced
by the probabilities associated with events defined over the sample space � such that
{�X1(�) � b1, X2 (�) � b2}.

The joint CDF of a random variable is a numerically valued function, defined for all
b1, b2 such that �	 � b1, b2 � 	, having the following properties:

1. FX1X2
(b1,	) � P{X1 � b1, X2 � 	} � P{X1 � b1} � FX1

(b1), where FX1
(b1) is just

the CDF of the univariate random variable X1.
2. FX1X2

(	,b2) � P{X1 � 	, X2 � b2} � P{X2 � b2} � FX2
(b2), where FX2

(b2) is just
the CDF of the univariate random variable X2.
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� TABLE 24.1 Table of common distributions

Distribution of Range of 
random Para- Expected random 

variable X Form meters value Variance variable

Binomial PX(k) � pk(1 � p)n�k n, p np np(1 � p) 0, 1, 2, . . . , n

Poisson PX(k) � 

�k

k
e
!

��


 � � � 0, 1, 2, . . . .

Geometric PX(k) � p(1 � p)k�1 p 1, 2, . . . .

Exponential fX(y) � e�y/� � � �2 (0,	)

Gamma fX(y) � y(��1)e�y/� �, � �� ��2 (0,	)

Beta fX(y) � y(��1)(1 � y)(��1)

�, � 

��

�

�

 (0,1)

Normal fX(y) � e�(y��)2/2	2

�, 	 � 	2 (�	,	)

Students t fX(y) � (1 � y2/�)�(��1)/2
� 0(for � � 1) �/(� � 2)(for � > 2) (�	,	)

Chi square fX(y) � y(��2)/2e�y/2 � � 2� (0,	)

F
fX(y) �

�1,�2 (0,	)

for �2 � 2. for �2 � 4

�2
2(2�2 � 2�1 � 4)





�1(�2 � 2)2(�2 � 4)

�2

�2 � 2

(y)(�1/2)�1





(�2 � �1y)(�1��2)/2

�
�1 �

2
�2
� �1

�1/2�2
�2/2





�


�
2
1
��


�
2
2
�

1



2�/2(�/2)

([� � 1]/2)




(�/2)
1



�2
��

1


�2
�	

��




(� � �)2(� � � � 1)

(���)




(�)(�)

1


(�)��

1


�

1 � p



p2
1


p

n!



k!(n � k)!

2
4
-2

5

h
i
l
6
1
2
1
7
_
c
h
2
4
.
q
x
d
 
 
5
/
1
4
/
0
4
 
 
1
6
:
4
6
 
 
P
a
g
e
 
2
4
-
2
5



3. FX1X2
(b1,�	) � P{X1 � b1, X2 � �	} � 0,

FX1X2
(�	, b2) � P{X1 � �	, X2 � b2} � 0.

4. FX1X2
(b1 � �1, b2 � �2) � FX1X2

(b1 � �1, b2) � FX1X2
(b1, b2 � �2) � FX1X2

(b1, b2) � 0,
for every �1, �2 � 0, and b1, b2.

Using the definition of the event Eb1, b2

X
1
, X

2, events of the form

{a1 � X1 � b1, a2 � X2 � b2}

can be described as the set of outcomes � in the sample space such that the bivariate 
random variable (X1, X2) takes on values such that X1 is greater than a1 but does not ex-
ceed b1 and X2 is greater than a2 but does not exceed b2. P{a1 � X1 � b1, a2 � X2 � b2}
can easily be seen to be

FX1X2
(b1, b2) � FX1X2

(b1, a2) � FX1X2
(a1, b2) � FX1X2

(a1, a2).

It was noted that single random variables are generally characterized as discrete or
continuous random variables. A bivariate random variable can be characterized in a sim-
ilar manner. A bivariate random variable (X1, X2) is called a discrete bivariate random vari-
able if both X1 and X2 are discrete random variables. Similarly, a bivariate random vari-
able (X1, X2) is called a continuous bivariate random variable if both X1 and X2 are
continuous random variables. Of course, bivariate random variables that are neither dis-
crete nor continuous can exist, but these will not be important in this book.

The joint CDF for a discrete random variable FX1X2
(b1, b2) is given by

FX1X2
(b1, b2) � P{�X1(�) � b1, X2 (�) � b2}

�   �
all k � b1

�
all l � b2

P{�X1(�) � k, X2 (�) � l}

�   �
all k � b1

�
all l � b2

PX1X2
(k, l),

where {�X1(�) � k, X2(�) � l) is the set of outcomes � in the sample space such that
the random variable X1 taken on the value k and the variable X2 takes on the value l; and
P{�X1(�) � k, X2(�) � l} � PX1X2

(k, l) denotes the probability of this event. The
PX1X2

(k, l) are called the joint probability distribution of the discrete bivariate random
variable (X1, X2). Thus, in the example considered at the beginning of this section,

PX1X2
(k, 1) � 1/(100)2 for all k, l that are integers between 0 and 99,

except for PX1X2
(0, 0) � 1.5/(100)2 and PX1X2

(99,99) � 0.5/(100)2.
For a continuous random variable, the joint CDF FX1X2

(b1, b2) can usually be written as

FX1X2
(b1,b2) � P{�X1(�) � b1, X2(�) � b2} � �b1

�	
�b2

�	
fX1X2

(s, t) ds dt,

where fX1X2
(s, t) is known as the joint density function of the bivariate random variable

(X1, X2). A knowledge of the joint density function enables one to calculate all sorts of
probabilities, for example.

P{a1 � X1 � b1, a2 � X2 � b2} � �b1

a1

�b2

a2

fX1X2
(s, t) ds dt.

Finally, if the density function is known, it is said that the probability distribution of the
random variable is determined.

