
CHAPTER 18
Hypothesis testing

Learning objectives
When you have read this chapter, you should understand:

1 the distinction between the two approaches to hypothesis 
testing

2 the distinction between a statistically signifi cant 
diff erence and one that is of practical importance for 
a manager

3 the six-step hypothesis-testing procedure

4 the diff erences between parametric and non-parametric 
tests, and when to use each

5 the factors that infl uence the selection of an appropriate 
test of statistical signifi cance

6 how to interpret the various test statistics.
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18.1  Introduction
In Chapters 16 and 17, we discussed the procedures for data preparation and preliminary analysis. Th e next step 
for many studies is hypothesis testing.

Just as your understanding of scientifi c reasoning was an important foundation in the last two chapters, recollec-
tion of the specifi c diff erences between induction and deduction is fundamental to hypothesis testing. Inductive 
reasoning moves from specifi c facts to general but tentative conclusions. We can never be absolutely sure that 
inductive conclusions are fl awless. With the aid of probability estimates, we can qualify our results and state the 
degree of confi dence that we have in them. Statistical inference is an application of inductive reasoning. It allows 
us to reason from evidence found in the sample to conclusions that we wish to make about the population.

Inferential statistics is the second of two major categories of statistical procedures, the other being descriptive 
statistics. We used descriptive statistics in Chapter 16 when describing distributions. Two topics are discussed 
in this book under the heading of ‘inferential statistics’. Th e fi rst, estimation of population values, was used with 
sampling in Chapter 6, but we return to it here briefl y. Th e second, testing statistical hypotheses, is the primary 
subject of this chapter.

In the next few sections, we will refresh your memory of hypothesis testing and look at selected statistical tests. 
Many are basic, but they illustrate the diverse types of data and situations a researcher may encounter. A section 
on non-parametric techniques in Appendix E provides further study for readers with a special interest in nominal 
and ordinal variables.

18.2  Hypothesis testing
Having detailed your hypotheses in your preliminary analysis planning, the purpose of hypothesis testing is to 
determine the accuracy of your hypotheses due to the fact that you have collected a sample of data, not a census. 
Exhibit 18.1 reminds you of the relationships between your design strategy, data-collection activities, preliminary 
analysis and hypothesis testing.

We evaluate the accuracy of hypotheses by determining the statistical likelihood that the data reveal true 
diff erences – not random sampling error. We evaluate the importance of a statistically signifi cant diff erence by 
weighing the practical signifi cance of any change that we measure.

Testing approaches
Th ere are two approaches to hypothesis testing. Th e fi rst is the more established classical or sampling-theory 
approach; the second is known as the Bayesian approach. Classical statistics are found in all the major statistics 
books and are widely used in research applications. Th is approach represents an objective view of probability in 
which the decision-making rests totally on an analysis of available sampling data. A hypothesis is established; it is 
rejected or fails to be rejected, based on the sample data collected.

Bayesian statistics are an extension of the classical approach. Th ey also use sampling data for making decisions, 
but they go beyond them to consider all other available information. Th is additional information consists of sub-
jective probability estimates stated in terms of degrees of belief. Th ese subjective estimates are based on general 
experience rather than on specifi c collected data. Th ey are expressed as a prior distribution that can be revised aft er 
sample information is gathered. Th e revised estimate, known as a posterior distribution, may be further revised by 
additional information, and so on. Various decision rules are established, cost and other estimates can be intro-
duced, and the expected outcomes of combinations of these elements are used to judge decision alternatives. Th e 
Bayesian approach, based on the centuries-old Bayes theorem, has emerged as an alternative hypothesis-testing 
procedure since the mid-1950s.

An example of Bayesian decision-making is presented in Appendix B on the topic of valuing research information. 
Th e reader interested in learning more about Bayesian statistics is referred to the ‘Recommended further reading’ 
section at the end of this chapter.
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Statistical signifi cance
Following the sampling-theory approach, we accept or reject a hypothesis on the basis of sampling information 
alone. Since any sample will almost surely vary somewhat from its population, we must judge whether these diff er-
ences are statistically signifi cant or insignifi cant. A diff erence has statistical signifi cance if there is good reason to 
believe that the diff erence does not represent random sampling fl uctuations only. For example, the controller of 
e-WEAR, an ecommerce division of a large retail chain, may be concerned about a possible slowdown in payments 
by the company’s customers. She measures the rate of payment in terms of the average age of receivables outstand-
ing. Generally, the company has maintained an average of about 50 days with a standard deviation of 10 days. 
Suppose the controller has all the customer accounts analysed and fi nds the average is now 51 days. Is this 

