
Analysis and Design
of Beams for Bending

The beams supporting the multiple overhead cranes system shown in this picture are subjected to transverse

loads causing the beams to bend. The normal stresses resulting from such loadings will be determined in 

this chapter.
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308 Analysis and Design of Beams for Bending

The transverse loading of a beam may consist of concentrated loads
expressed in newtons, pounds, or their multiples, kilonewtons

and kips (Fig. 5.2a), of a distributed load w, expressed in N/m, kN/m, lb/ft,

or kips/ft (Fig. 5.2b), or of a combination of both. When the load w per

unit length has a constant value over part of the beam (as between A and

B in Fig. 5.2b), the load is said to be uniformly distributed over that part

of the beam.

Beams are classified according to the way in which they are supported.

Several types of beams frequently used are shown in Fig. 5.3. The distance

L shown in the various parts of the figure is called the span. Note that the

reactions at the supports of the beams in parts a, b, and c of the figure in-

volve a total of only three unknowns and, therefore, can be determined by

P1, P2, . . . ,

Fig. 5.2

Fig. 5.3

Fig. 5.1

5.1. INTRODUCTION

This chapter and most of the next one will be devoted to the analysis

and the design of beams, i.e., structural members supporting loads ap-

plied at various points along the member. Beams are usually long,

straight prismatic members, as shown in the photo on the previous page.

Steel and aluminum beams play an important part in both structural and

mechanical engineering. Timber beams are widely used in home con-

struction (Fig. 5.1). In most cases, the loads are perpendicular to the

axis of the beam. Such a transverse loading causes only bending and

shear in the beam. When the loads are not at a right angle to the beam,

they also produce axial forces in the beam.
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the methods of statics. Such beams are said to be statically determinate and

will be discussed in this chapter and the next. On the other hand, the re-

actions at the supports of the beams in parts d, e, and f of Fig. 5.3 involve

more than three unknowns and cannot be determined by the methods of

statics alone. The properties of the beams with regard to their resistance to

deformations must be taken into consideration. Such beams are said to be

statically indeterminate and their analysis will be postponed until Chap. 9,

where deformations of beams will be discussed.

Sometimes two or more beams are connected by hinges to form a sin-

gle continuous structure. Two examples of beams hinged at a point H are

shown in Fig. 5.4. It will be noted that the reactions at the supports involve

four unknowns and cannot be determined from the free-body diagram of

the two-beam system. They can be determined, however, by considering

the free-body diagram of each beam separately; six unknowns are involved

(including two force components at the hinge), and six equations are

available.

It was shown in Sec. 4.1 that if we pass a section through a point C
of a cantilever beam supporting a concentrated load P at its end (Fig. 4.6),

the internal forces in the section are found to consist of a shear force 

equal and opposite to the load P and a bending couple M of moment equal

to the moment of P about C. A similar situation prevails for other types of

supports and loadings. Consider, for example, a simply supported beam AB
carrying two concentrated loads and a uniformly distributed load (Fig.

5.5a). To determine the internal forces in a section through point C we first

draw the free-body diagram of the entire beam to obtain the reactions at

the supports (Fig. 5.5b). Passing a section through C, we then draw the

free-body diagram of AC (Fig. 5.5c), from which we determine the shear

force V and the bending couple M.
The bending couple M creates normal stresses in the cross section,

while the shear force V creates shearing stresses in that section. In most

cases the dominant criterion in the design of a beam for strength is the

maximum value of the normal stress in the beam. The determination of the

normal stresses in a beam will be the subject of this chapter, while shear-

ing stresses will be discussed in Chap. 6.

Since the distribution of the normal stresses in a given section depends

only upon the value of the bending moment M in that section and the geo-

metry of the section,† the elastic flexure formulas derived in Sec. 4.4 can

be used to determine the maximum stress, as well as the stress at any given

point, in the section. We write‡

(5.1, 5.2)

where I is the moment of inertia of the cross section with respect to a

centroidal axis perpendicular to the plane of the couple, y is the dis-

tance from the neutral surface, and c is the maximum value of that dis-

tance (Fig. 4.13). We also recall from Sec. 4.4 that, introducing the

sm �
0M 0 c

I
  sx � �

My

I

P¿
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Fig. 5.4

Fig. 5.5

†It is assumed that the distribution of the normal stresses in a given cross section is not

affected by the deformations caused by the shearing stresses. This assumption will be veri-

fied in Sec. 6.5.

‡We recall from Sec. 4.2 that M can be positive or negative, depending upon whether the

concavity of the beam at the point considered faces upward or downward. Thus, in the case

considered here of a transverse loading, the sign of M can vary along the beam. On the other

hand, is a positive quantity, the absolute value of M is used in Eq. (5.1).sm
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310 Analysis and Design of Beams for Bending elastic section modulus of the beam, the maximum value 

of the normal stress in the section can be expressed as

(5.3)

The fact that is inversely proportional to S underlines the impor-

tance of selecting beams with a large section modulus. Section moduli

of various rolled-steel shapes are given in Appendix C, while the sec-

tion modulus of a rectangular shape can be expressed, as shown in Sec.

4.4, as

(5.4)

where b and h are, respectively, the width and the depth of the cross

section.

Equation (5.3) also shows that, for a beam of uniform cross section,

is proportional to Thus, the maximum value of the normal stress

in the beam occurs in the section where is largest. It follows that one

of the most important parts of the design of a beam for a given loading

condition is the determination of the location and magnitude of the largest

bending moment.

This task is made easier if a bending-moment diagram is drawn, i.e.,

if the value of the bending moment M is determined at various points of

the beam and plotted against the distance x measured from one end of the

beam. It is further facilitated if a shear diagram is drawn at the same time

by plotting the shear V against x.
The sign convention to be used to record the values of the shear and

bending moment will be discussed in Sec. 5.2. The values of V and M will

then be obtained at various points of the beam by drawing free-body dia-

grams of successive portions of the beam. In Sec. 5.3 relations among load,

shear, and bending moment will be derived and used to obtain the shear

and bending-moment diagrams. This approach facilitates the determination

of the largest absolute value of the bending moment and, thus, the deter-

mination of the maximum normal stress in the beam.

In Sec. 5.4 you will learn to design a beam for bending, i.e., so that

the maximum normal stress in the beam will not exceed its allowable value.

As indicated earlier, this is the dominant criterion in the design of a beam.

Another method for the determination of the maximum values of the

shear and bending moment, based on expressing V and M in terms of sin-
gularity functions, will be discussed in Sec. 5.5. This approach lends itself

well to the use of computers and will be expanded in Chap. 9 to facilitate

the determination of the slope and deflection of beams.

Finally, the design of nonprismatic beams, i.e., beams with a variable

cross section, will be discussed in Sec. 5.6. By selecting the shape and size

of the variable cross section so that its elastic section modulus 

varies along the length of the beam in the same way as it is possible

to design beams for which the maximum normal stress in each section is

equal to the allowable stress of the material. Such beams are said to be of

constant strength.

0M 0 ,
S � I�c

0M 0
0M 0 :sm

S � 1
6 bh2

sm

sm �
0M 0

S

smS � I�c
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5.2. SHEAR AND BENDING-MOMENT DIAGRAMS

As indicated in Sec. 5.1, the determination of the maximum absolute

values of the shear and of the bending moment in a beam are greatly

facilitated if V and M are plotted against the distance x measured from

one end of the beam. Besides, as you will see in Chap. 9, the knowl-

edge of M as a function of x is essential to the determination of the de-

flection of a beam.

In the examples and sample problems of this section, the shear and

bending-moment diagrams will be obtained by determining the values

of V and M at selected points of the beam. These values will be found

in the usual way, i.e., by passing a section through the point where they

are to be determined (Fig. 5.6a) and considering the equilibrium of the

portion of beam located on either side of the section (Fig. 5.6b). Since

the shear forces V and have opposite senses, recording the shear at

point C with an up or down arrow would be meaningless, unless we in-

dicated at the same time which of the free bodies AC and CB we are

considering. For this reason, the shear V will be recorded with a sign:

a plus sign if the shearing forces are directed as shown in Fig. 5.6b,

and a minus sign otherwise. A similar convention will apply for the

bending moment It will be considered as positive if the bending

couples are directed as shown in that figure, and negative otherwise.†

Summarizing the sign conventions we have presented, we state:

The shear V and the bending moment M at a given point of a beam
are said to be positive when the internal forces and couples acting on
each portion of the beam are directed as shown in Fig. 5.7a.

These conventions can be more easily remembered if we note that

1. The shear at any given point of a beam is positive when the
external forces (loads and reactions) acting on the beam tend
to shear off the beam at that point as indicated in Fig. 5.7b.

2. The bending moment at any given point of a beam is positive
when the external forces acting on the beam tend to bend the
beam at that point as indicated in Fig. 5.7c.

It is also of help to note that the situation described in Fig. 5.7, in

which the values of the shear and of the bending moment are positive,

is precisely the situation that occurs in the left half of a simply sup-

ported beam carrying a single concentrated load at its midpoint. This

particular case is fully discussed in the next example.

M.

V¿
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†Note that this convention is the same that we used earlier in Sec. 4.2

Fig. 5.6

Fig. 5.7
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EXAMPLE 5.01

Draw the shear and bending-moment diagrams for a simply

supported beam AB of span L subjected to a single concen-

trated load P at it midpoint C (Fig. 5.8).

We first determine the reactions at the supports from the

free-body diagram of the entire beam (Fig. 5.9a); we find that

the magnitude of each reaction is equal to 

Next we cut the beam at a point D between A and C and

draw the free-body diagrams of AD and DB (Fig. 5.9b). As-
suming that shear and bending moment are positive, we direct

the internal forces V and and the internal couples M and

as indicated in Fig. 5.7a. Considering the free body AD
and writing that the sum of the vertical components and the

sum of the moments about D of the forces acting on the free

body are zero, we find and Both the

shear and the bending moment are therefore positive; this may

be checked by observing that the reaction at A tends to shear

off and to bend the beam at D as indicated in Figs. 5.7b and c.

We now plot V and M between A and C (Figs. 5.9d and e); the

shear has a constant value while the bending mo-

ment increases linearly from at to 

at 

Cutting, now, the beam at a point E between C and B and

considering the free body EB (Fig. 5.9c), we write that the sum

of the vertical components and the sum of the moments about

E of the forces acting on the free body are zero. We obtain

and The shear is therefore neg-

ative and the bending moment positive; this can be checked

by observing that the reaction at B bends the beam at E as in-

dicated in Fig. 5.7c but tends to shear it off in a manner op-

posite to that shown in Fig. 5.7b. We can complete, now, the

shear and bending-moment diagrams of Figs. 5.9d and e; the

shear has a constant value between C and B, while

the bending moment decreases linearly from at

to at x � L.M � 0x � L�2

M � PL�4

V � �P�2

M � P 1L � x 2�2.V � �P�2

x � L�2.

M � PL�4x � 0M � 0

V � P�2,

M � �Px�2.V � �P�2

M ¿
V ¿

P�2.
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Fig. 5.8
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We note from the foregoing example that, when a beam is subjected

only to concentrated loads, the shear is constant between loads and the

bending moment varies linearly between loads. In such situations, there-

fore, the shear and bending-moment diagrams can easily be drawn, once

the values of V and M have been obtained at sections selected just to

the left and just to the right of the points where the loads and reactions

are applied (see Sample Prob. 5.1).

5.2. Shear and Bending-Moment Diagrams 313

EXAMPLE 5.02

Draw the shear and bending-moment diagrams for a cantilever

beam AB of span L supporting a uniformly distributed load 

(Fig. 5.10).

We cut the beam at a point C between A and B and draw

the free-body diagram of AC (Fig. 5.11a), directing V and M
as indicated in Fig. 5.7a. Denoting by x the distance from A
to C and replacing the distributed load over AC by its result-

ant wx applied at the midpoint of AC, we write

We note that the shear diagram is represented by an oblique

straight line (Fig. 5.11b) and the bending-moment diagram by

a parabola (Fig. 5.11c). The maximum values of V and M both

occur at B, where we have

VB � �wL  MB � �1
2 wL2

�g©MC � 0 :   wx a
x

2
b � M � 0  M � �

1

2
 wx2

�c©Fy � 0 :     �wx � V � 0  V � �wx

w

x1
2

(a)
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M

x
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C

w

wx

VB� � wL

MB� � wL21
2

x

V

A

(b)

L
B

x

M

A
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B

Fig. 5.10

Fig. 5.11
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314

SAMPLE PROBLEM 5.1

For the timber beam and loading shown, draw the shear and bending-moment

diagrams and determine the maximum normal stress due to bending.

SOLUTION

Reactions. Considering the entire beam as a free body, we find

Shear and Bending-Moment Diagrams. We first determine the inter-

nal forces just to the right of the 20-kN load at A. Considering the stub of beam

to the left of section 1 as a free body and assuming V and M to be positive 

(according to the standard convention), we write

We next consider as a free body the portion of beam to the left of section 2
and write

The shear and bending moment at sections 3, 4, 5, and 6 are determined

in a similar way from the free-body diagrams shown. We obtain

For several of the latter sections, the results may be more easily obtained by

considering as a free body the portion of the beam to the right of the section.

For example, for the portion of the beam to the right of section 4, we have

We can now plot the six points shown on the shear and bending-moment

diagrams. As indicated earlier in this section, the shear is of constant value be-

tween concentrated loads, and the bending moment varies linearly; we obtain

therefore the shear and bending-moment diagrams shown.

Maximum Normal Stress. It occurs at B, where is largest. We use

Eq. (5.4) to determine the section modulus of the beam:

Substituting this value and into Eq. (5.3):

Maximum normal stress in the beam � 60.0 MPa �

sm �
0MB 0

S
�
150 � 103 N � m 2

833.33 � 10�6
� 60.00 � 106 Pa

0M 0 � 0MB 0 � 50 � 103 N � m

S � 1
6 bh2 � 1

6 10.080 m2 10.250 m22 � 833.33 � 10�6  m3

0M 0

 �g©M4 � 0 :    �M4 � 114 kN2 12 m2 � 0   M4 � �28 kN � m

 �c©Fy � 0 :    V4 � 40 kN � 14 kN � 0   V4 � �26 kN

 V6 � �14 kN   M6 � 0

 V5 � �14 kN   M5 � �28 kN � m

 V4 � �26 kN   M4 � �28 kN � m

 V3 � �26 kN   M3 � �50 kN � m

 �g©M2 � 0 :  120 kN2 12.5 m2 � M2 � 0   M2 � �50 kN � m

 �c©Fy � 0 :    �20 kN � V2 � 0   V2 � �20 kN

 �g©M1 � 0 :    120 kN2 10 m2 � M1 � 0   M1 � 0

 �c©Fy � 0 :    �20 kN � V1 � 0   V1 � �20 kN

RB � 40  kN c  RD � 14  kN c

B

2.5 m 3 m 2 m

250 mm

80 mm

C
DA

20 kN 40 kN

B

1 3 52 64

2.5 m 3 m 2 m

C

D
A

20 kN

20 kN

2.5 m 3 m 2 m

40 kN

14 kN
46 kN

M1

V1

20 kN
M2

V2

20 kN

46 kN

M3

V3

20 kN

46 kN

M4

V4

20 kN 40 kN

46 kN

M5

V5

V

M

x

x

20 kN 40 kN

46 kN

14 kN

�14 kN�20 kN

�26 kN

�28 kN · m

�50 kN · m

40 kN

M6

M'4
V'4

V6
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315

SOLUTION

Equivalent Loading of Beam. The 10-kip load is replaced by an equiv-

alent force-couple system at D. The reaction at B is determined by consider-

ing the beam as a free body.

a. Shear and Bending-Moment Diagrams

From A to C. We determine the internal forces at a distance x from point

A by considering the portion of beam to the left of section 1. That part of the

distributed load acting on the free body is replaced by its resultant, and we

write

Since the free-body diagram shown can be used for all values of x smaller than

8 ft, the expressions obtained for V and M are valid in the region 

From C to D. Considering the portion of beam to the left of section 2
and again replacing the distributed load by its resultant, we obtain

These expressions are valid in the region 

From D to B. Using the position of beam to the left of section 3, we ob-

tain for the region 

The shear and bending-moment diagrams for the entire beam can now be plot-

ted. We note that the couple of moment applied at point D intro-

duces a discontinuity into the bending-moment diagram.

b. Maximum Normal Stress to the Left and Right of Point D. From

Appendix C we find that for the rolled-steel shape,

about the X-X axis.

