
12.1 Introduction

In Chapter 5 we described the Unified Software Development Process (USDP)
(Jacobson et al., 1999) as ‘architecture-centric’ and at several points in previous
chapters we have mentioned the idea of producing architectural models of the
proposed information system. In Chapter 8 we introduced the idea of patterns and
the use of architectural patterns such as the Model�–�View�–�Controller architecture
that is embodied in the use of Boundary, Control and Entity classes that we have
used in the class models that we have produced. However, up to this point we have
not defined what we mean by architecture in the context of information systems;
nor have we explained how to design the architecture of a system.

Systems architecture is a broad topic and one that is the subject of many books.
In this chapter we aim to give an introduction to systems architecture and to
explain why it is important. Every system has an architecture of some sort. If the
designers and developers do not take the time or have the skills to produce explicit
architectural models of the system, the system will still have an architecture.
However, that architecture will be implicit and will be influenced by factors such
as the choice of programming language, database and platform, and the skills and
experience of the development team. Any such implicit architecture is likely to
result in a system that does not meet the non-functional requirements and is diffi-
cult to maintain or enhance. Producing an explicit architecture means that

System Architecture

CHAPTER12

338

Learning Objectives

In this chapter you will learn

■ what is meant by architecture in information systems development

■ the factors that influence the architecture of a system

■ the range of architectural styles that can be used as the basis of an architecture.

23_1398MH_CH12 16/7/05 9:55 Page 338

the architect has to consider the non-functional requirements, the context of the
system and how it and its components may be used and further developed in the
future.

In the rest of this chapter, we explain what is meant by systems architecture,
what are the factors that influence the development of an architecture and the kind
of issues that are addressed by an architecture.

12.2 What Do We Mean by Architecture?

The use of the term architecture in the development of information systems obvi-
ously derives from the practice of architecture in the built environment. The Royal
Institute of British Architects (RIBA) describes ‘What Architects Do’ as follows.

Architects are trained to take your brief and can see the big picture�—�they look beyond
your immediate requirements to design flexible buildings that will adapt with the
changing needs of your business.

Architects solve problems creatively�—�when they are involved at the earliest planning
stage, they gain more opportunities to understand your business, develop creative
solutions, and propose ways to reduce costs.

If we replaced the word ‘buildings’ with ‘information systems’ many systems
architects and software architects would happily sign up to this definition of what
they do. There are certain key features in these two sentences that apply as much
to systems architecture as to the architecture of buildings.

■ Systems architects act on behalf of the client. Part of their role is to understand
the client’s business and how that business can best be supported by an infor-
mation system. However, the client may make conflicting demands on the new
information system, and part of the systems architect’s role is to resolve those
conflicts.

■ Systems architecture addresses the big picture. The architecture of an infor-
mation system is a high-level view of the system: it is modelled in terms of the
major components and the way they are interconnected; it does not normally
address the detailed design of the system, though it may set standards to be
applied.

■ If flexibility is important, then systems architects will produce an architecture
that is intended to deliver this quality. In the current climate of rapid change in
the business environment, flexibility is often cited as a reason for adopting
certain types of systems architecture. However, there are other qualities of infor-
mation systems that may be more important for a particular client, in which case
those qualities will be addressed by the architecture.

■ Systems architects are concerned with solving problems. In information systems
development, problems manifest themselves in terms of risks to the success of
the project. The reason that the Unified Process is architecture-centric is that by
concentrating on the architecture and making architectural decisions early in
the project lifecycle, the risks can be reduced or mitigated.

■ Reducing costs is not a primary objective of systems architects. However,
proposing unnecessarily expensive solutions never wins anyone any friends, and

12.2 WHAT DO WE MEAN BY ARCHITECTURE? 339

23_1398MH_CH12 16/7/05 9:55 Page 339

producing an explicit architecture for a new system means that the specific
needs of that system are addressed and unnecessary features eliminated. It also
means that risks are tackled early in the project lifecycle and that the chance is
minimized of discovering late in the project that the new system will not meet
some requirement, with the need for costly design changes or reworking.

Of these, probably the most important is that architecture is about the big
picture. Analysis is inevitably about detail: the business analyst needs to under-
stand and document every requirement in a clear and unambiguous way; the
systems analyst must consider use cases and other requirements and translate them
into a complete model of the classes necessary to support those use cases, their
attributes and responsibilities or operations and a first-cut view of how instances
of those classes will interact. Design is about translating every aspect of the
analysis model into a design model that will effectively implement the require-
ments: the designer must consider the type of every attribute and design each oper-
ation to take the necessary parameters, return the right value and be efficient in its
working. Architecture, on the other hand, looks at the large-scale features of the
system and how those features work together as a whole: the architect groups
classes together into packages, models the system as a set of interacting compo-
nents and considers what platforms to deploy those components on in order to
deliver the required qualities of the system.

There are a number of different views of architecture in the development of
information systems. Our focus here is on systems architecture and software
architecture. In Section 12.4 we discuss enterprise architecture and technical
architecture and their relationship with systems and software architectures.

In their book on large-scale software architecture, Garland and Anthony (2003)
use the definition of architecture from the Institute of Electrical and Electronics
Engineers (IEEE) standard IEEE 1471�–�2000 (IEEE, 2000). This provides the
following definitions of key terms.

■ System is a set of components that accomplishes a specific function or set of
functions.

■ Architecture is the fundamental organization of a system embodied in its
components, their relationships to each other and to the environment, and the
principles guiding its design and evolution1.

■ Architectural Description is a set of products that document the architecture.

■ Architectural View is a representation of a particular system or part of a system
from a particular perspective.

■ Architectural Viewpoint is a template that describes how to create and use an
architectural view. A viewpoint includes a name, stakeholders, concerns
addressed by the viewpoint, and the modelling and analytic conventions.

Given this definition of architecture, then Software Architecture is the organiz-
ation of a system in terms of its software components, including subsystems and
the relationships and interactions among them, and the principles that guide the
design of that software system.

CHAPTER 12 SYSTEM ARCHITECTURE340

1 From IEEE Standard 1471–2000, Copyright 2000 IEEE.

23_1398MH_CH12 16/7/05 9:55 Page 340

The IEEE definition is important because it stresses the fact that the same system
can be shown in different views that emphasize different aspects of that system.
Bass et al., (2003) point out that architecture is often defined as something like ‘the
overall structure of the system’, but criticise this because it implies that a system
has only a single structure. They suggest asking anyone who takes this position
exactly which structure of the system the architecture represents.

Soni et al. (1995) identify four different aspects of software architecture, which
are shown in Fig. 12.1.

In terms of object-oriented development, the conceptual architecture is con-
cerned with the structure of the static class model and the connections between the
components of the model. The module architecture describes the way the system is
divided into subsystems or modules and how they communicate by exporting and
importing data. The code architecture defines how the program code is organized
into files and directories and grouped into libraries. The execution architecture
focuses on the dynamic aspects of the system and the communication between
components as tasks and operations execute.

The Rational Unified Process uses five views of the system, known as the ‘4 ! 1
views’ (Kruchten, 2004). The four views are the logical view, the implementation
view, the process view and the deployment view. The one view that ties them all
together is the use case view. These five views are explained in Fig. 12.2.

These five views conform to the IEEE 1471 definition of what constitutes a view.
They provide a description of the system from a particular perspective. The static
structural relationships between classes and packages in the logical view present a
different aspect of the system from the dynamic relationships between runtime
processes in the process view. A single diagram or model cannot easily combine
both these perspectives.

Different views are like different maps of a country. It is possible to find maps
that show the physical topography�—�mountains, hills, rivers and lakes; maps that
show the human geography�—�towns, cities and the road and rail networks; maps
that show the land use�—�farming, woodland, industry and human settlements; and
maps that show schematically the volume of transport flow between major conur-
bations. However, trying to combine all these views of the country in a single map
would make it confusing and difficult to understand.