The joint density function can be viewed as a surface in three dimensions, where the
volume under this surface over regions in the s, t plane correspond to probabilities. Nat-
urally, the density function can be obtained from the CDF by using the relation
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� 

∂s

∂2

∂t

 �s

�	
�t

�	
fX1X2

(u, v) du dv � fX1X2
(s, t).

In defining the joint CDF for a bivariate random variable, it was implied that fX1X2
(s, t)

was defined over the entire plane because

FX1X2
(b1, b2) � �b1

�	
�b2

�	 
fX1X2

(s, t) ds dt

(which is analogous to what was done for a univariate random variable). This causes no
difficulty, even for bivariate random variables having one or more components that can-
not take on negative values or are restricted to other regions. In this case, fX1X2

(s, t) can
be defined to be zero over the inadmissible part of the plane. In fact, the only require-
ments for a function to be a bivariate density function are that

1. fX1X2
(s, t) be nonnegative, and

2. �	

�	
�	

�	 
fX1X2

(s, t) ds dt � 1.

∂2FX1X2
(s, t)




∂s ∂t
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� 24.10 MARGINAL AND CONDITIONAL PROBABILITY DISTRIBUTIONS

In Sec. 24.9 the discussion was concerned with the joint probability distribution of a bi-
variate random variable (X1,X2). However, there may also be interest in the probability
distribution of the random variables X1 and X2 considered separately. It was shown that
if FX1X2

(b1, b2) represents the joint CDF of (X1,X2), then FX1
(b1) � FX1X2

(b1, 	) � P{X1 � b1,
X2 � 	} � P{X1 � b1} is the CDF for the univariate random variable X1, and FX2

(b2) �
FX1X2

(	, b2) � P{X1 � 	, X2 � b2} � P{X2 � b2} is the CDF for the univariate random
variable X2.

If the bivariate random variable (X1, X2) is discrete, it was noted that the

PX1X2
(k, l) � P{X1 � k, X2 � l}

describe its joint probability distribution. The probability distribution of X1 individually,
PX1

(k), now called the marginal probability distribution of the discrete random variable
X1, can be obtained from the PX1X2

(k, l). In particular,

FX1
(b1) � FX1X2

(b1,	) � �
all k � b1

�
all l

PX1X2
(k, l) � �

all k � b1

PX1
(k),

so that

PX1
(k) � P{X1 � k} � �

all l
PX1X2

(k, l).

Similarly, the marginal probability distribution of the discrete random variable X2 is given by

PX2
(l) � P{X2 � l} � �

all k
PX1X2

(k, l).

Consider the experiment described in Sec. 24.1 which measures the demand for a
product during the first 2 months, but where the probabilities are those given at the be-
ginning of Sec. 24.9. The marginal distribution of X1 is given by

PX1(0) � �
all l

PX1X2
(0, l)

� PX1X2
(0,0) � PX1X2

(0,1) � . . . � PX1X2
(0,99)

� 

(1

1
0
.
0
5
)2
 � 


(10
1
0)2
 � . . . � 


(10
1
0)2
 � 


(
1
1
0
0
0
0
.
)
5
2
,
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PX1
(1) PX1

(2) . . . PX1
(98)

all l

PX1X2
(k, l)

(1
1
0
0
0
0
)2 , for k 1, 2, . . . , 98.

PX1
(99)

all l

PX1X2
(99, l)

PX1X2
(99,0) PX1X2

(99,1) . . . PX1X2
(99,99)

(10
1
0)2 (10

1
0)2

. . .
(1

0
0
.
0
5
)2 (1

9
0
9
0
.5
)2 .

Note that this is indeed a probability distribution in that

PX1
(0) PX1

(1) . . . PX1
(99)

(
1
1
0
0
0
0
.
)
5
2 (1

1
0
0
0
0
)2

. . .
(1
9
0
9
0
.5
)2 1.

Similarly, the marginal distribution of X2 is given by

PX2
(0)

all k

PX1X2
(k, 0)

PX1X2
(0,0) PX1X2

(1,0) . . . PX1X2
(99,0)

(1
1
0
.
0
5
)2 (10

1
0)2

. . .
(10

1
0)2 (

1
1
0
0
0
0
.
)
5
2 ,

PX2
(1) PX2

(2) . . . PX2
(98)

all k

PX1X2
(k, l)

(1
1
0
0
0
0
)2 , l 1, 2, . . . , 98,

PX2
(99)

all k

PX1X2
(k, 99)

PX1X2
(0,99) PX1X2

(1,99) . . . PX1X2
(99,99)

(10
1
0)2 (10

1
0)2

. . .
(1

0
0
.
0
5
)2 (1

9
0
9
0
.5
)2 .

If the bivariate random variable (X1, X2) is continuous, then fX1X2
(s, t) represents the

joint density. The density function of X1 individually, fX1
(s), now called the marginal

density function of the continuous random variable X1, can be obtained from the fX1X2
(s, t).

In particular,

FX1
(b1) FX1X2

(b1, )
b1

fX1X2
(s, t) dt ds

b1

fX1
(s) ds,

so that

fX1
(s) fX1X2

(s, t) dt.

Similarly, the marginal density function of the continuous random variable X2 is given by

fX2
(t) fX1X2

(s, t) ds.

As indicated in Section 24.4, experiments are often performed where some results are
obtained early in time and further results later in time. For example, in the previously de-
scribed experiment that measures the demand for a product during the first two months,
the demand for the product during the first month is observed at the end of the first month.
This information can be utilized in making probability statements about the demand dur-
ing the second month.

In particular, if the bivariate random variable (X1, X2) is discrete, the conditional prob-
ability distribution of X2, given X1, can be defined as
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PX2�X1�k(l) � P{X2 � lX1 � k} � , if PX1
(k) � 0,

and the conditional probability distribution of X1, given X2, as

PX1�X2�l(k) � P{X1 � kX2 � l} � , if PX2
(l) � 0.