To the left of D: We have Substi-

tuting for and S into Eq. (5.3), we write

To the right of D: We have Sub-

stituting for and S into Eq. (5.3), we write

sm � 14.10 ksi �sm �
0M 0

S
�

1776 kip � in.

126 in3
� 14.10 ksi

0M 0
 0M 0 � 148 kip � ft � 1776 kip � in.

sm � 16.00 ksi �sm �
0M 0

S
�

2016 kip � in.

126 in3
� 16.00 ksi

0M 0
 0M 0 � 168 kip � ft � 2016 kip � in.

S � 126 in3W10 � 112

20 kip � ft

V � �34 kips  M � 226 � 34 x  kip � ft

11 ft 6 x 6 16 ft

8 ft 6 x 6 11 ft.

 �g©M2 � 0 :    241x � 42 � M � 0   M � 96 � 24 x  kip � ft

 �c©Fy � 0 :    �24 � V � 0   V � �24 kips

0 6 x 6 8 ft.

 �g©M1 � 0 :    3 x112 x2 � M � 0   M � �1.5 x2 kip � ft

 �c©Fy � 0 :    �3 x � V � 0   V � �3 x kips

SAMPLE PROBLEM 5.2

The structure shown consists of a rolled-steel beam AB and of

two short members welded together and to the beam. (a) Draw the shear and

bending-moment diagrams for the beam and the given loading. (b) Determine

the maximum normal stress in sections just to the left and just to the right of

point D.

W10 � 1128 ft
3 ft

10 kips

3 kips/ft

A C D

E
B

3 ft2 ft

20 kip · ft
3 kips/ft

24 kips

318 kip · ft

10 kips 34 kips

A 1 2 3C D B

x

x

x

V

M

x

3x

x

x

M

V

M

V

2

x � 4

24 kips

� 24 kips

�148 kip · ft

� 96 kip · ft

� 168 kip · ft

� 318 kip · ft

20 kip · ft

10
kips

8 ft 11 ft 16 ft

M

V

x � 4

x � 11

� 34 kips

bee29389_ch05_307-370  3/20/08  5:30AM  Page 315 ntt Os9:Desktop Folder:TEMPWORK:March  08:19/03/08:MHDQ031/beer:



5.1 through 5.6 For the beam and loading shown, (a) draw the shear

and bending-moment diagrams, (b) determine the equations of the shear and

bending-moment curves.

PROBLEMS

Fig. P5.2

Fig. P5.4

Fig. P5.5

Fig. P5.7 Fig. P5.8

Fig. P5.6

Fig. P5.1

Fig. P5.3

316

5.7 and 5.8 Draw the shear and bending-moment diagrams for the beam

and loading shown, and determine the maximum absolute value (a) of the shear,

(b) of the bending moment.

B

w

A

L

B

P

CA

L

ba

B

PP

C
A

a a

DA
B

a a

C

L

PP

B

w0

A

L

D

w

A
B

a a

C

L

12 in.9 in.12 in.9 in.

5 lb 12 lb 5 lb 5 lb

B
A

EDC

24 kN 24 kN 24 kN

0.75 m

24 kN

BA
FEDC

4 @ 0.75 m � 3 m
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Problems 3175.9 and 5.10 Draw the shear and bending-moment diagrams for the

beam and loading shown, and determine the maximum absolute value (a) of

the shear, (b) of the bending moment.

Fig. P5.9

Fig. P5.11

Fig. P5.13 Fig. P5.14

Fig. P5.12

Fig. P5.10

5.11 and 5.12 Draw the shear and bending-moment diagrams for the

beam and loading shown, and determine the maximum absolute value (a) of

the shear, (b) of the bending moment.

5.13 and 5.14 Assuming that the reaction of the ground to be uniformly

distributed, draw the shear and bending-moment diagrams for the beam AB and

determine the maximum absolute value (a) of the shear, (b) of the bending

moment.

BA
C D

30 kN/m 60 kN

1 m 2 m2 m

BA
C

3 kips/ft 30 kips

3 ft6 ft

400 lb 1600 lb 400 lb

12 in. 12 in. 12 in. 12 in.

8 in.

8 in.
C

A
D E F

G

B BA
C D E

300 200 200 300
Dimensions in mm

3 kN 3 kN

450 N · m

BA
C D

1.5 kN1.5 kN

0.3 m 0.3 m
0.9 m

B
C D E

2 kips/ft2 kips/ft
24 kips

A

3 ft 3 ft 3 ft 3 ft
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318 Analysis and Design of Beams for Bending

Fig. P5.20Fig. P5.19

5.17 For the beam and loading shown, determine the maximum normal

stress due to bending on a transverse section at C.

Fig. P5.18

Fig. P5.17

5.18 For the beam and loading shown, determine the maximum normal

stress due to bending on section a-a.

5.19 and 5.20 For the beam and loading shown, determine the maxi-

mum normal stress due to bending on a transverse section at C.

Fig. P5.15 Fig. P5.16

5.15 and 5.16 For the beam and loading shown, determine the maxi-

mum normal stress due to bending on a transverse section at C.

B
A

C

2000 lb
200 lb/ft

4 ft

4 in.

8 in.

4 ft 6 ft

BA
C D

1.8 kN/m

3 kN 3 kN

80 mm

300 mm

1.5 m 1.5 m 1.5 m

BA
C

25 kips 25 kips
5 kips/ft

D E

2.5 ft 

2.5 ft 2.5 ft 
7.5 ft 

W16 � 77

BA
a b

a b

30 kN 50 kN 50 kN 30 kN

2 m

5 @ 0.8 m � 4 m

W310 � 52

BA
C

8 kN

1.5 m 2.2 m

W360 � 57.8

3 kN/m

BA
C D E F G

25
kN

25
kN

10
kN

10
kN

10
kN

6 @ 0.375 m � 2.25 m

S200 � 27.4
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Problems 319

Fig. P5.21

Fig. P5.22

Fig. P5.25

Fig. P5.23

Fig. P5.24

5.22 and 5.23 Draw the shear and bending-moment diagrams for the

beam and loading shown and determine the maximum normal stress due to

bending.

5.21 Draw the shear and bending-moment diagrams for the beam and

loading shown and determine the maximum normal stress due to bending.

5.24 and 5.25 Draw the shear and bending-moment diagrams for the

beam and loading shown and determine the maximum normal stress due to

bending.

BA
C D E

25 kips 25 kips 25 kips

2 ft1 ft 2 ft
6 ft

S12 � 35

25 kN · m

A B

15 kN · m

W310 � 38.7

40 kN/m

1.2 m
2.4 m

9 kN/m
30 kN · m

BA
C D

2 m 2 m 2 m

W200 � 22.5

HA

7 @ 200 mm � 1400 mm

Hinge

30 mm

20 mm

CB D E F G

300 N 300 N 300 N40 N

BA
C D

5 ft 5 ft8 ft

W14 � 22

10 kips5 kips
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320 Analysis and Design of Beams for Bending

Fig. P5.28

5.29 Solve Prob. 5.28, assuming that P � 480 N and Q � 320 N.

Fig. P5.26 and P5.27

5.26 Knowing that W � 12 kN, draw the shear and bending-moment

diagrams for beam AB and determine the maximum normal stress due to

bending.

5.27 Determine (a) the magnitude of the counterweight W for which the

maximum absolute value of the bending moment in the beam is as small as

possible, (b) the corresponding maximum normal stress due to bending. (Hint:
Draw the bending-moment diagram and equate the absolute values of the largest

positive and negative bending moments obtained.)

5.28 Knowing that P � Q � 480 N, determine (a) the distance a for

which the absolute value of the bending moment in the beam is as small as

possible, (b) the corresponding maximum normal stress due to bending. (See

hint of Prob. 5.27.)

B
C D E  

A

8 kN 8 kN

W310 � 23.8

W

1 m 1 m 1 m 1 m

BA

a

C D

P Q 12 mm

18 mm

500 mm500 mm
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Fig. P5.32

Fig. P5.33

Fig. P5.31

Problems 321

Fig. P5.30

5.31 Determine (a) the distance a for which the absolute value of the

bending moment in the beam is as small as possible, (b) the corresponding

maximum normal stress due to bending. (See hint of Prob. 5.27.)

5.30 Determine (a) the distance a for which the absolute value of the

bending moment in the beam is as small as possible, (b) the corresponding

maximum normal stress due to bending. (See hint of Prob. 5.27.)

5.32 A solid steel rod of diameter d is supported as shown. Knowing

that for steel � � 490 lb�ft3, determine the smallest diameter d that can be

used if the normal stress due to bending is not to exceed 4 ksi.

5.33 A solid steel bar has a square cross section of side b and is sup-

ported as shown. Knowing that for steel � � 7860 kg�m
3
, determine the di-

mension b for which the maximum normal stress due to bending is (a) 10 MPa,

(b) 50 MPa.

BA

a

C D

5 kips 10 kips

W14 � 22

8 ft 5 ft

Hinge

18 ft

B

a

C

4 kips/ft

W14 � 68

A

B

d

A

L � 10 ft

B

b

b
A DC

1.2 m 1.2 m 1.2 m
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322 Analysis and Design of Beams for Bending 5.3. RELATIONS AMONG LOAD, SHEAR,

AND BENDING MOMENT

When a beam carries more than two or three concentrated loads, or

when it carries distributed loads, the method outlined in Sec. 5.2 for

plotting shear and bending moment can prove quite cumbersome. The

construction of the shear diagram and, especially, of the bending-

moment diagram will be greatly facilitated if certain relations existing

among load, shear, and bending moment are taken into consideration.

Let us consider a simply supported beam AB carrying a distributed

load w per unit length (Fig. 5.12a), and let C and be two points of

the beam at a distance from each other. The shear and bending mo-

ment at C will be denoted by V and M, respectively, and will be as-

sumed positive; the shear and bending moment at will be denoted

by and 

We now detach the portion of beam and draw its free-body di-

agram (Fig. 5.12b). The forces exerted on the free body include a load

of magnitude w and internal forces and couples at C and Since

shear and bending moment have been assumed positive, the forces and

couples will be directed as shown in the figure.

Relations between Load and Shear. Writing that the sum of the ver-

tical components of the forces acting on the free body is zero, we

have

Dividing both members of the equation by and then letting ap-

proach zero, we obtain

(5.5)

Equation (5.5) indicates that, for a beam loaded as shown in Fig. 5.12a,

the slope of the shear curve is negative; the numerical value of

the slope at any point is equal to the load per unit length at that point.

Integrating (5.5) between points C and D, we write

(5.6)

Note that this result could also have been obtained by considering the

equilibrium of the portion of beam CD, since the area under the load

curve represents the total load applied between C and D.

It should be observed that Eq. (5.5) is not valid at a point where a

concentrated load is applied; the shear curve is discontinuous at such a

point, as seen in Sec. 5.2. Similarly, Eqs. (5.6) and cease to be

valid when concentrated loads are applied between C and D, since they

do not take into account the sudden change in shear caused by a con-

centrated load. Equations (5.6) and therefore, should be applied

only between successive concentrated loads.

15.6¿ 2,

15.6¿ 2

15.6¿ 2VD � VC � �1area under load curve between C and D2

VD � VC � ��
xD

xC

w dx

d V�dx

dV

dx
� �w

¢x¢x

¢V � �w ¢x
V � 1V � ¢V 2 � w ¢x � 0�c©Fy � 0 :

CC¿

C¿.¢x

CC¿
M � ¢M.V � ¢V

C¿

¢x
C¿

BA
C

w

D

�x

C'

x

(a)

�x

�x

w �x

w

C C'

(b)

1
2

V

M M � �M

V � �V

Fig. 5.12
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5.3. Relations among Load, Shear, 323
and Bending Moment

Relations between Shear and Bending Moment. Returning to the

free-body diagram of Fig. 5.12b, and writing now that the sum of the

moments about is zero, we have

Dividing both members of the equation by and then letting ap-

proach zero, we obtain

(5.7)

Equation (5.7) indicates that the slope of the bending-moment

curve is equal to the value of the shear. This is true at any point where

the shear has a well-defined value, i.e., at any point where no concen-

trated load is applied. Equation (5.7) also shows that at points

where M is maximum. This property facilitates the determination of the

points where the beam is likely to fail under bending.

Integrating (5.7) between points C and D, we write

(5.8)

Note that the area under the shear curve should be considered positive

where the shear is positive and negative where the shear is negative.

Equations (5.8) and are valid even when concentrated loads are

applied between C and D, as long as the shear curve has been correctly

drawn. The equations cease to be valid, however, if a couple is applied

at a point between C and D, since they do not take into account the

sudden change in bending moment caused by a couple (see Sample

Prob. 5.6).

15.8¿ 2

15.8¿ 2MD � MC � area under shear curve between C and D

MD � MC � �
xD

xC

V dx

V � 0

dM�dx

dM

dx
� V

¢x¢x

¢M � V ¢x �
1

2
 w 1¢x22

1M � ¢M2 � M � V ¢x � w ¢x 
¢x

2
� 0�g�MC¿ � 0 :

C¿

EXAMPLE 5.03

Draw the shear and bending-moment diagrams for the simply

supported beam shown in Fig. 5.13 and determine the maxi-

mum value of the bending moment.

From the free-body diagram of the entire beam, we de-

termine the magnitude of the reactions at the supports.

Next, we draw the shear diagram. Close to the end A of the

beam, the shear is equal to that is, to as we can check

by considering as a free body a very small portion of the beam.

1
2wL,RA,

RA � RB � 1
2wL

Fig. 5.13

B

w

A

L

B

w

A

RB� wL1
2RA� wL1

2
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In most engineering applications, one needs to know the value of

the bending moment only at a few specific points. Once the shear dia-

gram has been drawn, and after M has been determined at one of the

ends of the beam, the value of the bending moment can then be ob-

tained at any given point by computing the area under the shear curve

and using Eq. For instance, since for the beam of Ex-

ample 5.03, the maximum value of the bending moment for that beam

can be obtained simply by measuring the area of the shaded triangle in

the shear diagram of Fig. 5.14a. We have

We note that, in this example, the load curve is a horizontal straight

line, the shear curve an oblique straight line, and the bending-moment

curve a parabola. If the load curve had been an oblique straight line

(first degree), the shear curve would have been a parabola (second de-

gree) and the bending-moment curve a cubic (third degree). The shear

and bending-moment curves will always be, respectively, one and two

degrees higher than the load curve. With this in mind, we should be

able to sketch the shear and bending-moment diagrams without actu-

ally determining the functions V(x) and M(x), once a few values of the

shear and bending moment have been computed. The sketches obtained

will be more accurate if we make use of the fact that, at any point where

the curves are continuous, the slope of the shear curve is equal to 

and the slope of the bending-moment curve is equal to V.