Maps conform to particular conventions for how they represent the geography
of a country. For example, the physical topography is shown using contour lines,
colour or shading, or some combination of these three, to represent the height of
features and the location of water. Clearly, models that represent different views of

12.2 WHAT DO WE MEAN BY ARCHITECTURE? 341

Figure 12.1 Four aspects of software architecture according to Soni et al. (adapted from Weir and
Daniels, 1998)

Type of
architecture Examples of elements Examples of relationships

Conceptual Components Connectors

Module Subsystems, modules Exports, imports

Code Files, directories, libraries Includes, contains

Execution Tasks, threads, object interactions Uses, calls

23_1398MH_CH12 16/7/05 9:55 Page 341

a system must adopt some conventions for the different features that are shown in
the model. The use of conventions makes it possible for the systems architect to
communicate with stakeholders about the system and to provide guidance to
designers and developers. A set of conventions for drawing architectural models is
known as an architecture description language (ADL). Bass et al. (2003) present
their own ADL, which consists of elements of four types, representing features in
systems architectures, software architectures, process models and reference
models. However, we would recommend using UML as an ADL. UML 2.0 has
specific features that have been added and adapted in order to make it more suit-
able for modelling architectures as well as producing analysis and design models.
The UML 2.0 Request for Proposals (OMG, 2000), which solicited proposals for
the changes that should be made to the specification, had as one of its specific
objectives the following.

Enable the modeling of structural patterns, such as component-based development
and the specification of run-time architectures.

This has resulted in the introduction of composite structure diagrams and changes
to the component diagram notation.

12.3 Why Produce Architectural Models?

A software architect uses architectural models based on different views in order to
reason about the proposed system and the way it will operate from different
perspectives. In particular, this makes it possible to assess how well the system will
deliver the non-functional requirements. Bass et al. (2003) do not like the term
non-functional requirements. They argue that what they term quality attributes of
a system, such as performance, security or fault tolerance, are intimately bound up
with the behaviour of the system and the way that it responds to inputs. They
believe that defining a set of non-functional requirements that are somehow sepa-
rate from the functional behaviour of the system is dangerous, as it implies that the
functionality of the system can be addressed first and then the non-functional

CHAPTER 12 SYSTEM ARCHITECTURE342

Figure 12.2 The 4 ! 1 views.

View Explanation

Use case view The important use cases in the system and scenarios that describe
architecturally significant behaviour

Logical view Important design classes and interfaces in a package structure,
with composite structure diagrams

Implementation view Architectural decisions made for the implementation in terms of
subsystems and components and relationships among them

Process view A description of the processes (operating system processes and
threads) and inter-process communications using stereotyped
classes

Deployment view Physical nodes for the likely deployment platform, components
deployed on the nodes and the communication channels between
them, using deployment diagrams

23_1398MH_CH12 16/7/05 9:55 Page 342

requirements can be tacked onto the system towards the end of the development
process. We have used the term non-functional requirements because it is widely
understood and because it focuses attention during requirements gathering on all
those aspects of how well the system will deliver the functionality. However, we do
not believe that this is a licence to ignore such requirements until the end of the
development process.

Development processes based on the Unified Process are architecture-centric.
This means that getting the architecture right is a priority, and this in turn means
that from the start of the project the architects are trying to address the non-
functional requirements of the system, because the architecture provides the
framework for delivering these quality attributes of the system. Getting the archi-
tecture right early on is also about reducing the risks in the project. If one of the
requirements of a new system is that it should be able to handle very large peak
processing volumes (for example, in an online order processing system), then it is
important to prove as soon as possible in the project that the architecture supports
the achievement of these peak loads. If the early work addresses only the ability to
process orders but does not ensure that the design can be scaled up to handle the
peak loads, then there is always the risk that the fact that the system cannot handle
the loads will not be discovered until late in the project, and that this will result in
delays while the software is redesigned to cope with the peak volumes.

Using architectural models, the architect can assess the ability of the system
architecture to deliver quality attributes such as high performance. The way that
the different views in the 4 ! 1 view of the system can contribute to assessing
performance is shown in Fig. 12.3.

12.3 WHY PRODUCE ARCHITECTURAL MODELS? 343

Figure 12.3 The contribution of the 4 ! 1 views to assessing performance.

View Contribution to assessing performance

Use case view The use cases that require high performance can be identified and
the scenarios used to walkthrough how the other views will affect
the performance requirement.

Logical view The logical view of classes will show whether techniques such as
creating lightweight objects or value objects have been used to
reduce the overheads associated with passing values around.

Implementation view The more components or subsystems involved, the more likely
there are to be communication overheads, so the implementation
view should show a small number of components used in the
process.

Process view The process view can be used to assess how many running
processes will exist, and whether there will be multiple instances
of the same process so that the work can be shared out by a special
process that handles load-balancing. The kind of interprocess
communication that is used will affect how efficiently data can be
passed between processes.

Deployment view The deployment view will show where different components are
deployed, and whether data has to travel from machine to
machine, or whether all the processes needed to deliver a high-
performance use case are located on the same machine.

23_1398MH_CH12 16/7/05 9:55 Page 343

It is important to realize that some of the features shown in Fig. 12.3 to increase
performance will not contribute to the achievement of other quality attributes. For
example, adding lightweight versions of classes will mean that for every business
class there are two versions, and any change to the attributes of the business class
means an associated change to the attributes of the lightweight version; this makes
the code more complex to maintain. Similarly, reducing the number of compo-
nents involved in a process may mean that functionality that does not naturally
belong together is grouped into the same component or subsystem, and this
reduces the flexibility of the system.

12.4 Influences on System Architecture

The systems architect developing the architecture for a new system does not
operate in isolation. In any organization there will be existing systems that will
constrain and influence the architecture. Many large organizations are now
developing or have developed an enterprise architecture, which provides a frame-
work for all system development. An enterprise architecture links the design of the
business to the information systems that are needed to support that business.
Either as part of an enterprise architecture or as a separate framework, many
organizations have technology standards or a technical reference architecture
that lays down a set of technologies, often including specific products that are
acceptable, and defines how they should be used.

In the following subsections, we explain each of these influences in turn and the
effect that they have on the architecture. In Section 12.5 we explain the range of
architectural styles that are typically applied within the organization’s information
systems and that the architect can choose to adopt in developing new systems.

12.4.1 Existing systems
In many cases, the architecture of a new system will be designed to conform to the
existing systems in the organization. This applies to the technical aspects such as
choice of operating system, database and programming language, and to the way in
which the components of the new system will be chosen, designed and inter-
connected. An organization that has adopted Java 2 Enterprise Edition (J2EE) or
Microsoft .NET for its systems will expect new systems to be developed to fit in
with this framework. Frameworks such as J2EE and .NET are well documented in
books and web resources, but any business that adopts them is also likely to
maintain a set of technology standards or a technical reference architecture that
explains how to use the framework in the particular company.

Where there are existing systems, any new system may be able to take advantage
of reuse of components in those systems. This is particularly the case when the new
system and the old share the same architecture. In Chapter 8 we introduced the
idea of reusable components, and we develop it further in Chapter 20. Organiz-
ations that plan for software reuse will typically use some kind of searchable
repository in which they store reusable assets. The OMG, the body that manages
the UML standard, also maintains the standard for the Reusable Asset Speci-
fication (RAS), which provides a set of guidelines about the structure, content and
description of reusable software assets. Products such as LogicLibrary’s Logidex

CHAPTER 12 SYSTEM ARCHITECTURE344

23_1398MH_CH12 16/7/05 9:55 Page 344

and Select Component Manager from Select Business Solutions provide tools to
help manage collections of components.

Heritage systems
Sometimes the existing systems may not provide a pattern for development of new
systems. The technologies that were used to develop them may be out of date and
difficult to support. The systems may still be doing a good job of supporting the
business, but a decision has been made to adopt new technologies. The term
heritage system is sometimes used in preference to legacy system to describe a
system that uses out-of-date technology but is still delivering a clear benefit to the
business or is key to its operations. If a heritage system is not being replaced, the
new system may need to access data from it via some kind of interface. Enterprise
Application Integration (EAI) tools are software tools that connect to systems in
order to integrate them with one another. If the heritage system uses a well-known
technology, there is likely to be an adapter available that will connect it to the
EAI tool and enable the EAI tool to extract data from the old system and make it
available to the new or pass data into it in order to use its functionality.