Exhibit 18.1 Hypothesis testing and the research process.
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diff erence statistically signifi cant from 50? Of course it is, because the diff erence is based on a census of the 
accounts and there is no sampling involved. It is a fact that the population average has moved from 50 to 51 days. 
While it is of statistical signifi cance, whether it is of practical signifi cance is another question. If the controller 
judges that this variation has no real importance, then it is of little practical signifi cance.

Since it would be too expensive to analyse all of e-WEAR’s receivables frequently, we normally resort to sampling. 
Assume a sample of 25 accounts is randomly selected and the average number of days outstanding is calculated to 
be 54. Is this statistically signifi cant? Th e answer is not obvious. It is signifi cant if there is good reason to believe 
that the average age of the total group of receivables has moved up from 50. Since the evidence consists of only 
a sample, consider the second possibility that this is only a random sampling error and thus is not signifi cant. Th e 
task is to judge whether such a result from this sample is or is not statistically signifi cant. To answer this question, 
one needs to consider further the logic of hypothesis testing.

The logic of hypothesis testing
In classical tests of signifi cance, two kinds of hypotheses are used. Th e null hypothesis is used for testing. It is 
a statement that no diff erence exists between the parameter (a measure taken by a census of the population or a 
prior measurement of a sample of the population) and the statistic being compared to it (a measure from a recently 
drawn sample of the population). Analysts usually test to determine whether there has been any change in the 
population of interest or whether a real diff erence exists. Why not state the hypothesis in a positive form? Why 
not state that any diff erence between the sample statistic and the population parameter is due to some reason? 
Unfortunately, this type of hypothesis cannot be tested defi nitively. Evidence that is consistent with a hypothesis 
stated in a positive form can almost never be taken as conclusive grounds for accepting the hypothesis. A fi nding 
that is consistent with this type of hypothesis might be consistent with other hypotheses too, and thus does not 
demonstrate the truth of the given hypothesis.

For example, suppose a coin is suspected of being biased in favour of heads. Th e coin is fl ipped 100 times and the 
outcome is 52 heads. It would not be correct to jump to the conclusion that the coin is biased simply because more 
than the expected number of 50 heads resulted. Th e reason is that 52 heads is consistent with the hypothesis that 
the coin is fair. It would not be surprising to fl ip a fair coin 100 times and observe 52 heads. On the other hand, 
fl ipping 85 or 90 heads in 100 fl ips would seem to contradict the hypothesis of a fair coin. In this case there would 
be a strong case for a biased coin.

In the e-WEAR example, the null hypothesis states that the population parameter of 50 days has not changed. 
A second alternative hypothesis holds that there has been a change in average days outstanding (i.e. the sample 
statistic of 54 indicates the population value probably is no longer 50). Th e alternative hypothesis is the logical 
opposite of the null hypothesis. You should note that in academic articles, researchers usually state the alternative 
hypothesis, that is, they state that they expect a diff erence between women and men or they state that they expect 
a positive relationship between participative leadership and organizational commitment. Th ey test, however, the 
null hypothesis, that is, they test whether they can reject the hypothesis that there are no diff erences between 
women and men, or that there is no relationship between participative leadership and organizational commitment.

Th e e-WEAR example can be explored further to show how these concepts are used to test for signifi cance:

• Th e null hypothesis (H0) is: ‘Th ere has been no change from the 50 days average age of accounts outstanding.’
• Th e alternative hypothesis (HA) may take several forms, depending on the objective of the researchers. Th e HA 

may be of the ‘not the same’ or the ‘greater than’ or ‘less than’ form; for example:
• the average age of accounts has changed from 50 days
• the average age of receivables has increased (decreased) from 50 days.

Th ese types of alternative hypothesis correspond with two-tailed and one-tailed tests. A two-tailed test, or non-
directional test, considers two possibilities: the average could be more than 50 days, or it could be less than 50 days. 
To test this hypothesis, the regions of rejection are divided into two tails of the distribution.