�w

Mmax �
1

2
 
L

2
 
wL

2
�

wL2

8

MA � 015.8¿ 2.

Using Eq. (5.6), we then determine the shear V at any distance

x from A; we write

The shear curve is thus an oblique straight line which crosses

the x axis at (Fig. 5.14a). Considering, now, the bend-

ing moment, we first observe that The value M of the

bending moment at any distance x from A may then be ob-

tained from Eq. (5.8); we have

The bending-moment curve is a parabola. The maximum value

of the bending moment occurs when since V (and

thus ) is zero for that value of x. Substituting 

in the last equation, we obtain (Fig. 5.14b).Mmax � wL2�8
x � L�2dM�dx

x � L�2,

M � �
x

0

w112L � x2  dx � 1
2w1L x � x22

M � MA � �
x

0

V dx

MA � 0.

x � L�2

V � VA � wx � 1
2 wL � wx � w112L � x2

V � VA � ��
x

0

w dx � �wx

Fig. 5.14

� wL1
2

wL1
2

wL21
8

L L1
2

L1
2

x

V

M (a)

(b)

L

x
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SAMPLE PROBLEM 5.3

Draw the shear and bending-moment diagrams for the beam and loading shown.

SOLUTION

Reactions. Considering the entire beam as a free body, we write

We also note that at both A and E the bending moment is zero; thus, two points

(indicated by dots) are obtained on the bending-moment diagram.

Shear Diagram. Since we find that between concentrated

loads and reactions the slope of the shear diagram is zero (i.e., the shear is con-

stant). The shear at any point is determined by dividing the beam into two parts

and considering either part as a free body. For example, using the portion of

beam to the left of section 1, we obtain the shear between B and C:

We also find that the shear is kips just to the right of D and zero at end E.

Since the slope is constant between D and E, the shear diagram

between these two points is a straight line.

Bending-Moment Diagram. We recall that the area under the shear

curve between two points is equal to the change in bending moment between

the same two points. For convenience, the area of each portion of the shear di-

agram is computed and is indicated in parentheses on the diagram. Since the

bending moment at the left end is known to be zero, we write

Since is known to be zero, a check of the computations is obtained.

Between the concentrated loads and reactions the shear is constant; thus,

the slope is constant and the bending-moment diagram is drawn by con-

necting the known points with straight lines. Between D and E where the shear

diagram is an oblique straight line, the bending-moment diagram is a parabola.

From the V and M diagrams we note that and 

108 kip � ft.

Mmax �Vmax � 18 kips

dM�dx

ME

 ME � MD � �48   ME � 0

  MD � � 48 kip � ft MD � MC � �140

MC � � 92 kip � ft MC � MB � �16

 MB � MA � �108   MB � �108 kip � ft

MA

dV�dx � �w
�12

V � �2 kips�18 kips � 20 kips � V � 0�c  �Fy � 0:

dV�dx � �w,

 A x � 0Ax � 0S� �Fx � 0:

 A  y � 18 kips cAy � �18 kips

Ay � 20 kips � 12 kips � 26 kips � 12 kips � 0�c �Fy � 0:

 D � 26 kips cD � �26 kips

D124 ft2 � 120 kips2 16 ft2 � 112 kips2 114 ft2 � 112 kips2 128 ft2 � 0

�g �MA � 0:

EA
B C

6 ft

20 kips 12 kips 1.5 kips/ft

8 ft 8 ft10 ft

D

E

E

A

A

Ax

Ay

B C

6 ft

4 ft

20 kips 12 kips

20 kips

20 kips

12 kips

26 kips18 kips

18 kips

V (kips)

M (kip · ft)

x

x

�18
(�108)

�108

�92

�48

(�48)

(�140)

�12

(�16)

�2

�14

15 kips/ft

12 kips

8 ft 8 ft10 ft

D

B 1 C D

D

M

V
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SAMPLE PROBLEM 5.4

The rolled-steel beam AC is simply supported and carries the uni-

formly distributed load shown. Draw the shear and bending-moment diagrams

for the beam and determine the location and magnitude of the maximum nor-

mal stress due to bending.

W360 � 79C
B

A

20 kN/m

6 m 3 m

C

C

B

w

A

V

D B

b

a

A

20 kN/m

80 kN

80 kN

(�160)

(�120)

40 kN

�40 kN(�40)

6 m

x � 4m
160 kN · m

120 kN · m

x

M

A

x

x

SOLUTION

Reactions. Considering the entire beam as a free body, we find

Shear Diagram. The shear just to the right of A is Since

the change in shear between two points is equal to minus the area under the

load curve between the same two points, we obtain by writing

The slope being constant between A and B, the shear diagram

between these two points is represented by a straight line. Between B and C,

the area under the load curve is zero; therefore,

and the shear is constant between B and C.

Bending-Moment Diagram. We note that the bending moment at each

end of the beam is zero. In order to determine the maximum bending moment,

we locate the section D of the beam where We write

and, solving for x:

The maximum bending moment occurs at point D, where we have

The areas of the various portions of the shear diagram are

computed and are given (in parentheses) on the diagram. Since the area of the

shear diagram between two points is equal to the change in bending moment

between the same two points, we write

The bending-moment diagram consists of an arc of parabola followed by a seg-

ment of straight line; the slope of the parabola at A is equal to the value of V
at that point.

Maximum Normal Stress. It occurs at D, where is largest. From

Appendix C we find that for a rolled-steel shape,

about a horizontal axis. Substituting this value and 

into Eq. (5.3), we write

Maximum normal stress in the beam � 125.0 MPa �

sm �
0MD 0

S
�

160 � 103 N � m

1280 � 10�6 m3
� 125.0 � 106 Pa

0MD 0 � 160 � 103 N � m

|M| �
S � 1280 mm3W360 � 79

0M 0

MC � MB � � 120 kN � m   MC � 0

MB � MD � �  40 kN � m   MB �  �120 kN � m

MD � MA � � 160 kN � m   MD �  �160 kN � m

dM�dx � V � 0.

x � 4 m �

 0 � 80 kN � � 120 kN/m 2  x
 VD � VA � �wx

V � 0.

VC � VB � 0  VC � VB � �40 kN

dV�dx � �w

 VB � �120 � VA � �120 � 80 � �40 kN

 VB � VA � � 120 kN/m 2 16 m 2 � �120 kN

VB

VA � �80 kN.

RC � 40 kN  cRA � 80 kN  c

326
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SAMPLE PROBLEM 5.5

Sketch the shear and bending-moment diagrams for the cantilever beam shown.

SOLUTION

Shear Diagram. At the free end of the beam, we find Between

A and B, the area under the load curve is we find by writing

Between B and C, the beam is not loaded; thus At A, we have 

and, according to Eq. (5.5), the slope of the shear curve is while

at B the slope is Between A and B, the loading decreases linearly,

and the shear diagram is parabolic. Between B and C, and the shear

diagram is a horizontal line.

Bending-Moment Diagram. The bending moment at the free end

of the beam is zero. We compute the area under the shear curve and write

The sketch of the bending-moment diagram is completed by recalling that

We find that between A and B the diagram is represented by a

cubic curve with zero slope at A, and between B and C by a straight line.

dM�dx � V.

 MC � �1
6 w0 

a13L � a2
 MC � MB � �1

2 w0 
a1L � a2

 MB � MA � �1
3 w0 

a2  MB � �1
3 w0 

a2

MA

w � 0,

dV�dx � 0.

dV�dx � �w0,

w � w0VC � VB.

VB � VA � �1
2 w0 

a  VB � �1
2 w0 

a

VB
1
2 w0 

a;

VA � 0.

CB

w0

A

V

M

a

L

 � w0a21
3  � w0a(L � a)1

2

 � w0a1
2

 � w0a21
3

 � w0a(3L � a)1
6

 � w0a

x

x

1
2

SAMPLE PROBLEM 5.6

The simple beam AC is loaded by a couple of moment T applied at point B.

Draw the shear and bending-moment diagrams of the beam.

SOLUTION

The entire beam is taken as a free body, and we obtain

The shear at any section is constant and equal to Since a couple is ap-

plied at B, the bending-moment diagram is discontinuous at B; it is represented

by two oblique straight lines and decreases suddenly at B by an amount equal

to T.

T�L.

RA �
T

L
 c  RC �

T

L
 T

327

C
B

A

V

M

�T(1 � )

L

x

x

T
a

T
L

a
L

T a
L
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PROBLEMS

5.34 Using the method of Sec. 5.3, solve Prob. 5.1a.

5.35 Using the method of Sec. 5.3, solve Prob. 5.2a.

5.36 Using the method of Sec. 5.3, solve Prob. 5.3a.

5.37 Using the method of Sec. 5.3, solve Prob. 5.4a.

5.38 Using the method of Sec. 5.3, solve Prob. 5.5a.

5.39 Using the method of Sec. 5.3, solve Prob. 5.6a.

5.40 Using the method of Sec. 5.3, solve Prob. 5.7.

5.41 Using the method of Sec. 5.3, solve Prob. 5.8.

5.42 Using the method of Sec. 5.3, solve Prob. 5.9.

5.43 Using the method of Sec. 5.3, solve Prob. 5.10.

5.44 and 5.45 Draw the shear and bending-moment diagrams for the

beam and loading shown, and determine the maximum absolute value (a) of

the shear, (b) of the bending moment.

328

Fig. P5.44 Fig. P5.45

5.46 Using the method of Sec. 5.3, solve Prob. 5.15.

5.47 Using the method of Sec. 5.3, solve Prob. 5.16.

5.48 Using the method of Sec. 5.3, solve Prob. 5.17.

5.49 Using the method of Sec. 5.3, solve Prob. 5.18.

B

FE

A
DC

240 mm 240 mm 240 mm

60 mm60 mm

120 N 120 N

A

1.5 m 0.9 m

3 kN

3.5 kN/m

0.6 m

E
D

C
B
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Problems 329

Fig. P5.51Fig. P5.50

5.50 and 5.51 Determine (a) the equations of the shear and bending-

moment curves for the beam and loading shown, (b) the maximum absolute

value of the bending moment in the beam.

Fig. P5.52

Fig. P5.53

5.52 For the beam and loading shown, determine the equations of the

shear and bending-moment curves and the maximum absolute value of the

bending moment in the beam, knowing that (a) k � 1, (b) k � 0.5.

5.53 Determine (a) the equations of the shear and bending-moment

curves for the beam and loading shown, (b) the maximum absolute value of

the bending moment in the beam.

B
x

w
w � w0

A

L

x
L

B
x

w w � w0 sin

A

L

� x
L

x

w

w0

– kw0
L

w

A

L

B
x

w � w0   l �( (x2

L2
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330 Analysis and Design of Beams for Bending

5.56 and 5.57 Draw the shear and bending-moment diagrams for the

beam and loading shown and determine the maximum normal stress due to

bending.

5.58 and 5.59 Draw the shear and bending-moment diagrams for the

beam and loading shown and determine the maximum normal stress due to

bending.

Fig. P5.58 Fig. P5.59

Fig. P5.56 Fig. P5.57

5.54 and 5.55 Draw the shear and bending-moment diagrams for the

beam and loading shown and determine the maximum normal stress due to

bending.

Fig. P5.54 Fig. P5.55

A B

C

16 kN/m

1 m1.5 m

S150 � 18.6

C
A B 10 in.

8 ft 4 ft
3 in.

3 kips/ft
12 kip · ft

60 kN 60 kN 120 kN

A
C D E

B

W250 � 49.1

0.8 m
1.4 m

0.4 m

 

B

CA

8 in.
20 in.

3 in.

800 lb/in.

2    in.1
2

1    in.1
4

2 ft

A
C D

B

8 ft
2 ft

9 kips6 kips/ft

W12 � 26

4 m

C
A B

1 m 160 mm

140 mm
3 kN/m

2 kN
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Problems 331

Fig. P5.61

Fig. P5.62

Fig. P5.63

Fig. P5.60

*5.63 The beam AB supports two concentrated loads P and Q. The

normal stress due to bending on the bottom edge of the beam is �55 MPa at

D and �37.5 MPa at F. (a) Draw the shear and bending-moment diagrams for

the beam. (b) Determine the maximum normal stress due to bending that occurs

in the beam.

*5.62 Beam AB supports a uniformly distributed load of 2 kN/m and

two concentrated loads P and Q. It has been experimentally determined that

the normal stress due to bending in the bottom edge of the beam is �56.9 MPa

at A and �29.9 MPa at C. Draw the shear and bending-moment diagrams for

the beam and determine the magnitudes of the loads P and Q.

5.60 and 5.61 Knowing that beam AB is in equilibrium under the load-

ing shown, draw the shear and bending-moment diagrams and determine the

maximum normal stress due to bending.

A C BD

400 kN/m

W200 � 22.5w0

0.3 m 0.3 m0.4 m

BA

1.2 ft 1.2 ft

C

w0 � 50 lb/ft

T

w0

3
4 in.

C D BA

2 kN/m

P

0.1 m 0.1 m 0.125 m

36 mm

18 mm
Q

0.4 m

P Q 24 mm

0.2 m
0.5 m 0.5 m

60 mmA
C D E F

B

0.3 m
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332 Analysis and Design of Beams for Bending

5.4. DESIGN OF PRISMATIC BEAMS FOR BENDING

As indicated in Sec. 5.1, the design of a beam is usually controlled by

the maximum absolute value of the bending moment that will

occur in the beam. The largest normal stress in the beam is found

at the surface of the beam in the critical section where occurs

and can be obtained by substituting for in Eq. (5.1) or Eq.

† We write

A safe design requires that where is the allowable stress

for the material used. Substituting for in and solving for

S yields the minimum allowable value of the section modulus for the

beam being designed:

(5.9)

The design of common types of beams, such as timber beams of

rectangular cross section and rolled-steel beams of various cross-

sectional shapes, will be considered in this section. A proper procedure

should lead to the most economical design. This means that, among

beams of the same type and the same material, and other things being

equal, the beam with the smallest weight per unit length—and, thus,

the smallest cross-sectional area—should be selected, since this beam

will be the least expensive.

Smin �
0M 0max

sall

15.3¿ 2smsall

sallsm � sall 
,

15.1¿, 5.3¿ 2sm �
0M 0max c

I
  sm �

0M 0max

S

15.32.
0M 00M 0max

0M 0max

sm

0M 0max

†For beams that are not symmetrical with respect to their neutral surface, the largest of the

distances from the neutral surface to the surfaces of the beam should be used for c in Eq.

(5.1) and in the computation of the section modulus S � I/c.

*5.64 The beam AB supports a uniformly distributed load of 480 lb/ft

and two concentrated loads P and Q. The normal stress due to bending on the

bottom edge of the lower flange is �14.85 ksi at D and �10.65 ksi at E.

(a) Draw the shear and bending-moment diagrams for the beam. (b) Determine

the maximum normal stress due to bending that occurs in the beam.

Fig. P5.64

A

480 lb/ft

1 ft 1 ft

1.5 ft 1.5 ft

W8 � 31

8 ft

P Q

B
C D E F
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The design procedure will include the following steps†:

1. First determine the value of for the material selected from

a table of properties of materials or from design specifications.

You can also compute this value by dividing the ultimate

strength of the material by an appropriate factor of safety

(Sec. 1.13). Assuming for the time being that the value of 

is the same in tension and in compression, proceed as follows.