Services
A technique for connecting to heritage systems that is growing in popularity is to
wrap them in a layer of software that exposes the required functionality as services.
Web services are the most recent technique applied to this problem, but the idea of
a Service-Oriented Architecture (SOA) has been around for longer than the Web.

The wrapper acts as a service proxy, so that it looks the same as other services to
the client systems that invoke operations on the service, as shown in Fig. 12.4.

There may be many kinds of interface to legacy systems. Sometimes they have
been written to provide an Application Programming Interface (API), in which
case it may be possible to use this, although there may be a limited choice of
programming languages to use. Often they do not have an API, but may provide
some other kind of interface: they listen on a TCP�IP socket for connections, or
they check for files placed in a certain directory and treat the file as input.
Sometimes the only way to access a legacy system is for the wrapper to pretend to
be a terminal (terminal emulation) and connect to it and send text and terminal
codes as though a user were typing the data in, and then to read the data that
comes back and extract what is required from the mix of prompts, actual data
values and control sequences. This is known as screen-scraping.

Reverse-engineering and model-driven architecture
Model-Driven Architecture (MDA) is one of the reasons for some of the changes
that were made to UML to produce Version 2.0. The idea of MDA is to separate
the business and application logic of a system from the underlying platform
technology. This abstract view of what the system must do is known as a platform-

12.4 INFLUENCES ON SYSTEM ARCHITECTURE 345

Client ServiceProxy LegacySystem

Service LegacyInterface

Figure 12.4 Wrapping a legacy system as a service.

23_1398MH_CH12 16/7/05 9:55 Page 345

independent model (PIM). The PIM is then combined with a definition of the
platform architecture in order to produce a platform-specific model (PSM) that
can be built and executed on a particular platform. In order to produce a PIM, it is
necessary to be able to specify actions that must be carried out within a system in
a precise and verifiable way. Using this approach, it should be possible to build a
platform-independent specification of a system and then, using different standard
mappings, to transform it into a platform-specific model. The PSM is then further
transformed to implementation code using automated tools that are already avail-
able for building software from models. A single PIM could thus be implemented
in different ways: J2EE, .NET, CORBA.

The OMG also has an initiative to promote MDA. UML is central to the MDA
initiative. Although earlier versions of UML provided ways of modelling structures
(class diagrams), interaction (sequence diagrams) and lifecycles (state machine
diagrams), the specification of actions in activity diagrams was not up to the task
of precisely defining how classes should carry out operations. The developers of
UML 2.0 have added a precise action semantics to the language. Combined with
the notation of activity diagrams (which have also been defined more precisely in
UML 2.0), this is intended to make UML the language of choice for producing
PIMs.

As well as creating applications by transforming PIMs, the OMG also promotes
the idea of reverse-engineering existing applications into PIMs. The idea is that if
the business and application logic of a legacy system can be separated from the
implementation details, and represented in an abstract specification language
(UML with action semantics), then that PIM can then be used to re-implement the
functionality of the system on a different, more modern platform. Products such as
ArcStyler from InteractiveObjects not only provide a way of producing imple-
mentations from PIMs, but also of reverse-engineering existing application code
into a PIM.

12.4.2 Enterprise architectures
In large, complex organizations, particularly those that operate in many countries
and have different divisions of the business that address different markets, there is
a risk that system development will be unco-ordinated. Indeed, there is a risk that
nobody will have an overall understanding of the business, let alone the systems
that support it. When a project for a new system is proposed, it is difficult to
analyse the effect of that new system. Questions that might be asked include the
following.

■ How does the system overlap with other systems in the organization?

■ How will the system need to interface with other systems?

■ Will the system help the organization to achieve its goals?

■ Is the cost of the system justified?

This last question about the cost of the system is an important factor for any
organization, but is particularly significant when the system is being paid for from
the public purse. In the United States, the Clinger�–�Cohen Act (CCA) of 1996
(formerly known as the IT Management Reform Act) was enacted to require public

CHAPTER 12 SYSTEM ARCHITECTURE346

23_1398MH_CH12 16/7/05 9:55 Page 346

bodies to manage their information systems investment in a way that protected
the interests of the taxpayers. The US Congress had been concerned about the
effectiveness of investment in IT systems after a number of spectacular failures; the
CCA was designed to prevent further failures.

The resulting pressure on public bodies, and particularly federal government
departments, to conform to the requirements of the CCA resulted in the develop-
ment of a number of enterprise architecture frameworks in the USA. The best
known are the Federal Enterprise Architecture Framework (FEAF) and the
Treasury Enterprise Architecture Framework (TEAF). There are no equivalent
regulations that apply across the European Union, but a number of individual
countries have developed frameworks for enterprise architecture, for example the
German Standards and Architectures for eGovernment Applications (SAGA,
2003) and the United Kingdom’s e-Government Interoperability Framework
(e-GIF, 2004).

The Sarbanes�–�Oxley Act (SOX) was enacted in the USA following the collapse
of Enron and a number of other large private-sector company failures. It imposes
standards for financial recording, reporting and audit on US companies and
overseas subsidiaries. Businesses have to be able to show that they are compliant
with the requirements of SOX.

These legislative changes in the USA have sparked a worldwide concern with
corporate governance. By governance we mean the decision-making processes,
responsibilities and structures within an organization. In a world where informa-
tion technology is pervasive in the financial accounting, control and management
of both public and private bodies, the concept of governance extends into the way
in which information systems are defined, developed, procured and managed.

Enterprise architectures provide a way of modelling the enterprise and aspects
of the way it conducts business and of driving these concepts down into the prac-
tical issues of how the information systems are intended to support the business.
Outside the world of US federal government, there is really only one significant
approach to developing an enterprise architecture, and this is the Zachman frame-
work (Zachman, 1987), developed originally by John Zachman, and extended in
collaboration with John Sowa (Sowa and Zachman, 1992).

The Zachman framework seeks to build explicit models of the enterprise from
two views. The first asks the questions What? How? Where? Who? When? and
Why? The second looks at the system at different levels, from the most conceptual,
business view down to the view of the actual implemented system. The two dimen-
sions are usually viewed as a matrix and the values that fill the thirty-six cells in the
matrix are the actual models of aspects of the enterprise at different levels and from
different perspectives.

The task of the enterprise architect is to build up a total picture of the enterprise
using these categories. This total picture of the enterprise and its systems supports
the process of ensuring that any IT investment is aligned to the goals of the
business. Clearly this is a daunting task for a large organization, and one of the
criticisms of the Zachman framework is that it is a heavyweight approach to enter-
prise architecture.

In an organization that has adopted any kind of enterprise architecture frame-
work, that framework should be the starting point for identifying constraints on
the architecture of new systems.

12.4 INFLUENCES ON SYSTEM ARCHITECTURE 347

23_1398MH_CH12 16/7/05 9:55 Page 347

12.4.3 Technical reference architectures
Whereas enterprise architectures address the entire organization and its systems,
technical reference architectures focus on the technology that is used within the
enterprise, the standards for the technologies to apply and guidance on how to apply
that technology. This may be in terms of a standards document, or a list of approved
technologies or architectural models that show how different technologies should
be applied in a typical system.

For organizations that do not have the time or resources to develop their own
framework for technology standards, The Open Group produced The Open Group
Architecture Framework (TOGAF) in 1995 (The Open Group, 2002). The current
version is 8.1.

TOGAF consists of three main parts.

■ The Architecture Development Method describes an approach for developing
enterprise IT architectures.

■ The Enterprise Continuum shows the continuum of architectures:
■ Foundation Architectures, which consist of abstract building blocks that

support all kinds of technical architectures
■ Common Systems Architectures, which provide models for typical domains

based on the Foundation Architectures
■ Industry Architectures, which show how Common Systems Architectures are

typically implemented in different types of industry
■ Organization Architectures, which address the specific architectural needs of

particular organizations.

■ The Resources section provides a range of useful information and examples of
architectural patterns, principles and other guidance.