Note that for a given X2 � l, PX1�X2�l(k) satisfies all the conditions for a probability dis-
tribution for a discrete random variable. PX1�X2�l(k) is nonnegative, and furthermore,

�
all k

PX1�X2 � l(k) � �
all k

� � 1.

Again, returning to the demand for a product during the first 2 months, if it were known
that there was no demand during the first month, then

PX2|X1�0(l) � P{X2 � lX1 � 0} � � .

Hence,

PX2|X1� 0(0) � � 

1
1
0
.
0
5
.5


,

and

PX2|X1� 0(l) � 

10

1
0.5

 l � 1, 2, . . . , 99.

If the bivariate random variable (X1, X2) is continuous with joint density function
fX1X2

(s, t), and the marginal density function of X1 is given by fX1
(s), then the conditional

density function of X2, given X1 � s, is defined as

fX2|X1�s(t) � , if fX1
(s) � 0.

Similarly, if the marginal density function of X2 is given by fX2
(t), then the conditional

density function of X1, given X2 � t, is defined as

fX1|X2�t(s) � , if fX2
(t) � 0.

Note that, given X1 � s and X2 � t, the conditional density functions, fX2|X1�s(t) and
fX1|X2�t(s), respectively, satisfy all the conditions for a density function. They are non-
negative, and furthermore,

�	

�	
fX2|X1�s(t) dt � �	

�	

� 

fX1

1
(s)

 �	

�	
fX1X2

(s, t) dt � � 1,
and

�	

�	
fX1|X2 � l(s) ds � �	

�	

�

fX

1

2
(t)

 �	

�	
fX1X2

(s, t) ds � � 1.

As an example of the use of these concepts for a continuous bivariate random variable,
consider an experiment that measures the time of the first arrivals at a store on each of two

fX2
(t)



fX2

(t)

fX1X2
(s, t) ds




fX2

(t)

fX1
(s)



fX1

(s)

fX1X2
(s, t) dt




fX1

(s)

fX1X2
(s, t)



fX2

(t)

fX1X2
(s, t)



fX1

(s)

PX1X2
(0,0)




(100.5)�(100)2

PX1X2
(0, l)




100.5�(100)2

PX1X2
(0, l)




PX1

(0)

PX2
(l)



PX2

(l)
PX1X2

(k, l)




PX2
(l)

PX1X2
(k, l)




PX2

(l)

PX1X2
(k, l)




PX1

(k)
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successive days. Suppose that the joint density function for the random variable (X1, X2),
which represents the arrival time on the first and second days, respectively, is given by

fX1X2
(s, t) � �

The marginal density function of X1 is given by

fX1
(s) � �

and the marginal density function of X2 is given by

fX2
(t) � �

If it is announced that the arrival time of the first customer on the first day occurred
at time s, the conditional density of X2, given X1 � s, is given by

fX2|X1�s(t) � � � 

1
�


 e�t/�.

It is interesting to note at this point that the conditional density of X2, given X1 � s,
is independent of s and, furthermore, is the same as the marginal density of X2.

(1��2)e�(s�t)��




(1��)e�s��

fX1X2
(s, t)



fX1

(s)

for t � 0

otherwise.

�	

0


�

1
2
 e�(s�t)�� ds � 


1
�


e�t��,

0,

for s � 0

otherwise.

�	

0


�

1
2
 e�(s�t)��dt � 


1
�


e�s��,

0,

for s, t � 0

otherwise.



�

1
2
 e�(s�t)��,

0,
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� 24.11 EXPECTATIONS FOR BIVARIATE DISTRIBUTIONS

Section 24.7 defined the expectation of a function of a univariate random variable. The
expectation of a function of a bivariate random variable (X1, X2) may be defined in a sim-
ilar manner. Let g(X1, X2) be a function of the bivariate random variable (X1, X2). Let

PX1X2
(k, l) � P{X1 � k, X2 � l}

denote the joint probability distribution if (X1, X2) is a discrete random variable, and let
fX1X2

(s, t) denote the joint density function if (X1, X2) is a continuous random variable.
The expectation of g(X1, X2) is now defined as

An alternate definition can be obtained by recognizing that Z � g(X1, X2) is itself a uni-
variate random variable and hence has a density function if Z is continuous and a proba-
bility distribution if Z is discrete. The expectation of Z for these cases has already been
defined in Sec. 24.7. Of particular interest here is the extension of the theorem of the un-
conscious statistician, which states that if (X1, X2) is a continuous random variable and if
Z has a density function hZ(y), then

E[g(X1, X2)] � � if X1, X2 is a discrete random variable

if X1, X2 is a continuous random variable.

�
all k,l

g(k, l)PX1X2(k, l),

�	

�	 

�	

�	
g(s, t)fX1X2(s, t) ds dt,
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E(Z) � �	

�	

yhz(y) dy � �	

�	 

�	

�	

g(s, t)fX1X2
(s, t) ds dt.

Thus, the expectation of Z can be found by using its definition in terms of the density of
the univariate random variable Z or, alternatively, by use of its definition as the expecta-
tion of a function of the bivariate random variable (X1, X2) with respect to its joint den-
sity function. The identical theorem is true for a discrete bivariate random variable, and,
of course, both results are easily extended to n-variate random variables.

There are several important functions g that should be considered. All the results will
be stated for continuous random variables, but equivalent results also hold for discrete
random variables.

If g(X1, X2) � X1, it is easily seen that

E(X1) � �	

�	 

�	

�	

s fX1X2
(s, t) ds dt � �	

�	

s fX1
(s) ds.

Note that this is just the expectation of the univariate random variable X1 with respect to
its marginal density.

In a similar manner, if g(X1, X2) � [X1 � E(X1)]2, then

E[X1 � E(X1)]2 � �	

�	 

�	

�	

[s � E(X1)]2fX1X2
(s, t) ds dt

� �	

�	

[s � E(X1)]2fX1
(s) ds,

which is just the variance of the univariate random variable X1 with respect to its mar-
ginal density.