2. Draw the shear and bending-moment diagrams corresponding

to the specified loading conditions, and determine the maxi-

mum absolute value of the bending moment in the beam.

3. Determine from Eq. (5.9) the minimum allowable value of

the section modulus of the beam.

4. For a timber beam, the depth h of the beam, its width b, or the

ratio characterizing the shape of its cross section will prob-

ably have been specified. The unknown dimensions may then

be selected by recalling from Eq. (4.19) of Sec. 4.4 that b and

h must satisfy the relation 

5. For a rolled-steel beam, consult the appropriate table in Ap-

pendix C. Of the available beam sections, consider only those

with a section modulus and select from this group the

section with the smallest weight per unit length. This is the

most economical of the sections for which Note that

this is not necessarily the section with the smallest value of S
(see Example 5.04). In some cases, the selection of a section

may be limited by other considerations, such as the allowable

depth of the cross section, or the allowable deflection of the

beam (cf. Chap. 9).

The foregoing discussion was limited to materials for which is

the same in tension and in compression. If is different in tension

and in compression, you should make sure to select the beam section

in such a way that for both tensile and compressive stresses.

If the cross section is not symmetric about its neutral axis, the largest

tensile and the largest compressive stresses will not necessarily occur

in the section where is maximum. One may occur where M is max-

imum and the other where M is minimum. Thus, step 2 should include

the determination of both and and step 3 should be modi-

fied to take into account both tensile and compressive stresses.

Finally, keep in mind that the design procedure described in this

section takes into account only the normal stresses occurring on the sur-

face of the beam. Short beams, especially those made of timber, may

fail in shear under a transverse loading. The determination of shearing

stresses in beams will be discussed in Chap. 6. Also, in the case of

rolled-steel beams, normal stresses larger than those considered here

may occur at the junction of the web with the flanges. This will be dis-

cussed in Chap. 8.

Mmin,Mmax

0M 0

sm � sall

sall

sall

S � Smin.

S � Smin

1
6 bh2 � S � Smin.

h�b

Smin

0M 0max

sall

sU

sall

5.4. Design of Prismatic Beams for Bending 333

†We assume that all beams considered in this chapter are adequately braced to prevent lat-

eral buckling, and that bearing plates are provided under concentrated loads applied to rolled-

steel beams to prevent local buckling (crippling) of the web.
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*Load and Resistance Factor Design. This alternative method of de-

sign was briefly described in Sec. 1.13 and applied to members under

axial loading. It can readily be applied to the design of beams in bend-

ing. Replacing in Eq. (1.26) the loads and respectively, by

the bending moments and we write

(5.10)

The coefficients and are referred to as the load factors and the

coefficient as the resistance factor. The moments and are the

bending moments due, respectively, to the dead and the live loads, while

is equal to the product of the ultimate strength of the material

and the section modulus S of the beam: MU � SsU.

sUMU

MLMDf
gLgD

gD 
MD � gLML � fMU

MU,MD, ML,

PU,PD, PL,

EXAMPLE 5.04

Select a wide-flange beam to support the 15-kip load as shown

in Fig. 5.15. The allowable normal stress for the steel used is

24 ksi.

4. Referring to the table of Properties of Rolled-Steel
Shapes in Appendix C, we note that the shapes are

arranged in groups of the same depth and that in each

group they are listed in order of decreasing weight.

We choose in each group the lightest beam having a

section modulus at least as large as and

record the results in the following table.

Shape S, in

81.6
88.9
64.7
62.7
64.7
60.0

The most economical is the shape since it weighs

only even though it has a larger section modulus than

two of the other shapes. We also note that the total weight of

the beam will be This weight is

small compared to the 15,000-1b load and can be neglected in

our analysis.

18 ft2 � 140 lb 2 � 320 lb.

40 lb/ft,
W16 � 40

W10 � 54
W12 � 50
W14 � 43
W16 � 40
W18 � 50
W21 � 44

3

SminS � I�c
15 kips

8 ft

A B

Fig. 5.15

334

1. The allowable normal stress is given:

2. The shear is constant and equal to 15 kips. The bend-

ing moment is maximum at B. We have

3. The minimum allowable section modulus is

Smin �
0M 0max

sall

�
1440 kip � in.

24 ksi
� 60.0 in3

0M 0 max � 115 kips2 18 ft2 � 120 kip � ft � 1440 kip � in.

sall � 24 ksi.
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335

B
A

V

A

Ax
Ay

B

C

8 ft 4 ft

3.2 kips
4.5 kips

(�18)

(�18)

4.50
kips

�3.85 kips

�0.65
kips

CB x

B
A C h

8 ft 4 ft

3.5 in.400 lb/ft 4.5 kips SAMPLE PROBLEM 5.7

A 12-ft-long overhanging timber beam AC with an 8-ft span AB is

to be designed to support the distributed and concentrated loads

shown. Knowing that timber of 4-in. nominal width (3.5-in. actual

width) with a 1.75-ksi allowable stress is to be used, determine the

minimum required depth h of the beam.

SOLUTION

Reactions. Considering the entire beam as a free body, we write

Shear Diagram. The shear just to the right of A is 

Since the change in shear between A and B is equal to minus the area under

the load curve between these two points, we obtain by writing

The reaction at B produces a sudden increase of 8.35 kips in V, resulting in a

value of the shear equal to 4.50 kips to the right of B. Since no load is applied

between B and C, the shear remains constant between these two points.

Determination of We first observe that the bending moment is

equal to zero at both ends of the beam: Between A and B the

bending moment decreases by an amount equal to the area under the shear

curve, and between B and C it increases by a corresponding amount. Thus, the

maximum absolute value of the bending moment is 

Minimum Allowable Section Modulus. Substituting into Eq. (5.9) the

given value of and the value of that we have found, we write

Minimum Required Depth of Beam. Recalling the formula developed

in part 4 of the design procedure described in Sec. 5.4 and substituting the val-

ues of b and we have

The minimum required depth of the beam is h � 14.55 in. �

1
6 bh2 � Smin  1

6 13.5 in.2h2 � 123.43 in3  h � 14.546 in.

Smin 
,

Smin �
0M 0 max

sall

�
118 kip � ft2 112 in./ft2

1.75 ksi
� 123.43 in3

0M 0 maxsall

0M 0 max � 18.00 kip � ft.

MA � MC � 0.

0M 0max 
.

 VB � VA � 3.20 kips � �0.65 kips � 3.20 kips � �3.85 kips.

 VB � VA � � 1400 lb/ft2 18 ft2 � �3200 lb � �3.20 kips

VB

VA � Ay � �0.65 kips.

 A � 0.65 kips T Ay � �0.65 kips

�c �Fy � 0: Ay � 8.35 kips � 3.2 kips � 4.5 kips � 0

 Ax � 0�S�Fx � 0:

 B � 8.35 kips c B � 8.35 kips

�g �MA � 0: B 18 ft2 � 13.2 kips2 14 ft2 � 14.5 kips2 112 ft2 � 0
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SAMPLE PROBLEM 5.8

A 5-m-long, simply supported steel beam AD is to carry the distributed and con-

centrated loads shown. Knowing that the allowable normal stress for the grade

of steel to be used is 160 MPa, select the wide-flange shape that should be used.

SOLUTION

Reactions. Considering the entire beam as a free body, we write

Shear Diagram. The shear just to the right of A is 

Since the change in shear between A and B is equal to minus the area under

the load curve between these two points, we have

The shear remains constant between B and C, where it drops to and

keeps this value between C and D. We locate the section E of the beam where

by writing

Solving for x we find 

Determination of The bending moment is maximum at E,

where Since M is zero at the support A, its maximum value at E is

equal to the area under the shear curve between A and E. We have, therefore,

.

Minimum Allowable Section Modulus. Substituting into Eq. (5.9) the

given value of and the value of that we have found, we write

Selection of Wide-Flange Shape. From Appendix C we compile a list

of shapes that have a section modulus larger than and are also the light-

est shape in a given depth group.

Shape S,

637
474
549
535
448

We select the lightest shape available, namely W360 � 32.9 �

W200 � 46.1
W250 � 44.8
W310 � 38.7
W360 � 32.9
W410 � 38.8

mm3

Smin

Smin �
0M 0max

sall

�
67.6 kN � m

160 MPa
� 422.5 � 10�6 m3 � 422.5 � 103 mm3

0M 0 maxsall

0M 0 max � ME � 67.6 kN � m

V � 0.

0M 0max 
.

x � 2.60 m.

 0 � 52.0 kN � � 120 kN/m 2  x
 VE � VA � �wx

V � 0

�58 kN,

VB � 52.0 kN � 60 kN � �8 kN

�52.0 kN.VA � Ay �

A � 52.0 kN cAy � 52.0 kN

�c �Fy � 0: Ay � 58.0 kN � 60 kN � 50 kN � 0

 Ax � 0�S�Fx � 0:

D � 58.0 kN cD � 58.0 kN

�g �MA � 0: D15 m 2 � 160 kN 2 11.5 m 2 � 150 kN 2 14 m 2 � 0

B

A

C D

3 m
1 m 1 m

20 kN
50 kN

CB D

1.5 m

52 kN

x � 2.6 m

�58 kN

�8 kN

(67.6)

1.5 m
1 m 1 m

50 kN

D

A

V

A
E B C D

x

Ax
Ay

60 kN

336
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5.65 and 5.66 For the beam and loading shown, design the cross sec-

tion of the beam, knowing that the grade of timber used has an allowable normal

stress of 12 MPa.

337

PROBLEMS

Fig. P5.65

Fig. P5.68

Fig. P5.66

Fig. P5.67

Fig. P5.69 Fig. P5.70

5.67 and 5.68 For the beam and loading shown, design the cross sec-

tion of the beam, knowing that the grade of timber used has an allowable normal

stress of 1750 psi.

5.69 and 5.70 For the beam and loading shown, design the cross sec-

tion of the beam, knowing that the grade of timber used has an allowable normal

stress of 12 MPa.

1.8 kN 3.6 kN

CB
A D h

0.8 m 0.8 m 0.8 m

40 mm

CB
A D h

0.9 m
2 m

0.9 m

120 mm
15 kN/m

4.8 kips 4.8 kips
2 kips 2 kips

F

b

A

2 ft 2 ft 3 ft 2 ft 2 ft

9.5 in.

B C D E
A

C
B

h

3.5 ft 3.5 ft

5.0 in.1.5 kips/ft

C
A

B
D h

0.6 m 0.6 m
3 m

100 mm6 kN/m
2.5 kN2.5 kN

A
B

150 mm

b3 kN/m

C

2.4 m 1.2 m
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5.71 and 5.72 Knowing that the allowable stress for the steel used is

24 ksi, select the most economical wide-flange beam to support the loading shown.
338 Analysis and Design of Beams for Bending

Fig. P5.71 Fig. P5.72

Fig. P5.73 Fig. P5.74

Fig. P5.75 Fig. P5.76

Fig. P5.77 Fig. P5.78

5.73 and 5.74 Knowing that the allowable stress for the steel used is

160 MPa, select the most economical wide-flange beam to support the loading

shown.

5.75 and 5.76 Knowing that the allowable stress for the steel used is

24 ksi, select the most economical S-shape beam to support the loading shown.

5.77 and 5.78 Knowing that the allowable stress for the steel used is

160 MPa, select the most economical S-shape beam to support the loading shown.

C D
EA

B

2 ft 2 ft
2 ft

6 ft

20 kips 20 kips
20 kips

2.75 kips/ft

24 kips

B
A C

9 ft 15 ft

C
DA

B

0.8 m 0.8 m
2.4 m

50 kN/m

6 kN/m

18 kN/m

6 m

A
B

8 kips/ft

20 kips

A C
B

2.4 ft 4.8 ft 2 ft

A
C D

B
F

E

2 ft

20 kips 20 kips11 kips/ft

2 ft
6 ft

2 ft

70 kN 70 kN

45 kN/m

A D
CB

3 m 3 m
9 m

30 kN/m

80 kN

A D
CB

0.9 m
3.6 m

1.8 m
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5.79 A steel pipe of 4-in. diameter is to support the loading shown.

Knowing that the stock of pipes available has thicknesses varying from in. to

1 in. in -in. increments, and that the allowable normal stress for the steel used

is 24 ksi, determine the minimum wall thickness t that can be used.

5.80 Three steel plates are welded together to form the beam shown.

Knowing that the allowable normal stress for the steel used is 22 ksi, deter-

mine the minimum flange width b that can be used.

1
8

1
4

Problems 339

Fig. P5.79

Fig. P5.80

Fig. P5.81 Fig. P5.82

Fig. P5.83 Fig. P5.84

5.81 Two metric rolled-steel channels are to be welded along their edges

and used to support the loading shown. Knowing that the allowable normal

stress for the steel used is 150 MPa, determine the most economical channels

that can be used.

5.82 Two L102 � 76 rolled-steel angles are bolted together and used to

support the loading shown. Knowing that the allowable normal stress for the

steel used is 140 MPa, determine the minimum angle thickness that can be used.

5.83 Assuming the upward reaction of the ground to be uniformly distrib-

uted and knowing that the allowable normal stress for the steel used is 170 MPa,

select the most economical wide-flange beam to support the loading shown.

5.84 Assuming the upward reaction of the ground to be uniformly dis-

tributed and knowing that the allowable normal stress for the steel used is 24 ksi,

select the most economical wide-flange beam to support the loading shown.

C
A

B

4 ft
4 in.

t

500 lb 500 lb

4 ft
8 kips 32 kips 32 kips

B D
A

C
E

b

4.5 ft
14 ft 14 ft

9.5 ft

in.

1 in.

1 in.

19 in.3
4

E
B

A
C D

20 kN 20 kN 20 kN

4 @ 0.675 m � 2.7 m

B

4.5 kN/m
9 kN

A C

1 m1 m

152 mm

102 mm

B C

Total load � 2 MN

A DD

0.75 m 0.75 m
1 m

B C

200 kips 200 kips

A DD

4 ft4 ft 4 ft
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340 Analysis and Design of Beams for Bending

Fig. P5.85

Fig. P5.87

Fig. P5.89

Fig. P5.90

5.85 Determine the largest permissible distributed load w for the beam

shown, knowing that the allowable normal stress is �80 MPa in tension and

�130 MPa in compression.

5.86 Solve Prob. 5.85, assuming that the cross section of the beam is

reversed, with the flange of the beam resting on the supports at B and C.

5.87 Determine the allowable value of P for the loading shown, knowing

that the allowable normal stress is �8 ksi in tension and �18 ksi in compression.

5.88 Solve Prob. 5.87, assuming that the T-shaped beam is inverted.

5.89 Beams AB, BC, and CD have the cross section shown and are pin-

connected at B and C. Knowing that the allowable normal stress is �110 MPa

in tension and �150 MPa in compression, determine (a) the largest permissible

value of w if beam BC is not to be overstressed, (b) the corresponding maximum

distance a for which the cantilever beams AB and CD are not overstressed.

5.90 Beams AB, BC, and CD have the cross section shown and are pin-

connected at B and C. Knowing that the allowable normal stress is �110 MPa

in tension and �150 MPa in compression, determine (a) the largest permissible

value of P if beam BC is not to be overstressed, (b) the corresponding maximum

distance a for which the cantilever beams AB and CD are not overstressed.

B C

w

A D

0.2 m 0.2 m
0.5 m

20 mm

20 mm

60 mm

60 mm

P P P
10 in. 10 in.

60 in. 60 in.

1 in.

5 in.

1 in.7 in.