The Open Group also maintains an online Standards Information Base (SIB) that
lists hundreds of IT standards categorized according to the building blocks in the
Foundation Architectures model.

12.5 Architectural Styles

Architects designing buildings do not start from scratch every time they are given
a new commission. They design buildings that are similar to others that they or
other architects have built previously, and they learn what works and what does
not. Systems architects are very similar: they design systems that conform to the
prevailing standards, and fashions in systems architecture come and go, like flying
buttresses on Gothic churches or lifts on the outside of buildings.

In systems architecture, the term architectural styles is used to apply to these
ways of designing systems that conform to the prevailing fashion. Often these
fashions are the result of changes in technology: until the advent of the PC, it
would not have been possible to implement client�–�server system architectures
using PCs connected to mini-computers. Architectural styles also apply to software
architecture. Bass et al. (2003) describe five main types: independent components,
data flow, data centred, virtual machine, and call and return, each with subtypes.
Each style has characteristics that make it more or less suitable for certain types of
application. We will consider some of the major alternatives. It is worth noting that

CHAPTER 12 SYSTEM ARCHITECTURE348

23_1398MH_CH12 16/7/05 9:55 Page 348

software architectures have been documented in the patterns form by Buschmann
et al. (1996) and Schmidt et al. (2000) amongst others.

12.5.1 Subsystems
A subsystem typically groups together elements of the system that share some
common properties. An object-oriented subsystem encapsulates a coherent set of
responsibilities in order to ensure that it has integrity and can be maintained. For
example, the elements of one subsystem might all deal with the human�–�computer
interface, the elements of another might all deal with data management and the
elements of a third may all focus on a particular functional requirement.

The subdivision of an information system into subsystems has the following
advantages.

■ It produces smaller units of development.

■ It helps to maximize reuse at the component level.

■ It helps the developers to cope with complexity.

■ It improves maintainability.

■ It aids portability.

Each subsystem should have a clearly specified boundary and fully defined inter-
faces with other subsystems. A specification for the interface of a subsystem defines
the precise nature of the subsystem’s interaction with the rest of the system but
does not describe its internal structure (this is a high-level use of contracts, which
are described in Chapter 10). A subsystem can be designed and constructed inde-
pendently of other subsystems, simplifying the development process. Subsystems
may correspond to increments of development that can be delivered individually
as part of an incremental lifecycle (if the developers are using the spiral lifecycle
model or an iterative and incremental approach such as the Unified Process).

Dividing a system into subsystems is an effective strategy for handling com-
plexity. Sometimes it is only feasible to model a large complex system piece by
piece, with the subdivision forced on the developers by the nature of the appli-
cation. Splitting a system into subsystems can also aid reuse, as each subsystem
may correspond to a component that is suitable for reuse in other applications. A
judicious choice of subsystems during design can reduce the impact on the overall
system of a change to its requirements. For example, consider an information
system that contains a presentation subsystem that deals with the human�–�
computer interface (HCI). A change to the data display format need not affect
other subsystems. Of course there may still be some changes to the requirements
that affect more than one subsystem. The aim is to localize the consequences of
change, so that a change in one subsystem does not trigger changes in other sub-
systems (sometimes referred to as the ripple effect). Moving an application from
one implementation platform to another can be much easier if the software archi-
tecture is appropriate. An example of this would be the conversion of a Windows
application so that it could run in a Unix environment. This would require changes
to the software that implements the human�–�computer interface. If this is dealt
with by specialized subsystems then the overall software change is localized to
these subsystems. As a result, the system as a whole is easier to port to a different
operating environment.

12.5 ARCHITECTURAL STYLES 349

23_1398MH_CH12 16/7/05 9:55 Page 349

Each subsystem provides services for other subsystems, and there are two
different styles of communication that make this possible. These are known as
client�–�server and peer-to-peer communication and are shown in Fig. 12.5.

Client�–�server communication requires the client to know the interface of the
server subsystem, but the communication is only in one direction. The client sub-
system requests services from the server subsystem and not vice versa. Peer-to-peer
communication requires each subsystem to know the interface of the other, thus
coupling them more tightly. The communication is two-way since either peer
subsystem may request services from the other.

In general, client�–�server communication is simpler to implement and to main-
tain, as the subsystems are less tightly coupled than they are when peer-to-peer
communication is used. In Fig. 12.5 the subsystems are represented using packages
that have been stereotyped to indicate their role. Component and deployment
diagrams can also be used to model the implementation of subsystems (see
Chapter 20).

12.5.2 Layering and partitioning
There are two general approaches to the division of a software system into sub-
systems. These are known as layering�—�so called because the different subsystems
usually represent different levels of abstraction�1�—�and partitioning, which usually
means that each subsystem focuses on a different aspect of the functionality of the
system as a whole. In practice both approaches are often used together on one
system, so that some of its subsystems are divided by layering, while others are
divided by partitioning.

Layered subsystems
Layered architectures are among the most frequently used high-level structures for
a system. A schematic of the general structure is shown in Fig. 12.6.

CHAPTER 12 SYSTEM ARCHITECTURE350

Subsystem A

«client»

Subsystem C

«peer»

Subsystem D

«peer»

Subsystem B

«server»

The server subsystem does
not depend on the client subsystem
and is not affected by changes
to the client’s interface

Each peer subsystem depends on
the other and each is affected by
changes in the other’s interface

Figure 12.5 Styles of communication between subsystems.

1 Or layers of service.

23_1398MH_CH12 16/7/05 9:55 Page 350

Each layer corresponds to one or more subsystems, which may be differentiated
from each other by differing levels of abstraction or by a different focus of their
functionality. It works like this: the top layer uses services provided by the layer
immediately below it. This in turn may require the services of the next layer down.
Layered architectures can be either open or closed, and each style has its particular
advantages. In a closed layered architecture a certain layer (say layer N) can only
use the services of the layer immediately below it (layer N 0 1). In an open layered
architecture layer N may directly use the services of any of the layers that lie
below it.

A closed architecture minimizes dependencies between the layers and reduces
the impact of a change to the interface of any one layer. An open layered archi-
tecture produces more compact code since the services of all lower level layers can
be accessed directly by any layer above them without the need for extra program
code to pass messages through each intervening layer. However, this breaks the
encapsulation of the layers, increases the dependencies between layers and
increases the difficulty caused when a layer needs to be changed.

Networking protocols provide some of the best known examples of layered
architectures. A network protocol defines how computer programs executing on
different computers communicate with each other. Protocols can be defined at
various levels of abstraction and each level can be mapped onto a layer. The OSI
(Open Systems Interconnection) Seven Layer Model was defined by the
International Standardization Organization (ISO) as a standard architectural
model for network protocols (Tanenbaum et al., 2002). The structure provides
flexibility for change since a layer may be changed internally without affecting
other layers, and it enables the reuse of layer components. The OSI Seven Layer
Model is illustrated in Fig. 12.7.

Buschmann et al. (1996) suggest that a series of issues need to be addressed
when applying a layered architecture in an application. These include:

■ maintaining the stability of the interfaces of each layer

■ the construction of other systems using some of the lower layers

■ variations in the appropriate level of granularity for subsystems�2

12.5 ARCHITECTURAL STYLES 351

Closed architecture–
messages may only be
sent to the adjacent
lower layer

Layer N

Layer N�1

Layer 2

Layer 1

Open architecture–
messages can be sent
to any lower layer

Layer N

Layer N�1

Layer 2

Layer 1

Figure 12.6 Schematic of a layered architecture.

2 The context determines an appropriate size for the subsystems. Granularity refers to the size of the
elements of a larger whole, fine-grained being small elements and coarse-grained being large.

23_1398MH_CH12 16/7/05 9:55 Page 351

■ the further subdivision of complex layers

■ performance reductions due to a closed layered architecture.

The OSI model has seven layers only because it covers every aspect of the
communication between two applications, ranging from application-oriented
processes to drivers and protocols that directly control network hardware devices.
Many layered architectures are much simpler than this. Figure 12.8 shows a simple
example of a three layer architecture.