If g(X1, X2) � [X1 � E(X1)] [X2 � E(X2)], then E[g(X1, X2)] is called the covariance
of the random variable (X1, X2); that is,

E[X1 � E(X1)][X2 � E(X2)] � �	

�	 

�	

�	

[s � E(X1)][t � E(X2)] fX1X2
(s, t) ds dt.

An easy computational formula is provided by the identity

E[X1 � E(X1)][X2 � E(X2)] � E(X1X2) � E(X1)E(X2).

The correlation coefficient between X1 and X2 is defined to be

� � .

It is easily shown that � 1 � � � � 1.
The final results pertain to a linear combination of random variables. Let g(X1, X2) �

C1X1 � C2X2, where C1 and C2 are constants. Then

E[g(X1, X2)] � �	

�	 

�	

�	

(C1s � C2 t) fX1X2
(s, t) ds dt,

� C1 �	

�	 

s fX1
(s) ds � C2 �	

�	 

t fX2
(t) dt,

� C1E(X1) � C2E(X2).

Thus, the expectation of a linear combination of univariate random variables is just

E[C1X1 � C2X2 � . . . � CnXn] � C1E(X1) � C2E(X2) � . . . � CnE(Xn).

If

g(X1, X2) � [C1X1 � C2X2 � {C1E(X1) � C2E(X2)}]2,

E[X1 � E(X1)][X2 � E(X2)]





�E[X1 �� E(X1)�]2E[X2� � E(X�2)]2�
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then

E[g(X1, X2)] � variance (C1X1 � C2 X2)

� C2
1E[X1 � E(X1)]2 � C2

2E[X2 � E(X2)]2

� 2C1C2E[X1 � E(X1)][X2 � E(X2)]

� C2
1 variance (X1) � C2

2 variance (X2)

� 2C1C2 covariance (X1X2).

For n univariate random variables, the variance of a linear combination C1X1 � C2

X2 � . . . � CnXn is given by

�
n

i�1
Ci

2 variance (Xi) � 2�
n

j�2
�
j�1

i�1
CiCj covariance (XiXj).
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� 24.12 INDEPENDENT RANDOM VARIABLES AND RANDOM SAMPLES

The concept of independent events has already been defined; that is, E1 and E2 are inde-
pendent events if, and only if,

P{E1 � E2} � P{E1}P{E2}.

From this definition the very important concept of independent random variables can be
introduced. For a bivariate random variable (X1,X2) and constants b1 and b2, denote by E1

the event containing those � such that X1(�) � b1, X2(�) is anything; that is,

E1 � {�X1(�) � b1, X2(�) � 	}.

Similarly, denote by E2 the event containing those � such that X1(�) is anything and
X2(�) � b2; that is,

E2 � {�X1(�) � 	, X2(�) � b2}.

Furthermore, the event E1 � E2 is given by

E1 � E2 � {�X1(�) � b1, X2(�) � b2}.

The random variables X1 and X2 are said to be independent if events of the form given by
E1 and E2 are independent events for all b1 and b2. Using the definition of independent
events, then, the random variables X1 and X2 are called independent random variables if

P{X1 � b1, X2 � b2} � P{X1 � b1}P{X2 � b2}

for all b1 and b2. Therefore, X1 and X2 are independent if

FX1X2
(b1, b2) � P{X1 � b1, X2 � b2} � P{X1 � b1}P{X2 � b2}

� FX1
(b1)FX2

(b2).

Thus, the independence of the random variables X1 and X2 implies that the joint CDF fac-
tors into the product of the CDF’s of the individual random variables. Furthermore, it is eas-
ily shown that if (X1,X2) is a discrete bivariate random variable, then X1 and X2 are inde-
pendent random variables if, and only if, PX1X2

(k, l) � PX1
(k)PX2

(l); in other words, P{X1 �
k, X2 � l} � P{X1 � k}P{X2 � l}, for all k and l. Similarly, if (X1, X2) is a continuous bi-
variate random variable, then X1 and X2 are independent random variables if, and only if,

fX1X2
(s, t) � fX1

(s) fX2
(t),
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for all s ant t. Thus, if X1, X2 are to be independent random variables, the joint density
(or probability) function must factor into the product of the marginal density functions of
the random variables. Using this result, it is easily seen that if X1, X2 are independent 
random variables, then the covariance of X1, X2 must be zero. Hence, the results on the
variance of linear combinations of random variables given in Sec. 24.11 can be simpli-
fied when the random variables are independent; that is,

Variance ��
n

i�1
CiXi� � �

n

i�1
Ci

2 variance (Xi)

when the Xi are independent.
Another interesting property of independent random variables can be deduced from

the factorization property. If (X1, X2) is a discrete bivariate random variable, then X1 and
X2 are independent if, and only if,

PX1|X2�l(k) � PX1
(k), for all k and l.

Similarly, if (X1, X2) is a continuous bivariate random variable, then X1 and X2 are inde-
pendent if, and only if,

fX1|X2�t(s) � fX1
(s), for all s and t.

In other words, if X1 and X2 are independent, a knowledge of the outcome of one, say,
X2, gives no information about the probability distribution of the other, say, X1. It was
noted in the example in Sec. 24.10 on the time of first arrivals that the conditional den-
sity of the arrival time of the first customer on the second day, given that the first cus-
tomer on the first day arrived at time s, was equal to the marginal density of the arrival
time of the first customer on the second day. Hence, X1 and X2 were independent random
variables. In the example of the demand for a product during two consecutive months with
the probabilities given in Sec. 24.9, it was seen in Sec. 24.10 that

PX2|X1�0(0) � 

1
1
0
.
0
5
.5


 � PX2
(0) � 


(
1
1
0
0
0
0
.
)
5
2
.