E
DCB

A

B C

w

D

a 7.2 m

12.5 mm

12.5 mm

150 mm

200 mm

A

a

PP

B C D

a
2.4 m 2.4 m 2.4 m

12.5 mm

12.5 mm

150 mm

200 mm

A

a
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Problems 341

Fig. P5.92

Fig. P5.93

Fig. P5.91

5.91 A 240-kN load is to be supported at the center of the 5-m span

shown. Knowing that the allowable normal stress for the steel used is 165 MPa,

determine (a) the smallest allowable length l of beam CD if the W310 � 74

beam AB is not to be overstressed, (b) the most economical W shape that can

be used for beam CD. Neglect the weight of both beams.

5.92 Beam ABC is bolted to beams DBE and FCG. Knowing that the

allowable normal stress is 24 ksi, select the most economical wide-flange shape

that can be used (a) for beam ABC, (b) for beam DBE, (c) for beam FCG.

5.93 A uniformly distributed load of 66 kN/m is to be supported over

the 6-m span shown. Knowing that the allowable normal stress for the steel

used is 140 MPa, determine (a) the smallest allowable length l of beam CD if

the W460 � 74 beam AB is not to be overstressed, (b) the most economical

W shape that can be used for beam CD. Neglect the weight of both beams.

BA

C D

l/2 l/2

L � 5 m

W310 � 74

240 kN

16 kips

10 ft

10 ft 8 ft

8 ft

D

F

B

A

G

E
C

BA
C D

l 

W460 � 74

66 kN/m 66 kN/m

L � 6 m
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342 Analysis and Design of Beams for Bending

Fig. P5.96

*5.94 A roof structure consists of plywood and roofing material sup-

ported by several timber beams of length L � 16 m. The dead load carried by

each beam, including the estimated weight of the beam, can be represented by

a uniformly distributed load wD � 350 N/m. The live load consists of a snow

load, represented by a uniformly distributed load wL � 600 N/m, and a 6-kN

concentrated load P applied at the midpoint C of each beam. Knowing that the

ultimate strength for the timber used is �U � 50 MPa and that the width of the

beam is b � 75 mm, determine the minimum allowable depth h of the beams,

using LRFD with the load factors �D � 1.2, �L � 1.6 and the resistance factor

� � 0.9.

*5.95 Solve Prob. 5.94, assuming that the 6-kN concentrated load P ap-

plied to each beam is replaced by 3-kN concentrated loads P1 and P2 applied

at a distance of 4 m from each end of the beams.

*5.96 A bridge of length L � 48 ft is to be built on a secondary road

whose access to trucks is limited to two-axle vehicles of medium weight. It

will consist of a concrete slab and of simply supported steel beams with an ul-

timate strength �U � 60 ksi. The combined weight of the slab and beams can

be approximated by a uniformly distributed load w � 0.75 kips/ft on each beam.

For the purpose of the design, it is assumed that a truck with axles located at

a distance a � 14 ft from each other will be driven across the bridge and that

the resulting concentrated loads P1 and P2 exerted on each beam could be as

large as 24 kips and 6 kips, respectively. Determine the most economical wide-

flange shape for the beams, using LRFD with the load factors �D � 1.25,

�L � 1.75 and the resistance factor � � 0.9. [Hint: It can be shown that the

maximum value of |ML| occurs under the larger load when that load is located

to the left of the center of the beam at a distance equal to aP2�2(P1 � P2).]

Fig. P5.94

*5.97 Assuming that the front and rear axle loads remain in the same

ratio as for the truck of Prob. 5.96, determine how much heavier a truck could

safely cross the bridge designed in that problem.

P

wD � wL

C

b

hA B

L1
2 L1

2

a

A B

x

L

P2P1
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5.5. Using Singularity Functions 343*5.5. USING SINGULARITY FUNCTIONS TO DETERMINE

SHEAR AND BENDING MOMENT IN A BEAM

Reviewing the work done in the preceding sections, we note that the

shear and bending moment could only rarely be described by single an-

alytical functions. In the case of the cantilever beam of Example 5.02

(Fig. 5.10), which supported a uniformly distributed load w, the shear

and bending moment could be represented by single analytical func-

tions, namely, and this was due to the fact that

no discontinuity existed in the loading of the beam. On the other hand,

in the case of the simply supported beam of Example 5.01, which was

loaded only at its midpoint C, the load P applied at C represented a sin-
gularity in the beam loading. This singularity resulted in discontinuities

in the shear and bending moment and required the use of different an-

alytical functions to represent V and M in the portions of beam located,

respectively, to the left and to the right of point C. In Sample Prob. 5.2,

the beam had to be divided into three portions, in each of which dif-

ferent functions were used to represent the shear and the bending mo-

ment. This situation led us to rely on the graphical representation of 

the functions V and M provided by the shear and bending-

moment diagrams and, later in Sec. 5.3, on a graphical method of in-

tegration to determine V and M from the distributed load w.

The purpose of this section is to show how the use of singularity
functions makes it possible to represent the shear V and the bending

moment M by single mathematical expressions.

Consider the simply supported beam AB, of length 2a, which car-

ries a uniformly distributed load extending from its midpoint C to

its right-hand support B (Fig. 5.16). We first draw the free-body dia-

gram of the entire beam (Fig. 5.17a); replacing the distributed load by

an equivalent concentrated load and, summing moments about B, we

write

Next we cut the beam at a point D between A and C. From the free-

body diagram of AD (Fig. 5.17b) we conclude that, over the interval

the shear and bending moment are expressed, respectively,

by the functions

Cutting, now, the beam at a point E between C and B, we draw the free-

body diagram of portion AE (Fig. 5.17c). Replacing the distributed load

by an equivalent concentrated load, we write

and conclude that, over the interval the shear and bend-

ing moment are expressed, respectively, by the functions

V21x2 � 1
4 w0 a � w01x � a2  and  M21x2 � 1

4 w0 ax � 1
2 w01x � a22

a 6 x 6 2a,

 �1
4 w0 ax � w01x � a2 3 12 1x � a2 4 � M2 � 0�l �ME � 0:

 
1
4 w0 a � w01x � a2 � V2 � 0 �c �Fy � 0:

V11x2 � 1
4 w0 a  and  M11x2 � 1

4 w0 
ax

0 6 x 6 a,

1w0 a2 112 a2 � RA12a2 � 0  RA � 1
4 w0 a�l �MB � 0:

w0

M � �1
2 wx2;V � �wx

B
C

w0

A

a a

Fig. 5.17

Fig. 5.16

B

RB

M1

V1

RA

C

D

x

A

w0

w0 a

A

2a

a1
2

(a)

M2

V2

C

E

w0 (x � a)

A

x

a

(x � a)

x � a

1
2

(c)

(b)

RA� w0 a
1
4

RA� w0 a
1
4
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344 Analysis and Design of Beams for Bending As we pointed out earlier in this section, the fact that the shear and

bending moment are represented by different functions of x, depending

upon whether x is smaller or larger than a, is due to the discontinuity

in the loading of the beam. However, the functions and can

be represented by the single expression

(5.11)

if we specify that the second term should be included in our computa-

tions when and ignored when In other words, the brack-
ets should be replaced by ordinary parentheses when 
and by zero when With the same convention, the bending

moment can be represented at any point of the beam by the single

expression

(5.12)

From the convention we have adopted, it follows that brackets 

can be differentiated or integrated as ordinary parentheses. Instead of

calculating the bending moment from free-body diagrams, we could

have used the method indicated in Sec. 5.3 and integrated the expres-

sion obtained for 

After integration, and observing that we obtain as before

Furthermore, using the same convention again, we note that the dis-

tributed load at any point of the beam can be expressed as

(5.13)

Indeed, the brackets should be replaced by zero for and by paren-

theses for we thus check that for and, defining

the zero power of any number as unity, that 

and for From Sec. 5.3 we recall that the shear could

have been obtained by integrating the function Observing that

for we write

Solving for and dropping the exponent 1, we obtain again

 V1x2 � 1
4 w0 a � w0Hx � aI

V1x2

 V1x2 � 1
4 w0 a � �w0Hx � aI1

 V1x2 � V102 � ��
x

0

 w1x2 dx � ��
x

0

 w0 Hx � aI0 dx

x � 0,V � 1
4 w0 a

�w1x2.
x � a.w1x2 � w0

Hx � aI0 � 1x � a20 � 1

x 6 aw1x2 � 0x � a;

x 6 a

w1x2 � w0 Hx � aI0

M1x2 � 1
4 w0 ax � 1

2 w0 Hx � aI2

M˛102 � 0,

M1x2 � M102 � �
x

0

V1x2 dx � �
x

0

 14 w0 a dx � �
x

0

 w0 Hx � aI dx

V1x2:

H I

M1x2 � 1
4 w0ax � 1

2 w0Hx � aI2

x 6 a.

x � a1 2H I
x 6 a.x � a

V 1x2 � 1
4 w0 

a � w0Hx � aI

V21x2V11x2
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The expressions are called singularity
functions. By definition, we have, for 

(5.14)

We also note that whenever the quantity between brackets is positive

or zero, the brackets should be replaced by ordinary parentheses, and

whenever that quantity is negative, the bracket itself is equal to zero.

Hx � aIn � e
1x � a2n

0
  when x � a

when x 6 a

n � 0,

Hx � aI0, Hx � aI, Hx � aI2 5.5. Using Singularity Functions 345

The three singularity functions corresponding respectively to

and have been plotted in Fig. 5.18. We note that

the function is discontinuous at and is in the shape of

a “step.” For that reason it is referred to as the step function. Accord-

ing to (5.14), and with the zero power of any number defined as unity,

we have†

(5.15)

It follows from the definition of singularity functions that

(5.16)

and

(5.17)

Most of the beam loadings encountered in engineering practice can

be broken down into the basic loadings shown in Fig. 5.19. Whenever

applicable, the corresponding functions and have been

expressed in terms of singularity functions and plotted against a color

background. A heavier color background was used to indicate for each

loading the expression that is most easily derived or remembered and

from which the other functions can be obtained by integration.

M1x2w1x2, V1x2,

d

dx
 Hx � aIn � nHx � aIn�1  for n � 1

�  Hx � aIn dx �
1

n � 1
 Hx � aIn�1  for n � 0

Hx � aI0 � e
1

0
  when x � a

when x 6 a

x � aHx � aI0
n � 2n � 1,n � 0,

0
(a) n � 0

� x � a 	0

a x 0
(b) n � 1

� x � a 	1

a x 0
(c) n � 2

� x � a 	2

a x

Fig. 5.18

†Since is discontinuous at , it can be argued that this function should be

left undefined for or that it should be assigned both of the values 0 and 1 for .

However, defining  as equal to 1 when , as stated in (5.15), has the advantage

of being unambiguous and, thus, readily applicable to computer programming (cf. page 348).

x �  a1x �  a20
x �  ax �  a

x �  a1x �  a20
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After a given beam loading has been broken down into the basic

loadings of Fig. 5.19, the functions and representing the shear

and bending moment at any point of the beam can be obtained by adding

the corresponding functions associated with each of the basic loadings

and reactions. Since all the distributed loadings shown in Fig. 5.19 are

M1x2V1x2

a
a

x xO O

V

M0

P

Loading Shear Bending Moment

(a)

a

xO

(b)

a

xO

w

(c) w (x) � w0 � x � a �0 

V (x) � �P � x � a �0 

(d) w (x) � k � x � a �1

(e) w (x) � k � x � a �n

Slope � k

w0

a

xO

w

a

xO

w

a xO

V

�P

M (x) � �M0 � x � a �0 

a xO

M

�M0

V (x) � �w0 � x � a �1

a xO

V

M (x) � �P � x � a �1

a xO

M

V (x) � �    � x � a �2

a xO

V

k
2

a xO

M

M (x) � � w0 � x � a �2

a xO

M

1
2

M (x) � � � x � a �3k
2 · 3

M (x) � � � x � a �n � 2k
(n � 1) (n � 2)

V (x) � �           � x � a �n � 1k
n � 1

a xO

V

a xO

M

Fig. 5.19 Basic loadings and corresponding shears and bending moments expressed
in terms of singularity functions.

346

bee29389_ch05_307-370  3/20/08  5:39AM  Page 346 ntt Os9:Desktop Folder:TEMPWORK:March  08:19/03/08:MHDQ031/beer:



5.5. Using Singularity Functions 347open-ended to the right, a distributed loading that does not extend to

the right end of the beam or that is discontinuous should be replaced

as shown in Fig. 5.20 by an equivalent combination of open-ended load-

ings. (See also Example 5.05 and Sample Prob. 5.9.)

As you will see in Sec. 9.6, the use of singularity functions also

greatly simplifies the determination of beam deflections. It was in con-

nection with that problem that the approach used in this section was

first suggested in 1862 by the German mathematician A. Clebsch (1833–

1872). However, the British mathematician and engineer W. H. Macaulay

(1853–1936) is usually given credit for introducing the singularity func-

tions in the form used here, and the brackets are generally referred to

as Macaulay’s brackets.†
H I

†W. H. Macaulay, “Note on the Deflection of Beams,” Messenger of Mathematics, vol. 48,

pp. 129–130, 1919.

EXAMPLE 5.05

For the beam and loading shown (Fig. 5.21a) and using sin-

gularity functions, express the shear and bending moment as

functions of the distance x from the support at A.

We first determine the reaction at A by drawing the free-

body diagram of the beam (Fig. 5.21b) and writing

Next, we replace the given distributed loading by two

equivalent open-ended loadings (Fig. 5.21c) and express the

distributed load as the sum of the corresponding step

functions:

The function is obtained by integrating re-

versing the and signs, and adding to the result the con-

stants and representing the respective con-

tributions to the shear of the reaction at A and of the

concentrated load. (No other constant of integration is re-

quired.) Since the concentrated couple does not directly affect

the shear, it should be ignored in this computation. We write

V1x2 � �w0Hx � 0.6I1 � w0Hx � 1.8I1 � Ay � PHx � 0.6I0

�PHx � 0.6I0Ay

��
w1x2,V1x2

w1x2 � �w0Hx � 0.6I0 � w0Hx � 1.8I0

w1x2

Ay � 2.60 kN

� 11.8 kN 2 12.4 m 2 � 1.44 kN � m � 0

�Ay13.6 m 2 � 11.2 kN 2 13 m 2�g �MB � 0:

Ax � 0�S�Fx � 0:

BE
DC

P � 1.2 kN

A

w0 � 1.5 kN/m

w0 � 1.5 kN/m

� w0 � �1.5 kN/m

w

M0 � 1.44 kN · m

0.6 m 0.8 m 1.0 m
1.2 m(a)

B

B

DC

P � 1.2 kN

A

Ax

Ay

Ay � 2.6 kN

1.8 kN

M0 � 1.44 kN · m

3.6 m

0.6 m

3 m

2.4 m

(b)

B
x

B

C

D

P � 1.2 kN

A

M0 � 1.44 kN · m

2.6 m

1.8 m(c)

E

E

Fig. 5.21

xO

w w0

b

L

a

xO

w w0

� w0b

L

a

w(x) � w0 � x � a 	0 � w0 � x � b 	0 

Fig. 5.20
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348 Analysis and Design of Beams for Bending In a similar way, the function is obtained by integrating

and adding to the result the constant rep-

resenting the contribution of the concentrated couple to the

bending moment. We have

Substituting the numerical values of the reaction and loads

into the expressions obtained for and and being care-

ful not to compute any product or expand any square involv-

ing a bracket, we obtain the following expressions for the shear

and bending moment at any point of the beam:

 �2.6x � 1.2Hx � 0.6I1 � 1.44Hx � 2.6I0
 M1x2 � �0.75 Hx � 0.6I2 � 0.75Hx � 1.8I2

 �2.6 � 1.2Hx � 0.6I0
 V1x2 � �1.5Hx � 0.6I1 � 1.5Hx � 1.8I1

M1x2V1x2

 � Ay 
x � PHx � 0.6I1 � M0Hx � 2.6I0

 M1x2 � �1
2 w0Hx � 0.6I2 � 1

2 w0Hx � 1.8I2

�M0Hx � 2.6I0V1x2
M1x2

EXAMPLE 5.06

For the beam and loading of Example 5.05, determine the nu-

merical values of the shear and bending moment at the mid-

point D.