A one-tailed test, or directional test, places the entire probability of an unlikely outcome into the tail specifi ed 
by the alternative hypothesis. In Exhibit 18.2, the fi rst diagram represents a non-directional hypothesis, and the 
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second is a directional hypothesis of the ‘greater than’ variety. Hypotheses for the example may be expressed in the 
following form:

Null H0: µ = 50 days
Alternative HA: µ ≠ 50 days (not the same case)
or HA: µ > 50 days (greater than case)
or HA: µ < 50 days (less than case)

In testing these hypotheses, adopt this decision rule: take no corrective action if the analysis shows that one cannot 
reject the null hypothesis. (Note the words ‘not to reject’ rather than ‘accept’ the null hypothesis.) It is argued that 
a null hypothesis can never be proved and therefore cannot be ‘accepted’. Here, again, we see the infl uence of 
inductive reasoning. Unlike deduction, where the connections between premises and conclusions provide a 
legitimate claim of ‘conclusive proof ’, inductive conclusions do not possess that advantage. Statistical testing gives 
only a chance to (i) disprove (reject), or (ii) fail to reject the hypothesis. Despite this terminology, it is common to 
hear ‘accept the null’ rather than the clumsy ‘fail to reject the null’. In this discussion, the less formal ‘accept’ means 
‘fail to reject’ the null hypothesis. In academic papers, researchers oft en write that a hypothesis is supported, a 
weaker statement than ‘is accepted’, but less clumsy than ‘fail to reject’.

If we reject a null hypothesis (fi nding a statistically signifi cant diff erence), then we are accepting the alternative 
hypothesis. In either accepting or rejecting a null hypothesis, we can make incorrect decisions. A null hypothesis 
can be accepted when it should have been rejected or rejected when it should have been accepted.

Th ese problems are illustrated with an analogy to the legal system.1 In our system of justice, the innocence of an 
indicted person is presumed until proof of guilt beyond a reasonable doubt (or in dubio pro reo) can be established. 
In hypothesis testing, this is the null hypothesis; there should be no diff erence between the presumption and the 
outcome unless contrary evidence is furnished. Once evidence establishes beyond reasonable doubt that innocence 
can no longer be maintained, a just conviction is required. Th is is equivalent to rejecting the null hypothesis and 
accepting the alternative hypothesis. Incorrect decisions or errors are the other two possible outcomes. We can 
unjustly convict an innocent person, or we can acquit a guilty person.

Exhibit 18.3 compares the statistical situation to the legal one. One of two conditions exists in nature – either the 
null hypothesis is true or the alternative hypothesis is true. An indicted person is innocent or guilty. Two decisions 
can be made about these conditions: one may accept the null hypothesis or reject it (thereby accepting the alterna-
tive). Two of these situations result in correct decisions; the other two lead to decision errors.

When a Type I error (α) is committed, a true null hypothesis is rejected; the innocent person is unjustly convicted. 
Th e α value is called the level of signifi cance and is the probability of rejecting the true null. With a Type II error 
(β), one fails to reject a false null hypothesis; the result is an unjust acquittal with the guilty person going free. In 
our system of justice, it is more important to reduce the probability of convicting the innocent than acquitting the 
guilty. Similarly, hypothesis testing places a greater emphasis on Type I errors than on Type II errors. We shall now 
examine each of these errors in more detail.

Exhibit 18.2 One- and two-tailed tests at the 5 per cent level of signifi cance.
Reject H0 Reject H0 Reject H0Do not reject H0 Do not reject H0

.025 .025

50
Z  = –1.96Z  = –1.96 Z  = –1.645

α = 0.5

50
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Type I error
Assume the e-WEAR controller’s problem is deciding whether the average age of accounts receivable has changed. 
Assume the population mean is 50 days, the standard deviation of the population is 10 days, and the size of the 
sample is 25 accounts.

 Z = X
-  − µ
σx-

−1.96 = X
-

c − 50
2

 X- c = 46.08

 1.96 = X
-

c − 50
2

 X- c = 53.92

With this information, one can calculate the standard error of the mean (σx – the standard deviation of the distri-
bution of sample means). Th is hypothetical distribution is pictured in Exhibit 18.4. Th e standard error of the mean 
is calculated to be 2 days.