Hence, the demands during each month were dependent (not independent) random variables.
The definition of independent random variables generally does not lend itself to de-

termine whether or not random variables are independent in a probabilistic sense by look-
ing at their outcomes. Instead, by analyzing the physical situation the experimenter usu-
ally is able to make a judgment about whether the random variables are independent by
ascertaining if the outcome of one will affect the probability distribution of the other.

The definition of independent random variables is easily extended to three or more
random variables. For example, if the joint CDF of the n-dimensional random variable
(X1, X2, . . . , Xn) is given by FX1X2

. . . Xn
(b1, b2, . . . , bn) and FX1

(b1), FX2
(b2), . . . ,

FXn
(bn) represents the CDF’s of the univariate random variables X1, X2, . . . , Xn, respec-

tively, then X1, X2, . . . , Xn are independent random variables if, and only if,

FX1X2
. . .

Xn
(b1, b2, . . . , bn) � FX1

(b1)FX2
(b2) . . . FXn

(bn), for all b1, b2, . . . , bn.

Having defined the concept of independent random variables, we can now introduce the
term random sample. A random sample simply means a sequence of independent and iden-
tically distributed random variables. Thus, X1, X2, . . . , Xn constitute a random sample of size
n if the Xi are independent and identically distributed random variables. For example, in 
Sec. 24.5 it was pointed out that if X1, X2, . . . , Xn are independent Bernoulli random variables,
each with parameter p (that is, if the X’s are a random sample), then the random variable

X � �
n

i�1
Xi

has a binomial distribution with parameters n and p.
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� 24.13 LAW OF LARGE NUMBERS

Section 24.7 pointed out that the mean of a random sample tends to converge to the ex-
pectation of the random variables as the sample size increases. In particular, suppose the
random variable X, the demand for a product, may take on one of the possible values 
k � 0, 1, 2, . . . , 98, 99, each with PX(k) � 1/100 for all k. Then E(X) is easily seen to be
49.5. If a random sample of size n is taken, i.e., the demands are observed for n days,
with each day’s demand being independent and identically distributed random variables,
it was noted that the random variable X� should take on a value close to 49.5 if n is large.
This result can be stated precisely as the law of large numbers.

Law of Large Numbers

Let the random variables X1, X2, . . . , Xn be independent, identically distributed random
variables (a random sample of size n), each having mean �. Consider the random vari-
able that is the sample mean X�:

X� � .

Then for any constant ε � 0,

lim
n→	

P{X� � � � ε} � 0.

The interpretation of the law of large numbers is that as the sample size increases, the proba-
bility is “close” to 1 that X� is “close” to �. Assuming that the variance of each Xi is 	2 � 	,
this result is easily proved by using Chebyshev’s inequality (stated in Sec. 24.8). Since each
Xi has mean � and variance 	2, X� also has mean �, but its variance is 	2/n. Hence, apply-
ing Chebyshev’s inequality to the random variable X�, it is evident that

P�� � 

�
C	

n�

 � X� � � � 


�
C	

n�

� � 1�


C
1

2
.

This is equivalent to

P�X� � � � 

�
C	

n�

� � 


C
1

2
.

Let C	��n� = ε, so that C = ε�n��	. Thus,

P{X� � � � ε} � 

ε
	
2

2

n

,

so that

lim
n→	

P{X� � � � ε} � 0,

as was to be proved.

X1 � X2 � . . . � Xn



n

� 24.14 CENTRAL LIMIT THEOREM

Section 24.6 pointed out that sums of independent normally distributed random variables
are themselves normally distributed, and that even if the random variables are not nor-
mally distributed, the distribution of their sum still tends toward normality. This latter
statement can be made precise by means of the central limit theorem.
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†Under these conditions the central limit theorem actually holds without assuming any other regularity conditions.

Central Limit Theorem

Let the random variables X1, X2, . . . , Xn be independent with means �1, �2, . . . , �n, re-
spectively, and variance 	2

1, 	2
2, . . . , 	2

n, respectively. Consider the random variable Zn,

Zn � .

Then, under certain regularity conditions, Zn is approximately normally distributed with
zero mean and unit variance in the sense that

lim
n→	

P{Zn � b} � �b

�	


�

1

2
�

 e�y2�2 dy.

Note that if the Xi form a random sample, with each Xi having mean � and variance 	2,
then Zn � (X� � �)�n�/	.† Hence, sample means from random samples tend toward nor-
mality in the sense just described by the central limit theorem even if the Xi are not nor-
mally distributed.

It is difficult to give sample sizes beyond which the central limit theorem applies and
approximate normality can be assumed for sample means. This, of course, does depend
upon the form of the underlying distribution. From a practical point of view, moderate
sample sizes, like 10, are often sufficient.

�n

i�1
Xi ��n

i�1
�i





	�n

i�1

	i

2


� 24.15 FUNCTIONS OF RANDOM VARIABLES

Section 24.7 introduced the theorem of the unconscious statistician and pointed out that
if a function Z � g(X) of a continuous random variable is considered, its expectation can
be taken with respect to the density function fX(y) of X or the density function hZ(y) of Z.
In discussing this choice, it was implied that the density function of Z was known. In gen-
eral, then, given the cumulative distribution function FX(b) of a random variable X, there
may be interest in obtaining the cumulative distribution function HZ(b) of a random vari-
able Z � g(X). Of course, it is always possible to go back to the sample space and de-
termine HZ(b) directly from probabilities associated with the sample space. However, al-
ternate methods for doing this are desirable.

If X is a discrete random variable, the values k that the random variable X takes on
and the associated PX(k) are known. If Z � g(X) is also discrete, denote by m the values
that Z takes on. The probabilities QZ(m) � P{Z � m} for all m are required. The general
procedure is to enumerate for each m all the values of k such that

g(k) � m.

QZ(m) is then determined as

QZ(m) �   � PX(k).