Making in the expressions found for V(x) and

M(x) in Example 5.05, we obtain

Recalling that whenever a quantity between brackets is

positive or zero, the brackets should be replaced by ordinary

parentheses, and whenever the quantity is negative, the bracket

itself is equal to zero, we write

 � 2.6 11.82 � 1.2 H1.2I1 � 1.44 H�0.8I0
 M11.82 � �0.75 H1.2I2 � 0.75 H0I2

 V11.82 � �1.5 H1.2I1 � 1.5 H0I1 � 2.6 � 1.2 H1.2I0

x � 1.8 m

and

M11.82 � �2.16 kN � m

 � �1.08 � 0 � 4.68 � 1.44 � 0

� 2.611.82 � 1.211.221 � 1.44102
 M11.82 � �0.7511.222 � 0.751022

V11.82 � �0.4 kN

 � �1.8 � 0 � 2.6 � 1.2

 � �1.511.22 � 1.5102 � 2.6 � 1.2112

 V11.82 � �1.511.221 � 1.51021 � 2.6 � 1.211.220

Application to Computer Programming. Singularity functions are

particularly well suited to the use of computers. First we note that the

step function which will be represented by the symbol STP,

can be defined by an IF/THEN/ELSE statement as being equal to 1 for

and to 0 otherwise. Any other singularity function with

can then be expressed as the product of the ordinary algebraic

function and the step function 

When k different singularity functions are involved, such as

where then the corresponding step functions

STP(I), where can be defined by a loop containing a

single IF/THEN/ELSE statement.

I � 1, 2, p , K,

i � 1, 2, p , k,Hx � aiI
n,

Hx � aI0.1x � a2n
n � 1,

Hx � aIn,X � A

Hx � aI0,

w0 � 1.5 kN/m

� w0 � �1.5 kN/m

w

Ay � 2.6 kN

0.6 m

B
x

B

C

D

P � 1.2 kN

A

M0 � 1.44 kN · m

2.6 m

1.8 m(c)

E

Fig. 5.21c (repeated)

bee29389_ch05_307-370  03/16/2008  10:56 am  Page 348 pinnacle MHDQ:MH-DUBUQUE:MHDQ031:MHDQ031-05:



SAMPLE PROBLEM 5.9

For the beam and loading shown, determine (a) the equations defining the shear

and bending moment at any point, (b) the shear and bending moment at points

C, D, and E.

B

w0

A
D

L/4 L/4 L/4 L/4

C E

w0
2w0

L/2 L/2

C C
A

B

2w0

2w0

2w0

L

A
B

Slope � �

4w0

L
Slope � �

L/2

x

x

x

L/2

C

C E

D

B

w0L

RBRA � w0L

2w0

L

A

V

A

M

C ED BA

w

B

k1 � �

4w0

L
k2 � �1

4

3
16

w0L�

�

3
16

11
192

w0L21
12

w0L2

w0L1
4

w0L1
4

349

SOLUTION

Reactions. The total load is because of symmetry, each reaction

is equal to half that value, namely,

Distributed Load. The given distributed loading is replaced by two

equivalent open-ended loadings as shown. Using a singularity function to ex-

press the second loading, we write

(1)

a. Equations for Shear and Bending Moment. We obtain by in-

tegrating (1), changing the signs, and adding a constant equal to 

We obtain by integrating (2); since there is no concentrated couple, no

constant of integration is needed:

b. Shear and Bending Moment at C, D, and E

At Point C: Making in Eqs. (2) and (3) and recalling that when-

ever a quantity between brackets is positive or zero, the brackets may be re-

placed by parentheses, we have

At Point D: Making in Eqs. (2) and (3) and recalling that a

bracket containing a negative quantity is equal to zero, we write

At Point E: Making in Eqs. (2) and (3), we have

ME �
11

192
 w0 

L2 �ME � �
w0

3L
 134L2

3 �
2w0

3L
 H14LI

3 � 1
4 w0 

L 134L2

VE � �
3

16
 w0 

L �VE � �
w0

L
 134L2

2 �
2w0

L
 H14LI

2 � 1
4 w0 

L

x � 3
4L

MD �
11

192
 w0 

L2 � MD � �
w0

3L
 114L2

3 �
2w0

3L
 H�1

4LI
3 � 1

4w0 
L114L2

VD �
3

16
 w0 

L � VD � �
w0

L
 114L2

2 �
2w0

L
 H�1

4LI 
2 � 1

4 w0 
L

x � 1
4  L

MC �
1

12
 w0 

L2 � MC � �
w0

3L
 112L2

3 �
2w0

3L
 H0I3 � 1

4 w0 
L112L2

�VC � 0 VC � �
w0

L
 112L2

2 �
2w0

L
 H0I2 � 1

4 w0 
L

x � 1
2L

132 �M1x2 � �
w0

3L
 x3 �

2w0

3L
 Hx � 1

2LI
3 � 1

4 w0 
Lx

M1x2

122 �V1x2 � �
w0

L
 x2 �

2w0

L
 Hx � 1

2LI
2 � 1

4 w0 
L

RA:

V1x2

w1x2 � k1x � k2Hx � 1
2LI �

2w0

L
 x �

4w0

L
 Hx � 1

2LI

1
4 w0 L.

1
2 w0 L;

bee29389_ch05_307-370  03/16/2008  10:56 am  Page 349 pinnacle MHDQ:MH-DUBUQUE:MHDQ031:MHDQ031-05:



SAMPLE PROBLEM 5.10

The rigid bar DEF is welded at point D to the steel beam AB. For the loading

shown, determine (a) the equations defining the shear and bending moment at

any point of the beam, (b) the location and magnitude of the largest bending

moment.

SOLUTION

Reactions. We consider the beam and bar as a free body and observe

that the total load is 960 lb. Because of symmetry, each reaction is equal to

480 lb.

Modified Loading Diagram. We replace the 160-lb load applied at F
by an equivalent force-couple system at D. We thus obtain a loading diagram

consisting of a concentrated couple, three concentrated loads (including the

two reactions), and a uniformly distributed load

(1)

a. Equations for Shear and Bending Moment. We obtain V(x) by in-

tegrating (1), changing the sign, and adding constants representing the respec-

tive contributions of and P to the shear. Since P affects V(x) only for val-

ues of x larger than 11 ft, we use a step function to express its contribution.

We obtain M(x) by integrating (2) and using a step function to represent the

contribution of the concentrated couple :

b. Largest Bending Moment. Since M is maximum or minimum when

we set in (2) and solve that equation for x to find the location

of the largest bending moment. Considering first values of x less than 11 ft and

noting that for such values the bracket is equal to zero, we write

Considering now values of x larger than 11 ft, for which the bracket is equal

to 1, we have

Since this value is not larger than 11 ft, it must be rejected. Thus, the value of

x corresponding to the largest bending moment is

Substituting this value for x into Eq. (3), we obtain

and, recalling that brackets containing a negative quantity are equal to zero,

The bending-moment diagram has been plotted. Note the discontinuity at point

D due to the concentrated couple applied at that point. The values of M just to

the left and just to the right of D were obtained by making in Eq. (3)

and replacing the step function by 0 and 1, respectively.Hx � 11I0
x � 11

Mmax � 2304 lb � ft �Mmax � �2519.6022 � 48019.602

Mmax � �2519.6022 � 48019.602 � 160 H�1.40I1 � 480 H�1.40I0

xm � 9.60 ft �

�50 x � 480 � 160 � 0  x � 6.40 ft

�50 x � 480 � 0  x � 9.60 ft

V � 0V � 0,

132 �M1x2 � �25 x2 � 480 x � 160 Hx � 11I1 � 480 Hx � 11I0

MD

122 �V1x2 � �50x � 480 � 160 Hx � 11I0

RA

w1x2 � 50 lb/ft

B

50 lb/ft

160 lb

A

F

C D

E

8 ft 5 ft
3 ft

160 lb

MD � 480 lb · ft 

P � 160 lb

E

D

F E

D

F

B

w0 � 50 lb/ft

MD � 480 lb · ft

RA � 480 lb RBP � 160 lb

w

D

11 ft 5 ft

xA

xm � 9.60 ft

x

�2304 lb · ft
�2255 lb · ft

�1775 lb · ft

M

D B
A

350
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5.98 through 5.100 (a) Using singularity functions, write the equa-

tions defining the shear and bending moment for the beam and loading shown.

(b) Use the equation obtained for M to determine the bending moment at point C
and check your answer by drawing the free-body diagram of the entire beam.

PROBLEMS

Fig. P5.101 Fig. P5.102 Fig. P5.103

Fig. P5.105Fig. P5.104

Fig. P5.100Fig. P5.99Fig. P5.98

351

5.104 (a) Using singularity functions, write the equations for the shear and

bending moment for beam ABC under the loading shown. (b) Use the equation

obtained for M to determine the bending moment just to the right of point D.

5.101 through 5.103 (a) Using singularity functions, write the equa-

tions defining the shear and bending moment for the beam and loading shown.

(b) Use the equation obtained for M to determine the bending moment at point E
and check your answer by drawing the free-body diagram of the portion of the

beam to the right of E.

5.105 (a) Using singularity functions, write the equations for the shear and

bending moment for beam ABC under the loading shown. (b) Use the equation

obtained for M to determine the bending moment just to the right of point B.

A B C

w0

a a

A B C

w0

a a

A B C

w0

a a

A
B C

P

E D

aa aa

P

A B E C

w0

aa2a

A B
D

EC

w0

a aaa

A
C D

P P

B

L/3 L/3 L/3

P

A
B C

a a
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5.106 through 5.109 (a) Using singularity functions, write the equa-

tions for the shear and bending moment for the beam and loading shown.

(b) Determine the maximum value of the bending moment in the beam.

352 Analysis and Design of Beams for Bending

Fig. P5.106 Fig. P5.107

Fig. P5.109Fig. P5.108

Fig. P5.110

Fig. P5.112 Fig. P5.113

Fig. P5.111

5.110 and 5.111 (a) Using singularity functions, write the equations

for the shear and bending moment for the beam and loading shown. (b) De-

termine the maximum normal stress due to bending.

5.112 and 5.113 (a) Using singularity functions, find the magnitude

and location of the maximum bending moment for the beam and loading shown.

(b) Determine the maximum normal stress due to bending.

B C D

60 kN48 kN

0.6 m 0.9 m
1.5 m1.5 m

60 kN

A E B
C D

3 kips 6 kips 6 kips

4 ft
3 ft

A
E

4 ft 4 ft

1500 N/m

A B
C

0.8 m 0.8 m

D

2.4 m

3 kips/ft

3 ft 3 ft
4 ft 4 ft

3 kips/ft
8 kips

A B
C D E

F
B C D

24 kN 24 kN
24 kN

0.75 m

W250 � 28.4

4 @ 0.75 m � 3 m

24 kN

E
A E

B C

50 kN 50 kN125 kN

0.3 m 0.4 m 0.2 m

S150 � 18.0 

0.5 m

D
A

C
B18 kN · m

40 kN/m

27 kN · m

2.4 m1.2 m

S310 � 52A

40 kN/m

1.8 m

A
C D

B

1.8 m
0.9 m

W530 � 66

60 kN 60 kN
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Problems 353

Fig. P5.114 Fig. P5.115

Fig. P5.116 Fig. P5.117

Fig. P5.121

Fig. P5.119Fig. P5.118

Fig. P5.120

5.114 and 5.115 A beam is being designed to be supported and loaded

as shown. (a) Using singularity functions, find the magnitude and location of

the maximum bending moment in the beam. (b) Knowing that the allowable

normal stress for the steel to be used is 24 ksi, find the most economical wide-

flange shape that can be used.

5.116 and 5.117 A timber beam is being designed to be supported and

loaded as shown. (a) Using singularity functions, find the magnitude and lo-

cation of the maximum bending moment in the beam. (b) Knowing that the

available stock consists of beams with an allowable stress of 12 MPa and a rec-

tangular cross section of 30-mm width and depth h varying from 80 mm to

160 mm in 10-mm increments, determine the most economical cross section

that can be used.

5.118 through 5.121 Using a computer and step functions, calculate

the shear and bending moment for the beam and loading shown. Use the spec-

ified increment 	L, starting at point A and ending at the right-hand support.

E
C DB

8 ft
4 ft 4 ft 4 ft

12 kips 12 kips24 kips

A C
B

3 kips/ft

12 ft
3 ft

22.5 kips

A

480 N/m

A
B

CC

1.5 m 2.5 m

h

30 mm
500 N/m

A
B

CCC h

30 mm

1.6 m 2.4 m

C

16 kN/m

12 kN

A
B

1.2 m
4 m

 L � 0.4 m�

D
B C

120 kN
36 kN/m

A

2 m 1 m
3 m

L � 0.25 m�

1.8 kips/ft

3.6 kips/ft

A
B

C

6 ft 6 ft

�L � 0.5 ft

B DC

3 kips/ft 4 kips

A

1.5 ft
4.5 ft

�L � 0.5 ft

3 ft
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354 Analysis and Design of Beams for Bending

Fig. P5.122 Fig. P5.123

Fig. P5.124 Fig. P5.125

*5.6. NONPRISMATIC BEAMS

Our analysis has been limited so far to prismatic beams, i.e., to beams

of uniform cross section. As we saw in Sec. 5.4, prismatic beams are

designed so that the normal stresses in their critical sections are at most

equal to the allowable value of the normal stress for the material being

used. It follows that, in all other sections, the normal stresses will be

smaller, possibly much smaller, than their allowable value. A prismatic

beam, therefore, is almost always overdesigned, and considerable sav-

ings of material can be realized by using nonprismatic beams, i.e., beams

of variable cross section. The cantilever beams shown in the bridge dur-

ing construction in Fig. 5.22 are examples of nonprismatic beams.

Since the maximum normal stresses usually control the design

of a beam, the design of a nonprismatic beam will be optimum if the

section modulus of every cross section satisfies Eq. (5.3) of

Sec. 5.1. Solving that equation for S, we write

(5.18)

A beam designed in this manner is referred to as a beam of constant
strength.

S �
0M 0

sall

S � I�c

sm

5.122 and 5.123 For the beam and loading shown, and using a com-

puter and step functions, (a) tabulate the shear, bending moment, and maxi-

mum normal stress in sections of the beam from x � 0 to x � L, using the in-

crements 	L indicated, (b) using smaller increments if necessary, determine

with a 2% accuracy the maximum normal stress in the beam. Place the origin

of the x axis at end A of the beam.

5.124 and 5.125 For the beam and loading shown, and using a com-

puter and step functions, (a) tabulate the shear, bending moment, and maxi-

mum normal stress in sections of the beam from x � 0 to x � L, using the in-

crements 	L indicated, (b) using smaller increments if necessary, determine

with a 2% accuracy the maximum normal stress in the beam. Place the origin

of the x axis at end A of the beam.