σx- = σ
n

 − 10
25

 = 2

If the decision is to reject H0 with a 95 per cent confi dence interval (α = .05), a Type I error of .025 in each tail is 
accepted (assumes a two-tailed test). In Part A of Exhibit 18.4, you can see the regions of rejection indicated by 
the shaded areas. Th e area between these two regions is known as the region of acceptance. Th e dividing points 
between rejection and acceptance areas are called critical values. Since the distribution of sample means is normal, 
the critical values can be computed in terms of the standardized random variable2 where:

Z = 1.96 (signifi cance level = .05)
X- c = Th e critical value of the sample mean
µ = Th e population value stated in H0 = 50
σx- = Th e standard error of a distribution of means of samples of 25

Exhibit 18.3 Comparison of statistical decisions to legal analogy.
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Th e probability of a Type I error is:
α = .05, or 5%

Th e probability of a correct decision if 
the null hypothesis is true is 95 per cent. 
By changing the probability of a Type I 
error, you move critical values either 
closer to or farther away from the 
assumed parameter of 50. Th is can be 
done if a smaller or larger α error is 
desired and critical values are moved 
to refl ect this. You can also change the 
Type I error and the regions of accep-
tance by changing the size of the sample. 
For example, if you take a sample of 
100, the critical values that provide a 
Type I error of .05 are 48.04 and 51.96. 
Th e relationship between the sample size 
and the probability of an error is quad-
ratic, that is, a four times larger sample 
halves the pro bability of an error.
Th e alternative hypothesis concerned a 
change in either direction from 50, but 
the controller may be interested only 
in increases in the age of receivables. 
For this, one uses a one-tailed (greater 
than) HA and places the entire region 
of rejection in the upper tail of the distribution. One can accept a 5 per cent α risk and compute a new critical value 
(Xc). (See Appendix E, Exhibit E.1 to fi nd the Z value of 1.645 for the area of .05 under the curve.) Substitute this in 
the Z equation and solve for X- c.

Z = 1.645 = X
-

c − 50
2

X- c = 53.29
Th is new critical value, the boundary between the regions of acceptance and rejection, is pictured in Part B of 
Exhibit 18.4.

Type II error
Th e controller would commit a Type II error (β) by accepting the null hypothesis (µ = 50) when in truth it had 
changed. Th is kind of error is diffi  cult to detect. Th e probability of committing a β error depends on fi ve factors:
1 the true value of the parameter
2 the α level we have selected
3 whether a one- or two-tailed test was used to evaluate the hypothesis
4 the sample standard deviation, and
5 the size of the sample.
We secure a diff erent β error if the new β moves from 50 to 54 than if it moves only to 52. We must compute 
separate β error estimates for each of a number of assumed new population parameters and X̄c values.
To illustrate, assume µ has actually moved to 54 from 50. Under these conditions, what is the probability of our 
making a Type II error if the critical value is set at 53.29? Th is may be expressed in the following fashion:

P(A2 | S1) = α = .05 (assume a one-tailed alternative hypothesis)
P(A2 | S2) = β = ?

Exhibit 18.4 Probability of making a Type I error given H0 is true.
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If the new µ is 54, then:

σx- = σ
n

 − 10
25

 = 2

Z  = X
-  − µ
σx-

 = 53.29 − 54
2

 = −.355

Using Exhibit E.1 in Appendix E, we interpolate 
between .35 and .36 Z scores to fi nd the .355 Z score. 
Th e area between the mean and Z is .1387. β is the tail 
area, or the area below the Z, and is calculated as 
β = .50 − .1387 = .36.

Th is condition is shown in Exhibit 18.5. With an α of 
.05 and a sample of 25, there is a 36 per cent probabil-
ity of a Type II (β) error if the µ is 54. We also speak 

of the power of the test, that is, (1 − β). For this example, the power of the test equals 64 per cent (1 − .36), that is, 
we will correctly reject the false null hypothesis with a 64 per cent probability. A power of 64 per cent is less than 
the 80 per cent minimum percentage usually needed.

Th ere are several ways to reduce a Type II error. We can shift  the critical value closer to the original µ of 50; but to 
do this, we must accept a bigger α. Whether to take this action depends on the evaluation of the relative α and β 
risks. It might be desirable to enlarge the acceptable α risk because a worsening of the receivables situation would 
probably call for increased eff orts to stimulate collections. Committing a Type I error would mean only that we 
engaged in eff orts to stimulate collections when the situation had not worsened. Th is act probably would not have 
many adverse eff ects even if the days of credit outstanding had not increased.