To illustrate, consider again the example involving the demand for a product in a single
month. Let this random variable be noted by X, and let k � 0, 1, . . . , 99 with PX(k) �1�100,
for all k. Consider a new random variable Z that takes on the value of 0 if there is no 

all k
such that
g(k) = m
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demand and 1 if there is any demand. This random variable maybe useful for determin-
ing whether any shipping is needed. The probabilities

QZ(0) and QZ(1)

are required. If m � 0, the only value of k such that g(k) � 0 is k � 0. Hence,

QZ(0) �   � PX(k) � PX(0) � 

1

1

00

.

If m � 1, the values of k such that g(k) � 1 are k � 1, 2, 3, . . . , 98, 99. Hence,

QZ(1) �   � PX(k)

� PX(1) � PX(2) � PX(3) � . . . � PX(98) � PX(99) � 

1

9

0

9

0

.

If X is a continuous random variable, then both the CDF FX(b) and the density func-
tion fX(y) may be assumed to be known. If Z � g(X) is also a continuous random variable,
either the CDF HZ(b) or the density function hZ(y) is sought. To find HZ(b), note that

HZ(b) � P{Z � b} � P{g(X) � b} � P{A},

where A consists of all points such that g(X) � b. Thus, P{A} can be determined from
the density function of CDF of the random variable X. For example, suppose that the CDF
for the time of the first arrival in a store is given by

FX(b) = �
where � > 0. Suppose further that the random variable Z � g(X) � X + 1, which repre-
sents an hour after the first customer arrives, is of interest, and the CDF of Z, HZ(b), is
desired. To find this CDF note that

HZ(b) � P{Z � b} � P{X � 1 � b} � P{X � b � 1}

� �
Furthermore, the density can be obtained by differentiating the CDF; that is,

hZ(y) � � .

Another technique can be used to find the density function directly if g(X) is mo-
notone and differentiable; it can be shown that

hZ(y) � fX(s) �

d

d

y

s

�,

where s is expressed in terms of y. In the example, Z � g(X) � X � 1, so that y, the value
the random variable Z takes on, can be expressed in terms of s, the value the random vari-
able X takes on; that is, y � g(s) � s � 1. Thus,

s � y � 1, fX(s) � 

1

�

 e�s�� � 


1

�

 e�(y�1)��, and 


d

d

y

s

 � 1.

for y � 1

for y � 1.



1

�

e�(y�1)��,

0,

for b � 1
for b � 1.

1 � e�(b�1)��,
0,

for b � 0
for b � 0,

1 � e�b��,
0,

all k
such that
g(k) = 1

all k
such that
g(k) = 0
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Hence,

hZ(y) � 

1

�

 e�(y�1)�� 1 � 


1

�

 e�(y�1)��,

which is the result previously obtained.
All the discussion in this section concerned functions of a single random variable. If

(X1, X2) is a bivariate random variable, there may be interest in the probability distribu-
tion of such functions as X1 � X2, X1X2, X1/X2, and so on. If (X1, X2) is discrete, the tech-
nique for single random variables is easily extended. A detailed discussion of the tech-
niques available for continuous bivariate random variables is beyond the scope of this text;
however, a few notions related to independent random variables will be discussed.

If (X1, X2) is a continuous bivariate random variable, and X1 and X2 are independent,
then its joint density is given by

fX1X2
(s, t) � fX1

(s)fX2
(t).

Consider the function

Z � g(X1, X2) � X1 � X2.

The CDF for Z can be expressed as HZ(b) � P{Z � b} � P{X1 � X2 � b}. This can be
evaluated by integrating the bivariate density over the region such that s � t � b; that is

HZ(b) �  ��
s�t � b

fX1
(s)fX2

(t) ds dt

� �	

�	 
�b�t

�	
fX1

(s)fX2
(t) ds dt.

Differentiating with respect to b yields the density function

hZ(y) � �	

�	
fX2

(t)fX1
(y � t) dt.

This can be written alternately as

hZ(y) � �	

�	
fX1

(s)fX2
(y � s) ds.

Note that the integrand may be zero over part of the range of the variable, as shown in
the following example.

Suppose that the times of the first arrival on two successive days, X1 and X2, are in-
dependent, identically distributed random variables having density

fX1
(s) � �

fX2
(t) � �

To find the density of Z � X1 � X2, note that

fX1
(s) � �

and

fX2
(y � s) � � if y�s � 0 so that s � y

if y�s � 0 so that s � y.



1

�

e�(y�s)��,

0,

for s � 0

for s � 0,



1

�

e�s��,

0,

for t � 0

otherwise.



1

�

e�t��,

0,

for s � 0

otherwise.



1

�

e�s��,

0,
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Hence,

fX1
(s) fX2

(y s)

Hence,

hZ(y) fX1
(s)fX2

(y s) ds
y

0
.

1
2 e y ds

y
2 e y .

Note that this is just a gamma distribution, with parameters 2 and . Hence,
as indicated in Sec. 24.6, the sum of two independent, exponentially distributed random
variables has a gamma distribution. This example illustrates how to find the density func-
tion for finite sums of independent random variables. Combining this result with those for
univariate random variables leads to easily finding the density function of linear combi-
nations of independent random variables.

A final result on the distribution of functions of random variables concerns functions
of normally distributed random variables. The chi-square and the t and F distributions, in-
troduced in Sec. 24.6, can be generated from functions of normally distributed random
variables. These distributions are particularly useful in the study of statistics. In particu-
lar, let X1, X2, . . . , X be independent, normally distributed random variables having zero
mean and unit variance. The random variable

2 X2
1 X2

2
. . . X2

can be shown to have a chi-square distribution with degrees of freedom. A random vari-
able having a t distribution may be generated as follows. Let X be a normally distributed
random variable having zero mean and unit variance and 2 be a chi-square random vari-
able (independent of X) with degrees of freedom. The random variable

t

can be shown to have a t distribution with degrees of freedom. Finally, a random vari-
able having an F distribution can be generated from a function of two independent chi-
square random variables. Let 2

1 and 2
2 be independent chi-square random variables, with

1 and 2 degrees of freedom, respectively. The random variable

F

can be shown to have an F distribution with 1 and 2 degrees of freedom.