CHAPTER 12 SYSTEM ARCHITECTURE352

Layer 7: Application
Provides miscellaneous protocols for

common activities

Layer 6: Presentation
Structures information and attaches

semantics

Layer 5: Session
Provides dialogue control and

synchronization facilities

Layer 4: Transport
Breaks messages into packets and

ensures delivery

Layer 3: Network
Selects a route from sender to

receiver

Layer 2: Data Link
Detects and corrects errors in bit

sequences

Layer 1: Physical
Transmits bits: sets transmission rate
(baud), bit-code, connection, etc.

Figure 12.7 OSI Seven Layer Model (adapted from Buschmann et al., 1996).

Application

Data formatting

Data management

Figure 12.8 Simple layered architecture.

23_1398MH_CH12 16/7/05 9:55 Page 352

The lowest layer of the architecture in Fig. 12.8 consists of data management
library classes. The layer immediately above this, the data formatting layer, uses
services that are provided by the data management library classes in order to get
data from a database management system. This data is formatted before it is passed
upwards to the application layer. Supposing this system were to be modified to
allow it to use a different database management system, the layered architecture
limits major changes to the data management library class layer with some possible
changes to the data formatting layer.

The following steps are adapted from Buschmann et al. (1996) and provide an
outline process for the development of a layered architecture for an application.
Note that this does not suggest that the specification of a system’s architecture is a
rule-based procedure. The steps offer guidelines on the issues that need to be
addressed during the development of a layered architecture.

1. Define the criteria by which the application will be grouped into layers. A
commonly used criterion is level of abstraction from the hardware. The
lowest layer provides primitive services for direct access to the hardware
while the layers above provide more complex services that are based upon
these primitives. Higher layers in the architecture carry out tasks that are
more complex and correspond to concepts that occur in the application
domain.

2. Determine the number of layers. Too many layers will introduce unnecessary
overheads while too few will result in a poor structure.

3. Name the layers and assign functionality to them. The top layer should be
concerned with the main system functions as perceived by the user. The
layers below should provide services and infrastructure that enable the
delivery of the functional requirements.

4. Specify the services for each layer. In general it is better in the lower layers
to have a small number of low-level services that are used by a larger
number of services in higher layers.

5. Refine the layering by iterating through steps 1 to 4.

6. Specify interfaces for each layer.

7. Specify the structure of each layer. This may involve partitioning within the
layer.

8. Specify the communication between adjacent layers (this assumes that a
closed layer architecture is intended).

9. Reduce the coupling between adjacent layers. This effectively means that
each layer should be strongly encapsulated. Where a client�–�server commu-
nication protocol will be used, each layer should have knowledge only of
the layer immediately below it.

One of the simplest application architectures has only two layers�—�the applica-
tion layer and a database layer. Tight coupling between the user interface and the
data representation would make it more difficult to modify either independently,
so a middle layer is often introduced in order to separate the conceptual structure
of the problem domain. This gives the architecture shown in Fig. 12.9, which is
commonly used for business-oriented information systems.

12.5 ARCHITECTURAL STYLES 353

23_1398MH_CH12 16/7/05 9:55 Page 353

A common four layer architecture separates the business logic layer into appli-
cation logic and domain layers, and this is illustrated in Fig. 12.10. The approach
that has been adopted during the analysis activity of use case realization results in
the identification of boundary, control and entity classes. It is easy to see that it is
possible to map the boundary classes onto a presentation layer, the control classes
onto an application logic layer and the entity classes on a domain layer. Thus from
an early stage in the development of an information system some element of layer-
ing is being introduced into the software architecture. However, it is important to
appreciate that as we move through design, the allocation of responsibility
amongst these types of class may be adjusted to accommodate non-functional
requirements.

Separation of the application logic layer from the domain layer may be further
justified because several applications share (or are likely to share) one domain
layer, or because the complexity of the business objects forces a separation into
two layers. It can also be used when the objects are physically distributed (see

CHAPTER 12 SYSTEM ARCHITECTURE354

Presentation

Business logic

Database

Figure 12.9 Three layer architecture.

Presentation

Application logic

Domain

Database

Figure 12.10 Four layer architecture.

23_1398MH_CH12 16/7/05 9:55 Page 354

Chapter 19). However, it must be emphasized that there is no perfect solution to
this kind of design problem. There are only solutions that have different character-
istics (perhaps different levels of efficiency or maintainability). A good design
solution is one that balances competing requirements effectively.

Layered architectures are used quite widely. J2EE (Sun Java Centre, 2005)
adopts a multi-tiered�3 approach and an associated patterns catalogue has been
developed. The architecture has five layers (client, presentation, business, inte-
gration and resource tiers) and the patterns catalogue addresses the presentation,
business and integration tiers.

Partitioned subsystems
As suggested earlier, some layers within a layered architecture may have to be
decomposed because of their intrinsic complexity. Figure 12.11 shows a four layer
architecture for part of Agate’s campaign management system that also has some
partitioning in the upper layers.

In this example the application layer corresponds to the analysis class model for
a single application, and is partitioned into a series of subsystems. These subsystems
are loosely coupled and each should deliver a single service or coherent group of
services. The Campaign Database layer provides access to a database that con-
tains all the details of the campaigns, their adverts and the campaign teams. The
Campaign Domain layer uses the lower layer to retrieve and store data in the
database and provides common domain functionality for the layers above. For
example, the Advert subsystem might support individual advert costing while the
Campaign Costs subsystem uses some of the same common domain functionality
when costing a complete campaign. Each application subsystem has its own
presentation layer to cater for the differing interface needs of different user roles�4.

12.5 ARCHITECTURAL STYLES 355

Presentation
layer

A single domain
layer supports
two application
subsystems

Application
layer

Advert
HCI Subsystem

Advert
Subsystem

Campaign Costs
HCI Subsystem

Campaign Costs
Subsystem

Campaign Domain

Campaign Database

Figure 12.11 Four layer architecture applied to part of the Agate campaign management system.

3 These use the term tier as broadly equivalent to layer.

4 This example is for illustrative purposes only. Our analysis class model for Agate is too small to justify
this kind of partitioning in practice.

23_1398MH_CH12 16/7/05 9:55 Page 355

A system may be split into subsystems during analysis because of the system’s
size and complexity. However, the analysis subsystems should be reviewed during
design for coherence and compatibility with the overall system architecture.

The subsystems that result from partitioning should have clearly defined bound-
aries and well specified interfaces, thus providing high levels of encapsulation so that
the implementation of an individual subsystem may be varied without causing depen-
dent changes in the other subsystems. The process of identifying subsystems within a
particular layer can be detailed in much the same way as for subsystem layers.

12.5.3 Model�–�View�–�Controller
Many interactive systems use the Model�–�View�–�Controller (MVC) architecture.
This structure was first used with Smalltalk but has since become widely used with
many other object-oriented development environments. The MVC architecture
separates an application into three major types of component: models that com-
prise the main functionality, views that present the user interface and controllers
that manage the updates to views. This structure is capable of supporting user
requirements that are presented through differing interface styles, and it aids
maintainability and portability.

It is common for the view of an information system that is required for each user
to differ according to their role. This means that the data and functionality avail-
able to any user should be tailored to his or her needs. The needs of different types
of user can also change at varying rates. For both these reasons it makes sense to
give each user access to only the relevant part of the functionality of the system as
a whole. For example, in the Agate case study many users need access to infor-
mation about campaigns, but their perspectives vary. The campaign manager needs
to know about the current progress of a campaign. She is concerned with the
current state of each advertisement and how this impacts on the campaign as a
whole�—�is it prepared and ready to run, or is it still in the preparation stage? If an
advert is behind schedule, does this affect other aspects of the campaign? The
graphic designer also needs access to adverts but he is likely to need access to the
contents of the advert (its components and any notes that have been attached to it)
as well as some scheduling information. A director may wish to know about the
state of all live campaigns and their projected income over the next six months.
This gives at least three different perspectives on campaigns and adverts, each of
which might use different styles of display. The director may require charts and
graphs that summarize the current position at quite a high level. The campaign
manager may require lower level summaries that are both textual and graphical in
form. The graphic designer may require detailed textual displays of notes with a
capability to display graphical images of an advert’s content. Ideally, if any infor-
mation about a campaign or an advert is updated in one view then the changes
should also be immediately reflected in all other views. Figure 12.12 shows a
possible architecture, but some problems remain.