A second way to reduce Type II error is to increase sample size. For example, if the sample were increased to 100, 
the power of the test would be much stronger.

σx- = σ
n

 − 10
100

 = 1

Z = X
-  − µ
σx-

 = 53.29 − 54
2

 = −.71

β = .50 − .2612 = .24

Th is would reduce the Type II error to 24 per cent and increase the power of the test to 76 per cent. You should 
note that with increasing sample sizes even very small diff erences become signifi cant. Th us, with a large sample 
we would fi nd that even an increase from 50 days to 50.5 days is statistically signifi cant. However, statistical 
signifi cance does not address practical relevance. Th us, although the diff erence between 50 and 50.5 is signifi cant, 
it might not be relevant for managerial decision-making.

A third method seeks to improve both α and β errors simultaneously and is diffi  cult to accomplish. We know that 
measuring instruments, observations and recording produce error. By using a better measuring device, tightening 
the observation and recording processes, or devising a more effi  cient sample, we can reduce the variability of 
observations. Th is diminishes the standard error of estimate and in turn reduces the sampling distributions’ spread. 
Th e net eff ect is that there is less tail area in the error regions.

18.3  Statistical testing procedures
Testing for statistical signifi cance follows a relatively well-defi ned pattern, although authors diff er in the number 
and sequence of steps. One six-stage sequence is as follows:

1 State the null hypothesis. While the researcher is usually interested in testing a hypothesis of change or diff er-
ences, the null hypothesis is always used for statistical testing purposes. However, once the researcher writes up 

Exhibit 18.5 Probability of making a Type II error.

μ = 50

Don’t reject H0

μ = 54

53.29

1 – α = .95
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β = .36

Reject H0
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his or her study in an academic paper or management report, he or she usually states the hypothesis of change 
or diff erences, and argues, presents and interprets the result according to the hypothesis of change and diff er-
ence. Although this is incorrect from a statistical viewpoint, it is more convenient for the reader. Rather than 
accepting such a hypothesis, researchers oft en state that the results support the hypothesis.

2 Choose the statistical test. To test a hypothesis, one must choose an appropriate statistical test. Th ere are many 
tests from which to choose, and there are at least four criteria that can be used in choosing a test. One is the 
power of the test (effi  ciency). A more powerful test provides the same level of signifi cance with a smaller sample 
than a less powerful test. In addition, in choosing a test, one can consider how the sample is drawn, the nature 
of the population and the type of measurement scale used. For instance, some tests are useful only when the 
sequence of scores is known or when observations are paired. Other tests are appropriate only if the population 
has certain characteristics; still other tests are useful only if the measurement scale is interval or ratio. We will 
look at test selection in more detail later in the chapter.

3 Select the desired level of signifi cance. Th e choice of the level of signifi cance should be made before we collect 
the data. Th e most common level is .05, although .01 is also widely used. Other α levels such as .10, .025 or .001 
are sometimes chosen. Th e exact level to choose is largely determined by how much α risk one is willing to 
accept and the eff ect that this choice has on β risk. Th e larger the α, the lower is the β. As the size of the sample 
n is related to the α, you need to be careful in accepting a level of .05 if your sample size is very large, for 
example thousands of observations. In such huge data sets, it becomes hard to reject the null hypothesis as even 
very tiny changes and diff erences are signifi cant. Th e interpretation of such tiny changes is, however, oft en 
meaningless. Going back to our example of the accounts receivable, in a huge sample of accounts even a diff er-
ence between 50 and 50.03 can be signifi cant. To deduce from this a statistically signifi cant result that is then 
used to initiate a programme to reduce the period for accounts receivable would, however, be ill advised from 
a management perspective.

4 Compute the calculated diff erence value. Aft er the data are collected, use the formula for the appropriate 
signifi cance test to obtain the calculated value.

5 Obtain the critical test value. Aft er we compute the calculated t, x2, or other measure, we must look up the 
critical value in the appropriate table for that distribution. Th e critical value is the criterion that defi nes the 
region of rejection from the region of acceptance of the null hypothesis.