2
1 1
2
2 1

X
2

if 0 s y

otherwise.

1
e s 1

e (y s) 1
2 e y ,

0,

24-38 CHAPTER 24 PROBABILITY THEORY

SELECTED REFERENCES

3. Billingsley, P.: Probability and Measure, 4th ed., Wiley, Hoboken, NJ, 2012.
4. Durret, R.: Probability Theory and Examples, 4th ed., Cambridge University Press, Cambridge, 

5. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1, 3d ed., Wiley,

1. Asmussen, S.: Applied Probability and Queues, 2nd ed., Springer, New York, 2003.
2. Bhattacharya, R., and E.C. Waymire: A Basic Course on Probability Theory, Springer, New 

York, 2007.

New York, 1968.
6. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2, 2d ed., Wiley,

New York, 1971.

hil61217_ch24.qxd  5/14/04  16:46  Page 24-38

UK, 2010.

D01006383
Sticky Note
Unmarked set by D01006383



24-1. A cube has its six sides colored red, white, blue, green, yel-
low, and violet. It is assumed that these six sides are equally likely
to show when the cube is tossed. The cube is tossed once.
(a) Describe the sample space.
(b) Consider the random variable that assigns the number 0 to red

and white, the number 1 to green and blue, and the number 2
to yellow and violet. What is the distribution of this random
variable?

(c) Let Y (X 1)2, where X is the random variable in part (b).
Find E(Y).

24-2. Suppose the sample space consists of the four points

1, 2, 3, 4,

and the associated probabilities over the events are given by

P{ 1}
1

3
, P{ 2}

1

5
, P{ 3}

1

3

0
, P{ 4}

1

6
.

Define the random variable X1 by

X1( 1) 1,
X1( 2) 1,
X1( 3) 4,
X1( 4) 5,

and the random variable X2 by

X1( 1) 1,
X2( 2) 1,
X2( 3) 1,
X2( 4) 5,

(a) Find the probability distribution of X1, that is, PX1
(i).

(b) Find E(X1).
(c) Find the probability distribution of the random variable X1 X2,

that is, PX1 X2
(i).

(d) Find E(X1 X2) and E(X2).
(e) Find FX1X2

(b1, b2).
(f) Compute the correlation coefficient between X1 and X2.
(g) Compute E[2X1 3X2].

24-3. During the course of a day a machine turns out two items,
one in the morning and one in the afternoon. The quality of each
item is measured as good (G), mediocre (M), or bad (B). The long-
run fraction of good items the machine produces is 1

2, the fraction
of mediocre items is 1

3, and the fraction of bad items is 1
6.

(a) In a column, write the sample space for the experiment that
consists of observing the day’s production.

(b) Assume a good item returns a profit of $2, a mediocre item a
profit of $1, and a bad item yields nothing. Let X be the random
variable describing the total profit for the day. In a column ad-
jacent to the column in part (a), write the value of this random
variable corresponding to each point in the sample space.

(c) Assuming that the qualities of the morning and afternoon items
are independent, in a third column associate with every point
in the sample space a probability for that point.

(d) Write the set of all possible outcomes for the random variable X.
Give the probability distribution function for the random variable.

(e) What is the expected value of the day’s profit?

24-4. The random variable X has density function f given by

fX(y)

(a) Determine K in terms of .
(b) Find FX(b), the CDF of X.
(c) Find E(X).

(d) Suppose
1

3
. Is P X

1

3
a P X

1

3
a ?

24-5. Let X be a discrete random variable, with probability 
distribution

P{X x1}
1

4

and

P{X x2}
3

4
.

(a) Determine x1 and x2, such that

E(X) 0 and variance (X) 10.

(b) Sketch the CDF of X.

24-6. The life X, in hours, of a certain kind of radio tube has a prob-
ability density function given by

fX(y)

(a) What is the probability that a tube will survive 250 hours of
operation?

(b) Find the expected value of the random variable.

for y 100

for y 100.

1

y

0
2

0
,

0,

for 0 y
for y 1
elsewhere.

,
K,
0,
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24-7. The random variable X can take on only the values 0, ±1,
±2, and

P{ 1 X 2} 0.4, P{X 0} 0.3,
P{⏐X⏐ 1} 0.6, P{X 2} P{X 1 or 1}.

(a) Find the probability distribution of X.
(b) Graph the CDF of X.
(c) Compute E(X).

24-8. Let X be a random variable with density

fX(y)

(a) What value of K will make fX(y) a true density?
(b) What is the CDF of X?
(c) Find E(2X 1).
(d) Find variance (X).
(e) Find the approximate value of P{X > 0}, where X is the sam-

ple mean from a random sample of size n 100 from the
above distribution. (Hint: Note that n is “large.”)

24-9. The distribution of X, the life of a transistor, in hours, is ap-
proximated by a triangular distribution as follows:

(a) What is the value of a?
(b) Find the expected value of the life of transistors.
(c) Find the CDF, FX(b), for this density. Note that this must be

defined for all b between plus and minus infinity.
(d) If X represents the random variable, the life of a transistor, let

Z 3X be a new random variable. Using the results of (c),
find the CDF of Z.

24-10. The number of orders per week, X, for radios can be as-
sumed to have a Poisson distribution with parameter 25.
(a) Find P{X 25} and P{X 20}.
(b) If the number of radios in the inventory is 35, what is the prob-

ability of a shortage occurring in a week?