B

5 kN/m

3 kN/m

3 kN

A
C

D

2 m
1.5 m 1.5 m

W200 � 22.5

L � 0.25 m�

L � 5 m

C
A

B
D 300 mm

2 m 3 m
1 m

50 mm20 kN/m

5 kN

L � 0.5 m�

L � 6 m

C
A

B
D 12 in.

1.5 ft 2 ft
1.5 ft

2 in.1.2 kips/ft

2 kips/ft

300 lb

L � 5 ft
L � 0.25 ft�

C
A

B
D

2.5 ft 2.5 ft
10 ft

3.2 kips/ft
4.8 kips/ft

W12 � 30
L � 15 ft

L � 1.25 ft�
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For a forged or cast structural or machine component, it is possi-

ble to vary the cross section of the component along its length and to

eliminate most of the unnecessary material (see Example 5.07). For a

timber beam or a rolled-steel beam, however, it is not possible to vary

the cross section of the beam. But considerable savings of material can

be achieved by gluing wooden planks of appropriate lengths to a tim-

ber beam (see Sample Prob. 5.11) and using cover plates in portions of

a rolled-steel beam where the bending moment is large (see Sample

Prob. 5.12).

Fig. 5.22

EXAMPLE 5.07

A cast-aluminum plate of uniform thickness b is to support a

uniformly distributed load w as shown in Fig. 5.23. (a) De-

termine the shape of the plate that will yield the most eco-

nomical design. (b) Knowing that the allowable normal stress

for the aluminum used is 72 MPa and that 

and determine the maximum

depth of the plate.

Bending Moment. Measuring the distance x from A
and observing that we use Eqs. (5.6) and (5.8)

of Sec. 5.3 and write

(a) Shape of Plate. We recall from Sec. 5.4 that the

modulus S of a rectangular cross section of width b and depth

h is Carrying this value into Eq. (5.18) and solving

for we have

(5.19)h2 �
6 0M 0

bsall

h2,

S � 1
6 bh2.

M1x2 � �
x

0

V1x2  dx � ��
x

0

wxdx � �1
2 wx2

V1x2 � ��
x

0

wdx � �wx

VA � MA � 0,

h0

w � 135 kN/m,L � 800 mm,

b � 40 mm,

and, after substituting 

(5.20)

Since the relation between h and x is linear, the lower edge of

the plate is a straight line. Thus, the plate providing the most

economical design is of triangular shape.

(b) Maximum Depth h0. Making in Eq. (5.20)

and substituting the given data, we obtain

h0 � c
31135 kN/m2

10.040 m2 172 MPa2
d

1�2

 1800 mm2 � 300 mm

x � L

h2 �
3wx2

bsall

  or  h � a
3w

bsall

b
1�2

x

0M 0 � 1
2 wx2,

Fig. 5.23

w

A

B

h h0

L

x

5.6. Nonprismatic Beams 355
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SAMPLE PROBLEM 5.11

A 12-ft-long beam made of a timber with an allowable normal stress of 2.40

ksi and an allowable shearing stress of 0.40 ksi is to carry two 4.8-kip loads

located at its third points. As shown in Chap. 6, a beam of uniform rectangu-

lar cross section, 4 in. wide and 4.5 in. deep, would satisfy the allowable shear-

ing stress requirement. Since such a beam would not satisfy the allowable nor-

mal stress requirement, it will be reinforced by gluing planks of the same timber,

4 in. wide and 1.25 in. thick, to the top and bottom of the beam in a symmet-

ric manner. Determine (a) the required number of pairs of planks, (b) the length

of the planks in each pair that will yield the most economical design.

SOLUTION

Bending Moment. We draw the free-body diagram of the beam and find

the following expressions for the bending moment:

From A to B
From B to C

a. Number of Pairs of Planks. We first determine the required total

depth of the reinforced beam between B and C. We recall from Sec. 5.4 that

for a beam with a rectangular cross section of width b and depth h.

Substituting this value into Eq. (5.17) and solving for we have

(1)

Substituting the value obtained for M from B to C and the given values of b
and we write

Since the original beam has a depth of 4.50 in., the planks must provide an ad-

ditional depth of 7.50 in. Recalling that each pair of planks is 2.50 in. thick:

b. Length of Planks. The bending moment was found to be

in the portion AB of the beam. Substituting this expression

and the given values of b and into Eq. (1) and solving for x, we have

(2)

Equation (2) defines the maximum distance x from end A at which a given depth

h of the cross section is acceptable. Making we find the distance

from A at which the original prismatic beam is safe: From that

point on, the original beam should be reinforced by the first pair of planks. Mak-

ing yields the distance from

which the second pair of planks should be used, and making yields

the distance from which the third pair of planks should be used.

The length of the planks of the pair i, where is obtained by sub-

tracting from the 144-in. length of the beam. We find

The corners of the various planks lie on the parabola defined by Eq. (2).

l1 � 130.5 in., l2 � 111.3 in., l3 � 83.8 in. �

2xi

i � 1, 2, 3,li

x3 � 30.08 in.

h � 9.50 in.

x2 � 16.33 in.h � 4.50 in. � 2.50 in. � 7.00 in.

x1 � 6.75 in.x1

h � 4.50 in.,

x �
14 in.2 12.40 ksi2

6 14.80 kips2
 h2  x �

h2

3 in.

sall,

M � 14.80 kips2  x

Required number of pairs of planks � 3 �

h2 �
61230.4 kip � in.2

14 in.2 12.40 ksi2
� 144 in.2  h � 12.00 in.

sall,

h2 �
6 0M 0

bsall

h2,

S � 1
6 bh2

M � 14.80 kips2  x � 14.80 kips2 1x � 48 in.2 � 230.4 kip � in.

148 in. � x � 96 in.2:

10 � x � 48 in.2: M � 14.80 kips2  x

C

A D

B
4 ft

4.8 kips 4.8 kips

4 ft 4 ft

A

A

A

V
M

DCB

B
48 in.

x

4.8 kips

4.8 kips 4.8 kips

4.8 kips

4.8 kips

4.8 kips
4.8 kips

x

M

y

O

x1 x2
x3

x
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SAMPLE PROBLEM 5.12

Two steel plates, each 16 mm thick, are welded as shown to a 

beam to reinforce it. Knowing that for both the beam and the

plates, determine the required value of (a) the length of the plates, (b) the width

of the plates.

sall � 160 MPa

W690 � 125

SOLUTION

Bending Moment. We first find the reactions. From the free body of a

portion of beam of length we obtain M between A and C:

(1)

a. Required Length of Plates. We first determine the maximum allow-

able length xm of the portion AD of the unreinforced beam. From Appendix C

we find that the section modulus of a beam is

or Substituting for S and into

Eq. (5.17) and solving for M, we write

Substituting for M in Eq. (1), we have

The required length l of the plates is obtained by subtracting from the

length of the beam:

b. Required Width of Plates. The maximum bending moment occurs

in the midsection C of the beam. Making m in Eq. (1), we obtain the

bending moment in that section:

In order to use Eq. (5.1) of Sec. 5.1, we now determine the moment of in-

ertia of the cross section of the reinforced beam with respect to a centroidal

axis and the distance c from that axis to the outer surfaces of the plates. From

Appendix C we find that the moment of inertia of a beam is

and its depth is On the other hand, de-

noting by t the thickness of one plate, by b its width, and by the distance of

its centroid from the neutral axis, we express the moment of inertia of the

two plates with respect to the neutral axis:

Substituting and we obtain 

The moment of inertia I of the beam and plates is

(2)

and the distance from the neutral axis to the surface is 

Solving Eq. (5.1) for I and substituting the values of M, and c, we writesall,

c � 1
2 d � t � 355 mm.

I � Ib � Ip � 1190 � 106 mm4 � 13.854 � 106 mm32  b

� 106 mm32  b.

Ip � 13.854d � 678 mm,t � 16 mm

Ip � 21 1
12 bt3 � A y 

22 � 116 t
32  b � 2 bt112 d � 1

2 t2
2

Ip

y
d � 678 mm.Ib � 1190 � 106 mm4

W690 � 125

M � 1250 kN2 14 m2 � 1000 kN � m

x � 4

l � 3.51 m �l � 8 m � 212.246 m2 � 3.508 m

2 xm

561.6 kN � m � 1250 kN2  xm  xm � 2.246 m

M � Ssall � 13.51 � 10�3 m32 1160 � 103 kN/m22 � 561.6 kN � m

sallS � 3.51 � 10�3 m3.S � 3510 � 106 mm3,

W690 � 125

M � 1250 kN2  x

x � 4 m,

2.219 � 10�3 m4 � 2219 � 106 mm4I �
0M 0 c

sall

�
11000 kN � m2 1355 mm2

160 MPa
�

Replacing I by this value in Eq. (2) and solving for b, we have

b � 267 mm �
2219 � 106 mm4 � 1190 � 106 mm4 � 13.854 � 106 mm32b

B
C

V

M

x

A

A

500 kN

250 kN250 kN

250 kN

l

E
b

BA

CD

W690 × 125

16
mm

4 m4 m

1
2l1

2

500 kN

y

b

c

t

d1
2

d1
2

N.A.
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5.126 and 5.127 The beam AB, consisting of a cast-iron plate of uniform

thickness b and length L, is to support the load shown. (a) Knowing that the

beam is to be of constant strength, express h in terms of x, L, and h0. (b) Deter-

mine the maximum allowable load if L � 36 in., h0 � 12 in., b � 1.25 in., and

�all � 24 ksi.

PROBLEMS

Fig. P5.127

Fig. P5.130 Fig. P5.131

Fig. P5.128

Fig. P5.126

Fig. P5.129

358

5.128 and 5.129 The beam AB, consisting of an aluminum plate of

uniform thickness b and length L, is to support the load shown. (a) Knowing

that the beam is to be of constant strength, express h in terms of x, L, and h0

for portion AC of the beam. (b) Determine the maximum allowable load if

L � 800 mm, h0 � 200 mm, b � 25 mm, and �all � 72 MPa.

5.130 and 5.131 The beam AB, consisting of a cast-iron plate of

uniform thickness b and length L, is to support the distributed load w(x) shown.

(a) Knowing that the beam is to be of constant strength, express h in terms of

x, L, and h0. (b) Determine the smallest value of h0 if L � 750 mm, b � 30 mm,

w0 � 300 kN/m, and �all � 200 MPa.

B
h h0

L/2 L/2

x

w

A A

B

h h0

L

x

P

B
h h0

L/2 L/2

x

A
C

P
w0

B
h h0

L/2 L/2

x

A
C

w � w0 sin 2 L
x

A

B

h h0

L

x

�

w � w0 L
x

A

B

h h0

L

x
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Problems 3595.132 and 5.133 A preliminary design on the use of a cantilever pris-

matic timber beam indicated that a beam with a rectangular cross section 2 in.

wide and 10 in. deep would be required to safely support the load shown in

part a of the figure. It was then decided to replace that beam with a built-up

beam obtained by gluing together, as shown in part b of the figure, five pieces

of the same timber as the original beam and of 2 � 2-in. cross section. Deter-

mine the respective lengths l1 and l2 of the two inner and outer pieces of tim-

ber that will yield the same factor of safety as the original design.

Fig. P5.132

Fig. P5.134 Fig. P5.135

Fig. P5.133

5.134 and 5.135 A preliminary design on the use of a simply supported

prismatic timber beam indicated that a beam with a rectangular cross section

50 mm wide and 200 mm deep would be required to safely support the load

shown in part a of the figure. It was then decided to replace that beam with a

built-up beam obtained by gluing together, as shown in part b of the figure,

four pieces of the same timber as the original beam and of 50 � 50-mm cross

section. Determine the length l of the two outer pieces of timber that will yield

the same factor of safety as the original design.

l2
l1

A
C

D B

A B

P

6.25 ft

(a)

(b)

l2
l1

A
C

D B

A

6.25 ft

(a)

(b)

B

w

A B

A B

C

1.2 m 1.2 m
P

l

(a)

(b)

A B

C D

w

0.8 m 0.8 m 0.8 m

(a)

A B

l

(b)
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5.136 and 5.137 A machine element of cast aluminum and in the shape

of a solid of revolution of variable diameter d is being designed to support the

load shown. Knowing that the machine element is to be of constant strength,

express d in terms of x, L, and d0.

360 Analysis and Design of Beams for Bending

Fig. P5.138

Fig. P5.136 Fig. P5.137

Fig. P5.139

5.138 A cantilever beam AB consisting of a steel plate of uniform depth

h and variable width b is to support the concentrated load P at point A.

(a) Knowing that the beam is to be of constant strength, express b in terms of

x, L, and b0. (b) Determine the smallest allowable value of h if L � 300 mm,

b0 � 375 mm, P � 14.4 kN, and �all � 160 MPa.

5.139 A transverse force P is applied as shown at end A of the conical

taper AB. Denoting by d0 the diameter of the taper at A, show that the maxi-

mum normal stress occurs at point H, which is contained in a transverse section

of diameter d � 1.5 d0.

5.140 Assuming that the length and width of the cover plates used with

the beam of Sample Prob. 5.12 are, respectively, l � 4 m and b � 285 mm,

and recalling that the thickness of each plate is 16 mm, determine the maxi-

mum normal stress on a transverse section (a) through the center of the beam,

(b) just to the left of D.

A B

C
x

L/2 L/2

d d0

P w

A B

C
x

L/2 L/2

d d0

x

L h

A

B

b0

b

P

P

d0

H
B

A
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Problems 361

Fig. P5.143

Fig. P5.141 and P5.142

Fig. P5.144 and P5.145

5.141 Two cover plates, each in. thick, are welded to a W27 � 84 beam

as shown. Knowing that l � 10 ft and b � 10.5 in., determine the maximum

normal stress on a transverse section (a) through the center of the beam, (b) just

to the left of D.

1
2

5.142 Two cover plates, each in. thick, are welded to a W27 � 84

beam as shown. Knowing that �all � 24 ksi for both the beam and the plates,

determine the required value of (a) the length of the plates, (b) the width of

the plates.

5.143 Knowing that �all � 150 MPa, determine the largest concentrated

load P that can be applied at end E of the beam shown.

1
2

5.144 Two cover plates, each 7.5 mm thick, are welded to a W460 � 74

beam as shown. Knowing that l � 5 m and b � 200 mm, determine the max-

imum normal stress on a transverse section (a) through the center of the beam,

(b) just to the left of D.

5.145 Two cover plates, each 7.5 mm thick, are welded to a W460 � 74

beam as shown. Knowing that �all � 150 MPa for both the beam and the plates,

determine the required value of (a) the length of the plates, (b) the width of

the plates.

in.1
2

B

b
ED C

A

l
W27 × 84

9 ft 9 ft

160 kips

1
2 l1

2

E

C  

A
B D

P

W410 � 85

18 � 220 mm

2.25 m 1.25 m

2.2 m
4.8 m

B

b 7.5 mm

ED
A

l W460 × 74

8 m

40 kN/m
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362 Analysis and Design of Beams for Bending

Fig. P5.149

Fig. P5.148

Fig. P5.150 and P5.151

Fig. P5.146 and P5.147

5.146 Two cover plates, each in. thick, are welded to a W30 � 99

beam as shown. Knowing that l � 9 ft and b � 12 in., determine the maxi-

mum normal stress on a transverse section (a) through the center of the beam,

(b) just to the left of D.

5
8

5.147 Two cover plates, each in. thick, are welded to a W30 � 99

beam as shown. Knowing that �all � 22 ksi for both the beam and the plates,

determine the required value of (a) the length of the plates, (b) the width of

the plates.