The design of such varied and flexible user interfaces that still incorporate the
same core functionality is likely to be expensive because elements of functionality
may have been duplicated for different interfaces. This makes the software more
complex and thus also more error prone. There is an impact on maintainability
too, since any change to core functionality will necessitate changes to each inter-
face subsystem.

CHAPTER 12 SYSTEM ARCHITECTURE356

23_1398MH_CH12 16/7/05 9:55 Page 356

We repeat below some of the difficulties that need to be resolved for this type of
application.

■ The same information should be capable of presentation in different formats in
different windows.

■ Changes made within one view should be reflected immediately in the other views.

■ Changes in the user interface should be easy to make.

■ Core functionality should be independent of the interface to enable multiple
interface styles to co-exist.

While the four layer architecture in Fig. 12.11 resolves some of these problems it
does not handle the need to ensure that all view components are kept up to date.
The MVC architecture solves this through its separation of core functionality
(model) from the interface and through its incorporation of a mechanism for prop-
agating updates to other views. The interface itself is split into two elements: the
output presentation (view) and the input controller (controller).

Figure 12.13 shows the basic structure of the MVC architecture.
The responsibilities of the components of an MVC architecture are listed below.

■ Model. The model provides the central functionality of the application and is
aware of each of its dependent view and controller components.

■ View. Each view corresponds to a particular style and format of presentation of
information to the user. The view retrieves data from the model and updates its
presentations when data has been changed in one of the other views. The view
creates its associated controller.

■ Controller. The controller accepts user input in the form of events that trigger
the execution of operations within the model. These may cause changes to the
information and in turn trigger updates in all the views ensuring that they are all
up to date.

■ Propagation Mechanism. This enables the model to inform each view that the
model data has changed and as a result the view must update itself. It is also
often called the dependency mechanism.

Figure 12.14 represents the capabilities offered by the different MVC components
as they might be applied to part of the campaign management system at Agate.

12.5 ARCHITECTURAL STYLES 357

Changes to data in one
subsystem need to be

propagated to the others

Each subsystem
contains some
core functionality

Campaign
Forecasting

Advert
Development

Campaign
Management

Campaign and Advert
Database Access

Figure 12.12 Multiple interfaces for the same core functionality.

23_1398MH_CH12 16/7/05 9:55 Page 357

The operation update() in the AdvertView and AdvertController compo-
nents triggers these components to request data from the CampaignModel
component�5. This model component has no knowledge of the way that each view
and controller component will use its services. It need only know that all view and
controller components must be informed whenever there is a change of state (a
modification either of object attributes or of their links).

CHAPTER 12 SYSTEM ARCHITECTURE358

«access» «access»

«access»

«access»

«access»
«propagate» «propagate»

«access»

The propagation mechanism

Model

View A

Controller A

View B

Controller B

Figure 12.13 General structure of Model�–�View�–�Controller (adapted from Hopkins and Horan,
1995).

Navigability arrows show the
direction in which messages
will be sent

coreData
setOfObservers [0..*]

«component»
CampaignModel

attach(Observer)
detach(Observer)
notify()
getAdvertData()
modifyAdvert()

initialize()
displayAdvert()
update()

«component»
AdvertView

viewData

initialize()
changeAdvert()
update()

«component»
AdvertController

Depends on

Updates

Updates

1

1

1

1

*

*

Figure 12.14 Responsibilities of MVC components, as applied to Agate.

5 In this example the CampaignModel will hold details of campaigns and their adverts.

23_1398MH_CH12 16/7/05 9:55 Page 358

The attach() and detach() services in the CampaignModel component
enable views and controllers to be added to the setOfObservers. This contains
a list of all components that must be informed of any change to the model core
data. In practice there would be separate views, each with its own controller, to
support the requirements of the campaign manager and the director.

The interaction sequence diagram in Fig. 12.15 illustrates the communication
that is involved in the operation of an MVC architecture. (The choice of message
type�—�synchronous or asynchronous�—�shown in this diagram is only one of the
possibilities that could be appropriate, the features of the implementation environ-
ment would influence the actual design decision.) An AdvertController com-
ponent receives the interface event changeAdvert. In response to this event the
controller invokes the modifyAdvert operation in the CampaignModel object.
The execution of this operation causes a change to the model.

For example, the target completion date for an advertisement is altered. This
change of state must now be propagated to all controllers and views that are cur-
rently registered with the model as active. To do this the modifyAdvert operation
invokes the notify operation in the model, which sends an update message to
the view. The view responds to the update message by executing the display
Advert operation which requests the appropriate data from the model via the
getAdvertData operation. The model also sends an update message to the
AdvertController, which then requests the data it needs from the model.

One of the most important aspects of the MVC architecture is that each model
knows only which views and controllers are registered with it, but not what
they do. The notify operation causes an update message to all the views and

12.5 ARCHITECTURAL STYLES 359

:AdvertController :CampaignModel :AdvertView

sd Change advert

changeAdvert

modifyAdvert

update

notify

update

displayAdvert

getAdvertData

getAdvertData

Figure 12.15 MVC component interaction.

23_1398MH_CH12 16/7/05 9:55 Page 359

controllers (for clarity, only one view and one controller are shown in the diagram,
but interaction with the others would be similar). The update message from the
model is in effect saying to the views and controllers ‘I have been updated and you
must now ensure that your data is consistent’. Thus the model, which should be the
most stable part of the application, is unaffected by changes in the presentation
requirements of any view or controller. The change propagation mechanism can be
structured so that further views and controllers can be added without causing a
change to the model. Each of these may support different interface requirements
but require the same model functionality. However, since views and controllers
need to know how to access the model in order to get the information they require,
some changes in the model will inevitably still cause changes in other components.

Other kinds of communication may take place between the MVC components
during the operation of the application. The controller may receive events from the
interface that require a change in the way that some data is presented to the user
but do not cause a change of state. The controller’s response to such an event
would be to send an appropriate message to the view. There would be no need for
any communication with the model.

12.5.4 Architectures for distributed systems
Distributed information systems have become more common as communications
technology has improved and have also become more reliable. An information
system may be distributed over computers at the same location or at different loca-
tions. Since Agate has offices around the world, it may need information systems
that use data that is distributed among different locations. If Agate grows, it may
also open new offices and require new features from its information systems. An
architecture that is suitable for distributed information systems needs also to be
flexible so that it can cope with change. A distributed information system may be
supported by software products such as distributed database management systems
or object request brokers or may adopt a service-oriented architecture (these are
discussed in Chapter 19).

A general broker architecture for distributed systems is described by Buschmann
et al. (1996). A simplified version of the broker architecture is shown in Fig. 12.16.

A broker component increases the flexibility of the system by decoupling the
client and server components. Each client sends its requests to the broker rather

CHAPTER 12 SYSTEM ARCHITECTURE360

«component»
Broker

«component»
Server 1

«component»
Server 2

«component»
Server 3

«component»
Client A

«component»
Client B

Figure 12.16 Schematic of simplified broker architecture.

23_1398MH_CH12 16/7/05 9:55 Page 360

than communicating directly with the server component. The broker then for-
wards the service request to an appropriate server. A broker may offer the services
of many servers and part of its task is to identify the relevant server to which a
service request should be forwarded. The advantage offered by a broker archi-
tecture is that a client need not know where the service is located, and it may
therefore be deployed on either a local or a remote computer. Only the broker
needs to know the location of the servers that it handles.

Figure 12.17 shows a sequence diagram for client�–�server communication using
the broker architecture. The diagram is drawn with asynchronous message types
but the actual implementation may involve both synchronous and asynchronous
message types. In this example the server subsystem is on a local computer. In
addition to the broker itself, two additional proxy components have been intro-
duced to insulate the client and server from direct access with the broker. On the
client side a ClientSideProxy receives the initial request from the client and
packs the data in a format suitable for transmission. The request is then forwarded
to the Broker which finds an appropriate server and invokes the required service
via the ServerSideProxy.