24-11. Consider the following game. Player A flips a fair coin un-
til a head appears. She pays player B 2n dollars, where n is the
number of tosses required until a head appears. For example, if a
head appears on the first trial, player A pays player B $2. If the
game results in 4 tails followed by a head, player A pays player B
25 $32. Therefore, the payoff to player B is a random variable

that takes on the values 2n for n 1, 2, . . . and whose probabil-
ity distribution is given by (1

2)n for n 1, 2, . . . , that is, if X de-
notes the payoff to player B,

P(X 2n)
1

2

n

for n 1, 2, . . .

The usual definition of a fair game between two players is
for each player to have equal expectation for the amount to
be won.
(a) How much should player B pay to player A so that this game

will be fair?
(b) What is the variance of X?
(c) What is the probability of player B winning no more than $8

in one play of the game?

24-12. The demand D for a product in a week is a random vari-
able taking on the values of 1, 0, 1 with probabilities 1 8, 5

8, and
C 8, respectively. A demand of 1 implies that an item is returned.
(a) Find C, E(D), and variance D.
(b) Find E(eD

2

).
(c) Sketch the CDF of the random variable D, labeling all the nec-

essary values.

24-13. In a certain chemical process three bottles of a standard
fluid are emptied into a larger container. A study of the individual
bottles shows that the mean value of the contents is 15 ounces and
the standard deviation is 0.08 ounces. If three bottles form a ran-
dom sample,
(a) Find the expected value and the standard deviation of the vol-

ume of liquid emptied into the larger container.
(b) If the content of the individual bottles is normally distributed,

what is the probability that the volume of liquid emptied into
the larger container will be in excess of 45.2 ounces?

24-14. Consider the density function of a random variable X de-
fined by

fX(y)

(a) Find the CDF corresponding to this density function. (Be sure
you describe it completely.)

(b) Calculate the mean and variance.
(c) What is the probability that a random variable having this den-

sity will exceed 0.5?
(d) Consider the experiment where six independent random vari-

ables are observed, each random variable having the density
function given above. What is the expected value of the sam-
ple mean of these observations?

(e) What is the variance of the sample mean described in part (d )?

24-15. A transistor radio operates on two 11
2 volt batteries, so

that nominally it operates on 3 volts. Suppose the actual voltage
of a single new battery is normally distributed with mean 11

2volts
and variance 0.0625. The radio will not operate “properly” at the
outset if the voltage falls outside the range 23

4 to 31
4 volts.

for y 0
for 0 y 1
for 1 y.

0,
6y(1 y),
0,

for 1 y 1
otherwise

K(1 y2),
0,
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(a) What is the probability that the radio will not operate 
“properly”?

(b) Suppose that the assumption of normality is not valid. Give 
a bound on the probability that the radio will not operate 
“properly.”

24-16. The life of electric lightbulbs is known to be a normally
distributed random variable with unknown mean � and standard
deviation 200 hours. The value of a lot of 1,000 bulbs is
(1,000)(1�5,000) � dollars. A random sample of n bulbs is to be
drawn by a prospective buyer, and 1,000(1/5,000) X� dollars paid
to the manufacturer. How large should n be so that the probability
is 0.90 that the buyer does not overpay or underpay the manufac-
turer by more than $15?

24-17. A joint random variable (X1, X2) is said to have a bivariate
normal distribution if its joint density is given by

fX1, X2
(s, t) � exp ��

� �2

�2�

� � �2��
for �	 � s � 	 and �	 � t � 	.
(a) Show that E(X1) � �X1

and E(X2) � �X2
.

(b) Show that variance (X1) � 	2
X1

, variance (X2) � 	2
X2

, and the
correlation coefficient is �.

(c) Show that marginal distributions of X1 and X2 are normal.
(d) Show that the conditional distribution of X1, given X2 � x2, is

normal with mean

�X1
� � (x2 � �X2

)

and variance 	2
X1

(1 � �2).

24-18. The joint demand for a product over 2 months is a contin-
uous random variable (X1, X2) having a joint density given by

fX1, X2(s, t) � �

(a) Find c.
(b) Find FX1X2

(b1, b2), FX1
(b1), and FX2

(b2).
(c) Find fX2X1�s(t).

24-19. Two machines produce a certain item. The capacity per day
of machine 1 is 1 unit and that of machine 2 is 2 units. Let (X1, X2)
be the discrete random variable that measures the actual produc-
tion on each machine per day. Each entry in the table below rep-
resents the joint probability, for example, PX1X2

(0,0) � 1�8.

(a) Find the marginal distributions of X1 and X2.
(b) Find the conditional distribution of X1, given X2 � 1.
(c) Are X1 and X2 independent random variables?
(d) Find E(X1), E(X2), variance (X1), and variance (X2).
(e) Find the probability distribution of (X1 � X2).

24-20. Suppose that E1, E2, . . . , Em are mutually exclusive events
such that E1 � E2 � . . . � Em � �; that is, exactly one of the E
events will occur. Denote by F any event in the sample space. Note
that

F � FE1 � FE2 � . . . � FEm†

and that FE1, i � 1, 2, . . . , m, are also mutually exclusive.

(a) Show that P{F} � �
m

i�1
P{FEi} � �

m

i�1
P{FEi}P{Ei}.

(b) Show that P{EiF} � P{FEi}P{Ei}��
m

i�1
P{FEi}P{Ei}.

(This result is called Bayes’ formula and is useful when it is known
that the event F has occurred and there is interest in determining
which one of the Et also occurred.)

if 100 � s � 150, and 50 � t � 100
otherwise.

c,
0,

	X1

	X2

t � �X2

	X2

(s � �X1
)(t � �X2

)




	X1
	X2

s � �X1

	X1

1



2(1 � �2)

1




2
	X1

	X2
�1 � �2�
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X1

X2 0 1

0 0

1

2
3


8

1


8

1


8

1


4

1


8

†Recall that FE1 is the same as F � E1, that is, the intersection of the two events F and E1.
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