5.148 For the tapered beam shown, determine (a) the transverse section

in which the maximum normal stress occurs, (b) the largest distributed load w
that can be applied, knowing that �all � 24 ksi.

5
8

5.149 For the tapered beam shown, determine (a) the transverse section

in which the maximum normal stress occurs, (b) the largest concentrated load

P that can be applied, knowing that �all � 24 ksi.

5.150 For the tapered beam shown, determine (a) the transverse section

in which the maximum normal stress occurs, (b) the largest distributed load w
that can be applied, knowing that �all � 140 MPa.

5.151 For the tapered beam shown, knowing that w � 160 kN/m, de-

termine (a) the transverse section in which the maximum normal stress occurs,

(b) the corresponding value of the normal stress.

B

b

ED

A

l
W30 × 99

16 ft

30 kips/ft

in.5
8

CA B

w

x

30 in.

4 in. hh

30 in.

in.3
4

8 in.

x

30 in.

4 in.
A BC

hh

30 in.

P

8 in.

in.3
4

C

x

0.6 m

120 mm
A B

hh

0.6 m

300 mm

w 20 mm
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363

REVIEW AND SUMMARY

FOR CHAPTER 5

This chapter was devoted to the analysis and design of beams under

transverse loadings. Such loadings can consist of concentrated loads

or distributed loads and the beams themselves are classified accord-

ing to the way they are supported (Fig. 5.3). Only statically deter-
minate beams were considered in this chapter, the analysis of stati-

cally indeterminate beams being postponed until Chap. 9.

L

(a) Simply supported beam

Statically
Determinate
Beams

Statically
Indeterminate
Beams

L2L1

(d) Continuous beam

L

(b) Overhanging beam

L

Beam fixed at one end
and simply supported

at the other end

(e) 

L

(c) Cantilever beam

L

( f ) Fixed beam

Fig. 5.3

While transverse loadings cause both bending and shear in a

beam, the normal stresses caused by bending are the dominant cri-

terion in the design of a beam for strength [Sec. 5.1]. Therefore, this

chapter dealt only with the determination of the normal stresses in

a beam, the effect of shearing stresses being examined in the next

one.

We recalled from Sec. 4.4 the flexure formula for the determi-

nation of the maximum value of the normal stress in a given sec-

tion of the beam,

(5.1)

where I is the moment of inertia of the cross section with respect to

a centroidal axis perpendicular to the plane of the bending couple M
and c is the maximum distance from the neutral surface (Fig. 4.13).

sm �
0M 0 c

I

sm

Considerations for the design of
prismatic beams

Normal stresses due to bending

y

c

m


x

Neutral surface

Fig. 4.13
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364 Analysis and Design of Beams for Bending

We also recalled from Sec. 4.4 that, introducing the elastic section

modulus of the beam, the maximum value of the normal

stress in the section can be expressed as

(5.3)

It follows from Eq. (5.1) that the maximum normal stress oc-

curs in the section where is largest, at the point farthest from

the neural axis. The determination of the maximum value of 

and of the critical section of the beam in which it occurs is greatly

simplified if we draw a shear diagram and a bending-moment dia-
gram. These diagrams represent, respectively, the variation of the

shear and of the bending moment along the beam and were obtained

by determining the values of V and M at selected points of the beam

[Sec. 5.2]. These values were found by passing a section through

the point where they were to be determined and drawing the free-

body diagram of either of the portions of beam obtained in this fash-

ion. To avoid any confusion regarding the sense of the shearing force

V and of the bending couple M (which act in opposite sense on the

two portions of the beam), we followed the sign convention adopted

earlier in the text and illustrated in Fig. 5.7a [Examples 5.01 and

5.02, Sample Probs. 5.1 and 5.2].

The construction of the shear and bending-moment diagrams is

facilitated if the following relations are taken into account [Sec. 5.3].

Denoting by w the distributed load per unit length (assumed posi-

tive if directed downward), we wrote

(5.5, 5.7)

or, in integrated form,

(5.6
)

(5.8
)

Equation makes it possible to draw the shear diagram of a

beam from the curve representing the distributed load on that beam

and the value of V at one end of the beam. Similarly, Eq. makes

it possible to draw the bending-moment diagram from the shear di-

agram and the value of M at one end of the beam. However, con-

centrated loads introduce discontinuities in the shear diagram and

concentrated couples in the bending-moment diagram, none of which

is accounted for in these equations [Sample Probs. 5.3 and 5.6]. Fi-

nally, we noted from Eq. (5.7) that the points of the beam where the

bending moment is maximum or minimum are also the points where

the shear is zero [Sample Prob. 5.4].

15.8¿ 2

15.6¿ 2

 MD � MC � area under shear curve between C and D
 VD � VC � �1area under load curve between C and D2

dV

dx
� �w  

dM

dx
� V

0M 0
0M 0

sm �
0M 0

S

smS � I�c

Shear and bending-moment 
diagrams

V

M

M'

V'

(a)  Internal forces
(positive shear and positive bending moment)

Fig. 5.7a

Relations among load, shear, 
and bending moment
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Review and Summary for Chapter 5 365

0
(a) n � 0

� x � a 	0

a x

Fig. 5.18a

A proper procedure for the design of a prismatic beam was de-

scribed in Sec. 5.4 and is summarized here:

Having determined for the material used and assuming that

the design of the beam is controlled by the maximum normal stress

in the beam, compute the minimum allowable value of the section

modulus:

(5.9)

For a timber beam of rectangular cross section, where

b is the width of the beam and h its depth. The dimensions of the

section, therefore, must be selected so that 

For a rolled-steel beam, consult the appropriate table in Appendix C.

Of the available beam sections, consider only those with a section mod-

ulus and select from this group the section with the smallest

weight per unit length. This is the most economical of the sections for

which 

In Sec. 5.5, we discussed an alternative method for the determina-

tion of the maximum values of the shear and bending moment based on

the use of the singularity functions By definition, and for 

we had

(5.14)

We noted that whenever the quantity between brackets is positive or

zero, the brackets should be replaced by ordinary parentheses, and

whenever that quantity is negative, the bracket itself is equal to zero.

We also noted that singularity functions can be integrated and dif-

ferentiated as ordinary binomials. Finally, we observed that the sin-

gularity function corresponding to is discontinuous at 

(Fig. 5.18a). This function is called the step function. We wrote

(5.15)Hx � aI0 � e
1

0

 when x � a

 when x 6 a

x � an � 0

Hx � aIn � e
1x � a2n

0

 when x � a

 when x 6 a

n � 0,Hx � aIn.

S � Smin.

S � Smin

1
6  bh2 � Smin.

S � 1
6 bh2,

Smin �
0M 0max

sall

sall Design of prismatic beams

Singularity functions

Step function

bee29389_ch05_307-370  03/16/2008  10:56 am  Page 365 pinnacle MHDQ:MH-DUBUQUE:MHDQ031:MHDQ031-05:



366 Analysis and Design of Beams for Bending

The use of singularity functions makes it possible to represent

the shear or the bending moment in a beam by a single expression,

valid at any point of the beam. For example, the contribution to the

shear of the concentrated load P applied at the midpoint C of a sim-

ply supported beam (Fig. 5.8) can be represented by 

since this expression is equal to zero to the left of C, and to to

the right of C. Adding the contribution of the reaction at A,

we express the shear at any point of the beam as

The bending moment is obtained by integrating this expression:

The singularity functions representing, respectively, the load,

shear, and bending moment corresponding to various basic loadings

were given in Fig. 5.19 on page 346. We noted that a distributed

loading that does not extend to the right end of the beam, or which

is discontinuous, should be replaced by an equivalent combination

of open-ended loadings. For instance, a uniformly distributed load

extending from to (Fig. 5.20) should be expressed as

w1x2 � w0Hx � aI0 � w0Hx � bI0
x � bx � a

M1x2 � 1
2 Px � PHx � 1

2 LI1

V1x2 � 1
2 P � PHx � 1

2LI
0

RA � 1
2P

�P
�PHx � 1

2 LI0,

The contribution of this load to the shear and to the bending moment

can be obtained through two successive integrations. Care should be

taken, however, to also include in the expression for V(x) the con-

tribution of concentrated loads and reactions, and to include in the

expression for the contribution of concentrated couples [Ex-

amples 5.05 and 5.06, Sample Probs. 5.9 and 5.10]. We also observed

that singularity functions are particularly well suited to the use of

computers.

We were concerned so far only with prismatic beams, i.e., beams

of uniform cross section. Considering in Sec. 5.6 the design of non-

prismatic beams, i.e., beams of variable cross section, we saw that

by selecting the shape and size of the cross section so that its elas-

tic section modulus varied along the beam in the same way

as the bending moment M, we were able to design beams for which

at each section was equal to Such beams, called beams of
constant strength, clearly provide a more effective use of the mate-

rial than prismatic beams. Their section modulus at any section along

the beam was defined by the relation

(5.18)S �
M
sall

sall.sm

S � I�c

M1x2

Using singularity functions to 
express shear and bending moment

Equivalent open-ended loadings

Beams of constant strength

Nonprismatic  beams

B
C

A

P

L1
2 L1

2

Fig. 5.8

xO

w w0

b

L

a

Fig. 5.20

xO

w w0

� w0b

L

a
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367

REVIEW PROBLEMS

5.152 Draw the shear and bending-moment diagrams for the beam and

loading shown, and determine the maximum absolute value (a) of the shear,

(b) of the bending moment.

5.153 Determine (a) the magnitude of the upward force P for which the

maximum absolute value of the bending moment in the beam is as small as

possible, (b) the corresponding maximum normal stress due to bending. (Hint:
See hint of Prob. 5.27.)

5.154 Draw the shear and bending-moment diagrams for the beam and

loading shown, and determine the maximum absolute value (a) of the shear,

(b) of the bending moment.

Fig. P5.152

Fig. P5.153

Fig. P5.154 Fig. P5.155

Fig. P5.156

5.155 Draw the shear and bending-moment diagrams for the beam and

loading shown and determine the maximum normal stress due to bending.

5.156 Beam AB, of length L and square cross section of side a, is sup-

ported by a pivot at C and loaded as shown. (a) Check that the beam is in equi-

librium. (b) Show that the maximum stress due to bending occurs at C and is

equal to w0L
2�(1.5a)3.

5.157 and 5.158 For the beam and loading shown, design the cross

section of the beam, knowing that the grade of timber used has an allowable

normal stress of 12 MPa.

Fig. P5.157

Fig. P5.158

250 mm 250 mm 250 mm

50 mm 50 mm

75 N

A
C D

B

75 N

A C D

1 m

9 kN 9 kNP

1 m 1 m 1 m

E B
W310 � 23.8

300 N 300 N

CA D

E
F

B

200 mm

75 mm

200 mm 200 mm

C D
A B

6 ft 6 ft
2 ft

2 kips/ft
6 kips

W8 � 31

B

a

aA

2 L
3

C

w0

L
3

10 kN/m

A B h

5 m

120 mm

25 kN/m
1
2 d

d
B A

2.5 m
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368 Analysis and Design of Beams for Bending

Fig. P5.160

Fig. P5.159

Fig. P5.161

Fig. P5.163

Fig. P5.162

5.159 Knowing that the allowable stress for the steel used is 24 ksi, se-

lect the most economical wide-flange beam to support the loading shown.

5.160 Determine the largest permissible value of P for the beam and

loading shown, knowing that the allowable normal stress is �80 MPa in ten-

sion and �140 MPa in compression.

5.161 (a) Using singularity functions, write the equations for the shear

and bending moment for the beam and loading shown. (b) Determine the max-

imum value of the bending moment in the beam.

5.162 The beam AB, consisting of an aluminum plate of uniform thick-

ness b and length L, is to support the load shown. (a) Knowing that the beam

is to be of constant strength, express h in terms of x, L, and h0 for portion AC
of the beam. (b) Determine the maximum allowable load if L � 32 in.,

h0 � 8 in., b � 1 in., and �all � 10 ksi.

5.163 A cantilever beam AB consisting of a steel plate of uniform depth

h and variable width b is to support the distributed load w along its centerline

AB. (a) Knowing that the beam is to be of constant strength, express b in terms

of x, L, and b0. (b) Determine the maximum allowable value of w if L � 15 in.,

b0 � 8 in., h � 0.75 in., and �all � 24 ksi.

5 ft
12 ft

5 ft

62 kips

62 kips

B C 
A D

B

C
A D

0.25 m 0.15 m
0.5 m 12 mm

12 mm
48 mm

96 mmP P

B C D

20 kips
20 kips20 kips

2 ft 2 ft 2 ft
6 ft

A E

w � w0 sin
x�

L

B
h h0

L/2 L/2

x

A
C

x

L h

A

B

b0

w

b
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COMPUTER PROBLEMS

The following problems are designed to be solved with a computer.

5.C1 Several concentrated loads Pi ( i � 1, 2, … , n) can be applied to

a beam as shown. Write a computer program that can be used to calculate the

shear, bending moment, and normal stress at any point of the beam for a given

loading of the beam and a given value of its section modulus. Use this pro-

gram to solve Probs. 5.18, 5.21, and 5.25. (Hint: Maximum values will occur

at a support or under a load.)

5.C2 A timber beam is to be designed to support a distributed load and

up to two concentrated loads as shown. One of the dimensions of its uniform

rectangular cross section has been specified and the other is to be determined

so that the maximum normal stress in the beam will not exceed a given al-

lowable value �all. Write a computer program that can be used to calculate at

given intervals 	L the shear, the bending moment, and the smallest acceptable

value of the unknown dimension. Apply this program to solve the following

problems, using the intervals 	L indicated: (a) Prob. 5.65 (	L � 0.1 m),

(b) Prob. 5.69 (	L � 0.3 m), (c) Prob. 5.70 (	L � 0.2 m).

5.C3 Two cover plates, each of thickness t, are to be welded to a wide-

flange beam of length L that is to support a uniformly distributed load w. De-

noting by �all the allowable normal stress in the beam and in the plates, by d
the depth of the beam, and by Ib and Sb, respectively, the moment of inertia and

the section modulus of the cross section of the unreinforced beam about a hor-

izontal centroidal axis, write a computer program that can be used to calculate

the required value of (a) the length a of the plates, (b) the width b of the plates.

Use this program to solve Prob. 5.145.

Fig. P5.C2

Fig. P5.C1

Fig. P5.C3

BA

x1

x2

xn
xi

a bL

P1 P2 Pi Pn

B

t

h
A

x1

x3

x2

x4

a bL

P1

P2
w

B

bt

ED

A

a

L

w
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370 Analysis and Design of Beams for Bending

Fig. P5.C4

5.C4 Two 25-kip loads are maintained 6 ft apart as they are moved

slowly across the 18-ft beam AB. Write a computer program and use it to cal-

culate the bending moment under each load and at the midpoint C of the beam

for values of x from 0 to 24 ft at intervals 	x � 1.5 ft.

5.C5 Write a computer program that can be used to plot the shear and

bending-moment diagrams for the beam and loading shown. Apply this pro-

gram with a plotting interval 	L � 0.2 ft to the beam and loading of (a) Prob.

5.72, (b) Prob. 5.115.

5.C6 Write a computer program that can be used to plot the shear and

bending-moment diagrams for the beam and loading shown. Apply this pro-

gram with a plotting interval 	L � 0.025 m to the beam and loading of

Prob. 5.112.

Fig. P5.C6

Fig. P5.C5

BC

x

A

18 ft

6 ft

9 ft

25 kips25 kips

B

w

A

a

b

L

P

B

w

A

b

a

L

MA MB
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