The ServerSideProxy then unpacks the data and issues the service request
sending the service message to the Server object. The service operation then
executes and on completion responds to the ServerSideProxy. The response is
then sent to the Broker which forwards it to the originating ClientSideProxy.

12.5 ARCHITECTURAL STYLES 361

:Client :Broker :Server
:ClientSide

Proxy
:ServerSide

Proxy

sd Broker-based client–server communication

callServer

sendRequest
packData

findServer

unpackData

sendRequest

sendResponse

requestService

sendResponse

unpackData

packData

service

response

serverResponse

response

Figure 12.17 Broker architecture for local server (adapted from Buschmann et al., 1996).

23_1398MH_CH12 16/7/05 9:55 Page 361

Note that these are both new messages and not returns. The reason for this is that
a broker does not wait for each response before handling another request. Once its
sendRequest activation has been completed, the broker will in all probability
deal with many other requests and thus requires a new message from the
ServerSideProxy object to cause it to enter a new activation. Unlike the broker,
the ClientSideProxy has remained active; this then unpacks the message and
the response becomes available to the Client as control returns.

Figure 12.18 shows how the participants in this interaction can be allocated to
different processes, with the client and its proxy running in one process thread, the
broker in another and the server and its proxy in a third.

Figure 12.19 shows a schematic broker architecture that uses bridge components
to communicate between two remote processors. Each bridge converts service
requests into a network specific protocol so that the message can be transmitted.
Figure 12.20 shows a possible allocation of these components to processes.

12.5.5 Organization structures for architecture and development
Dividing a system into subsystems has benefits for project management. Each sub-
system can be allocated to a single development team, which can operate indepen-
dently of other teams, provided that they adhere to the interface requirements for
their subsystem. Where a subsystem must be split between two development teams,
there is a heavy communications overhead that is incurred in ensuring that the
different parts of the subsystem are constructed to consistent standards. In such
cases the structure of either the organization or of the software tends to change so
that they become more closely aligned with each other; this helps to minimize the
communications overhead and is sometimes known as Conway’s Law�6 (Coplien,

CHAPTER 12 SYSTEM ARCHITECTURE362

«component»
Subsystem B

«component»
Subsystem D

«component»
Broker 1

«component»
Bridge 1

«component»
Bridge 2

«component»
Broker 2

«component»
Subsystem A

«component»
Subsystem C

Figure 12.19 Schematic of broker architecture using bridge components.

6 This is an example of an organizational pattern.

«process»
ClientProcess

 components
Client
ClientSideProxy

«process»
ServerProcess

 components
Server
ServerSideProxy

«process»
BrokerProcess

 components
Broker

Figure 12.18 Process allocation of components in Figure 12.17.

23_1398MH_CH12 16/7/05 9:55 Page 362

1995). If a subsystem that is being developed by more than one team is cohesive,
and the way it is split between teams has no apparent functional basis, then the
teams may coalesce in practice and operate as one. Teams that are working on the
same subsystem are sometimes inhibited from merging, perhaps because they are
located on different continents. The subsystem should then be treated as if it were
two separate subsystems. An interface between these two new subsystems can be
defined and the teams can then operate autonomously. Where the allocation of one
subsystem to two teams is such that one team deals with one set of requirements
and the other deals with a different set of requirements, the subsystem can also be
treated as if it were actually two subsystems, with a defined interface between them.

12.6 Concurrency

In most systems there are many objects that do not need to operate concurrently
but some may need to be active simultaneously. Object-oriented modelling
captures any inherent concurrency in the application principally through the
development of interaction diagrams and state machines. The examination of use
cases also helps with the identification of concurrency. There are several ways of
using these models to identify circumstances where concurrent processing may be
necessary. First, a use case may indicate a requirement that the system should be
able to respond simultaneously to different events, each of which triggers a
different thread of control. Second, if a state machine reveals that a class has
complex nested states which themselves have concurrent substates, then the
design must be able to handle this concurrency. The state machine for the class
Campaign has nested concurrent states within the Active state (see Fig. 11.20)
and there may be the possibility of concurrent activity. In this particular example,
the concurrent activity that occurs in the real world need not necessarily be
represented as concurrent processing in the computerized information system.

In cases where an object is required to exhibit concurrent behaviour it is some-
times necessary to split the object into separate objects in order to avoid the need
for concurrent activity within any one object. Concurrent processing may also be
indicated if interaction diagrams reveal that a single thread of control requires that
operations in two different objects should execute simultaneously, perhaps
because of asynchronous invocation. This essentially means that one thread of
control is split into two or more active threads. An example of this is shown in
Fig. 12.21.

12.6 CONCURRENCY 363

«process»
Location1Process

 components
Subsystem A
Subsystem B
Broker 1
Bridge 1

«process»
Location2Process

 components
Subsystem C
Subsystem D
Broker 2
Bridge 2

Figure 12.20 Process allocation of components in Figure 12.19.

23_1398MH_CH12 16/7/05 9:55 Page 363

Different objects that are not active at the same time can be implemented on the
same logical processor (and thus also on the same physical processor�—�this distinc-
tion is explained below). Objects that must operate concurrently must be imple-
mented on different logical processors (though perhaps still on the same physical
processor).

The distinction between logical and physical concurrency is as follows. There
are a number of ways of simulating the existence of multiple processors using only
a single physical processor. For example, some operating systems (Unix and
Windows XP) allow more one than one task to appear to execute at the same time,
and are thus called multi-tasking operating systems. In fact, only one task really
takes place at any one time, but the operating system shares the processor between
different tasks so quickly that the tasks appear to execute simultaneously. Where
there are no tight time constraints a multi-tasking operating system can provide a
satisfactory implementation of concurrency. But it is important to ensure that the
hardware configuration of the computer can cope with the demands of multi-
tasking.

When there are tight time constraints a scheduler subsystem can be introduced
that ensures that each thread of control operates within the constraints on its
response time. Figure 12.22 illustrates a possible relationship between a scheduler
and the other parts of a system. Events that are detected by the I�O (input�output)
subsystems generate interrupts in the scheduler. The scheduler then invokes the
appropriate thread of control. Further interrupts may invoke other threads of
control and the scheduler allocates a share of physical processor time to each
thread.

Another way of implementing concurrency is to use a multi-threaded program-
ming language (such as Java). These permit the direct implementation of con-
currency within a single processor task. Finally, a multi-processor environment
allows each concurrent task to be implemented on a separate processor.

Most concurrent activity in a business information system can be supported by a
multi-user environment. These are designed to allow many users to perform tasks

CHAPTER 12 SYSTEM ARCHITECTURE364

Asynchronous
messages

Simultaneous
execution Do not execute

simultaneously

msg b

msg a

msg c
msg d

sd Concurrent execution

:ClassA :ClassB :ClassC :ClassD

par

Figure 12.21 Concurrent activity in an interaction diagram.

23_1398MH_CH12 16/7/05 9:55 Page 364

simultaneously. Multi-user concurrent access to data is normally handled by a
separate database management system (DBMS)�—�these are introduced briefly in
Section 13.7 and are discussed in more detail in Chapter 17.

12.7 Processor Allocation

In the case of a simple, single-user system it is almost always appropriate for the
complete system to operate on a single computer. The software for a multi-user infor-
mation system (all or part of it) may be installed on many computers that use a shared
database server. More complex applications sometimes require the use of more than
one type of computer, where each provides a specialized kind of processing cap-
ability for a specific subsystem. An information system may also be partitioned over
several processors, either because subsystems must operate concurrently or because
some parts of the application need to operate in different locations (in other words,
it is a distributed system). Information systems that use the Internet or company
intranets for their communications are now widespread. Such distributed infor-
mation systems operate on diverse computers and operating systems.

The allocation of a system to multiple processors on different platforms involves
the following steps.

■ The application should be divided into subsystems.

■ Processing requirements for each subsystem should be estimated.

■ Access criteria and location requirements should be determined.

■ Concurrency requirements for the subsystems should be identified.

■ Each subsystem should be allocated to an operating platform�—�either general
purpose (PC or workstation) or specialized (embedded micro-controller or
specialist server).

12.7 PROCESSOR ALLOCATION 365

«invoke»

«interrupt» «interrupt»

«invoke»

Scheduler

I/O Subsystem A I/O Subsystem B

Subsystem 2Subsystem 1

Thread of control
invoked by scheduler
and produces no output

This thread of execution
generates a system output

Interrupts generated in scheduler

Figure 12.22 Scheduler handling concurrency.

23_1398MH_CH12 16/7/05 9:55 Page 365

■ Communication requirements between subsystems should be determined.

■ The communications infrastructure should be specified.

The estimation of processing requirements requires careful consideration of such
factors as event response times, the data throughput that is needed, the nature of
the I�O that is required and any special algorithmic requirements. Access and loca-
tion factors include the difficulties that may arise when a computer will be installed
in a harsh operating environment such as a factory shop floor.

12.8 Agate Software Architecture

In the case study chapters, A2, A3 and A4, we have developed the models for the
Agate system. The initial package architecture was shown in Fig. A2.8. However,
this does not reflect a proper layering or partitioning of the software architecture.
We may begin with a four layer architecture that separates responsibility for the
user interface, the application logic, the domain classes and the database. A simple
view of this is shown in Fig. 12.23.

However, we know that Agate requires the system to be capable of distribution.
One option would be to adopt a thin-client architecture. In this approach, all four
of the layers shown in Fig. 12.23 would be located on one or more servers, and the
user interface would be generated as HTML and displayed in a browser. However,
this would not give us the kind of interactivity that we have been modelling in our
prototype user interfaces, which rely on a client program running on the users’
PCs. So we need to decide where to split the system between the client side and the
server side. The Agate Control package could be split into a client-side package
that co-ordinates the user interface, playing the role of Controller, and a server-
side package that orchestrates the business logic of the use cases and interacts with
the domain classes. If we adopt this approach, we will break the closed layering of

CHAPTER 12 SYSTEM ARCHITECTURE366

Agate Boundary

Agate Control

Agate Domain

Agate Database

Figure 12.23 Four layer architecture for Agate.

23_1398MH_CH12 16/7/05 9:55 Page 366

the architecture of Fig. 12.23. Both the client-side and the server-side classes will
need to understand the structure of the entity objects in the domain package
(Advert, Campaign, Client etc.). If we develop in Java, the jar file containing
these classes will need to be located on the client as well as the server, even if their
operations are not invoked on the client. One way to reduce this dependency is to
use lightweight versions of the entity classes in the Agate Domain package. These
are classes that have the attributes of the entity classes, but do not have any oper-
ations apart from constructors and those operations necessary to get and set
attribute values. This is an established pattern in J2EE systems, and is shown in
Fig. 12.24.

Note that the dependency between the Agate Client Control package and
the Agate Value Objects package is no more than that, a dependency. It does

12.8 AGATE SOFTWARE ARCHITECTURE 367

Agate Boundary

Agate Control Client

Agate Database

Agate Control Server

Agate Business
Objects

Agate Value
Objects

Agate Domain

Figure 12.24 Package architecture for Agate.

«process»
AgateClientProcess

 components
com.agate.boundary
com.agate.control.client
com.agate.domain.vo

«process»
AgateServerProcess

 components
com.agate.control.server
com.agate.domain.bo
com.agate.domain.vo
com.agate.database

Figure 12.25 Process allocation for Agate.

23_1398MH_CH12 16/7/05 9:55 Page 367

not imply that there is some kind of communication across the network between
the two. In fact if we implement the packages as Java packages, and deploy them,
the value object package (com.agate.domain.vo) will exist in both the client
process and the server process. This is shown in Figure 12.25.

We shall revisit this architecture in the case study chapter A5, once we have
considered in more detail the design of classes, the user interface and the database.

12.9 Summary

Systems and software architecture have aspects in common with the architecture
of buildings, and architectural models are typically produced using different views,
which address different aspects of the architecture. In information systems, ‘archi-
tecture is the fundamental organization of a system embodied in its components,
their relationships to each other, and to the environment, and the principles
guiding its design and evolution’ (IEEE, 2000). Many architects now use UML in
order to produce architectural models of systems.

One of the key concerns of architects is to ensure that the architecture of the
system will enable it to meet the quality attributes (non-functional requirements)
that are expected of it. The models allow them to reason about how well the
proposed structures and relationships will support demands on performance,
reliability, reusability and other quality attributes.

The architecture of new systems is often constrained by existing systems,
because they define either explicitly or implicitly the way in which systems are built
within the organization, or because the new systems will have to inter-operate with
the old. There is a growing interest in wrapping up existing systems as services to
support a service-oriented architecture, or in extracting the business logic from
heritage systems using reverse-engineering to produce platform-independent
models, and then deriving new implementations in more modern technologies
from the models. The Model-Driven Architecture movement places UML at the
centre of its work and many of the features that have been improved or added in
UML 2.0 are there to support MDA.

Large organizations may mandate approaches to architecture development
based on enterprise architecture or technical reference architectures that lay down
models of the business and how it operates (in the former case) or of standard
technologies to be applied (in the latter case). Experienced architects also draw on
architectural styles, which act as architectural patterns and provide well under-
stood ways of constructing the high-level architecture of new systems.

Review Questions

12.1 Give a definition of architecture in an information systems context.

12.2 What is the difference between an architectural view and an architectural view-
point?

12.3 What are the 4 ! 1 views of architecture in the Unified Process?

12.4 What are the benefits of adopting an architecture-centric approach?

CHAPTER 12 SYSTEM ARCHITECTURE368

23_1398MH_CH12 16/7/05 9:55 Page 368

12.5 How do existing systems influence the architecture of new systems in the same
organization?

12.6 Explain the difference between a PIM and a PSM.

12.7 What is meant by enterprise architecture?

12.8 What are the advantages of dividing a system into a collection of subsystems?

12.9 What is the difference between client�–�server and peer-to-peer communication
between subsystems?

12.10Why is an open layered architecture more difficult to maintain?

12.11What are the disadvantages of the closed layered architecture?

12.12What advantages would there be if the Advert HCI subsystem in Fig. 12.11
were designed to have direct access to the Campaign Database layer?

12.13What are the main differences between the MVC architecture and the layered
and partitioned architecture?

12.14 In what sense does a broker decouple two subsystems that need to communi-
cate with each other? How does this work?

12.15How do architectural divisions of systems help with project management?

12.16Why is it sometimes necessary to design information systems that have explicitly
concurrent behaviour?

12.17How should you go about allocating system tasks to processors?

Case Study Work, Exercises and Projects

12.A Compare Soni’s four aspects with the UP 4 ! 1 views. What do they have in
common and how do they differ?

12.B Consider a system that you use regularly. What, if anything, can you tell about
the architecture of the system from the user’s perspective?

12.C Develop a series of steps for the identification of partitioned subsystems within a
layer in a layered architecture. Use the process for the identification of layers described
in Section 12.5.2 as a starting point. Highlight any significant differences that you feel
exist between the two processes.

12.D Investigate a framework for enterprise architecture. What support is there for it in
modelling tools?

12.E Suggest a suitable layered architecture with any necessary partitioning for the
FoodCo case study by following the procedures defined above.

Further Reading

Bass et al. (2003) is an updated version of their 1998 book, in which they have adopted
UML as their architecture description language. The book mixes case studies from
different kinds of projects with theory and practical guidance.

Garland and Anthony (2003) provide an excellent and practical approach to devel-
oping software architectures using UML.

FURTHER READING 369

23_1398MH_CH12 16/7/05 9:55 Page 369

Buschmann et al. (1996, 2000) provide further details of the architectures discussed
in this chapter and describe other interesting alternatives.

Details of the OMG’s MDA initiative can be found at www.omg.org/mda/.
The Zachman Institute for Framework Advancement (www.zifa.com) provides infor-

mation about the Zachman framework.

CHAPTER 12 SYSTEM ARCHITECTURE370

23_1398MH_CH12 16/7/05 9:55 Page 370