6 Interpret the test. For most tests if the calculated value is larger than the critical value, we reject the null hypo-
thesis and conclude that the alternative hypothesis is supported (although it is by no means proved). If the 
critical value is larger, we conclude that we have failed to reject the null.3

SPSS reference

What we discuss here is a basic principle, testing for statistical signifi cance, that underlies many statistical 
analysis techniques. Th e same principle is used to determine whether the diff erences between two or more 
groups is statistically signifi cant or if we want to know whether a higher income increases health. Pallant 
(2013) discusses in Chapter 10 how you can decide which test you need to analyse your data. In subsequent 
chapters, she discusses how to conduct the appropriate test.

Probability values ( p values)
According to the ‘interpret the test’ step of the statistical test procedure, the conclusion is stated in terms of reject-
ing or not rejecting the null hypothesis based on a reject region selected before the test is conducted. A second 
method of presenting the results of a statistical test reports the extent to which the test statistic disagrees with the 
null hypothesis. Th is method has become popular because analysts want to know what percentage of the sampling 
distribution lies beyond the sample statistic on the curve, and most statistical computer programs report the results 
of statistical tests as probability values (p values). Th e p value is the probability of observing a sample value as 
extreme as, or more extreme than, the value actually observed, given that the null hypothesis is true. Th is area 
represents the probability of a Type I error that must be assumed if the null hypothesis is rejected. Th e p value is 
compared to the signifi cance level (α), and on this basis the null hypothesis is either rejected or not rejected. If the 

SPSS reference

What we discuss here is a basic principle, testing for statistical signifi cance, that underlies many statistical 
analysis techniques. Th e same principle is used to determine whether the diff erences between two or more
groups is statistically signifi cant or if we want to know whether a higher income increases health. Pallant
(2013) discusses in Chapter 10 how you can decide which test you need to analyse your data. In subsequent
chapters, she discusses how to conduct the appropriate test.
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p value is less than the signifi cance level, the null hypothesis is rejected (if p value < α, reject null). If p is greater 
than or equal to the signifi cance level, the null hypothesis is not rejected (if p value > α, do not reject null).

Statistical data analysis programs commonly compute the p value during the execution of a hypothesis test. Th e 
following example will help illustrate the correct way to interpret a p value.

In Exhibit 18.4 (b) the critical value is shown for the situation where the controller is interested in determining 
whether the average age of accounts receivable had increased. Th e critical value of 53.29 was computed based on a 
standard deviation of 10, sample size of 25, and the controller’s willingness to accept a 5 per cent α risk. Suppose 
that the sample mean equals 55. Is there enough evidence to reject the null hypothesis? If the p value is less than 
.05, the null hypothesis will be rejected. Th e p value is computed as follows.

Th e standard deviation of the distribution of sample means is 2. Th e appropriate Z value is:

Z = X
-  − µ
σx-

Z = 55 − 50
2

 = 2.5

Th e p value is determined using the standard normal table. Th e area between the mean and a Z value of 2.5 is .4938. 
Th e p value is the area above the Z value (shown in Exhibit 18.4 (b)). Th e probability of observing a Z value at least 
as large as 2.5 is only .0062 (.5000 − .4932 = .0062) if the null hypothesis is true.

Th is small p value represents the risk of rejecting the null hypothesis. It is the probability of a Type I error if the 
null hypothesis is rejected. Since the p value (p = .0062) is smaller than α = .05, the null hypothesis is rejected. 
Th e controller can conclude that the average age of the accounts receivable has increased. Th e probability that this 
conclusion is wrong is .0062.

18.4  Tests of significance
Th is section provides an overview of statistical tests that are representative of the vast array available to the 
researcher. Aft er a review of the general types of tests and their assumptions, the procedures for selecting an 
appropriate test are discussed. Th e remainder of the section contains examples of parametric and non-parametric 
tests for one-sample, two-sample and k-sample cases. Readers needing a comprehensive treatment of signifi cance 
tests are referred to the ‘Recommended further reading’ section at the end of this chapter.

Types of test
Th ere are two general classes of signifi cance tests: parametric and non-parametric. Parametric tests are more 
powerful because their data are derived from interval and ratio measurements. Non-parametric tests are used to 
test hypotheses with nominal and ordinal data. Parametric techniques are the tests of choice if their assumptions 
are met. Assumptions for parametric tests include the following:

• Th e observations must be independent. Th at is, the selection of any one case should not aff ect the chances of any 
other case being included in the sample. In business research, this assumption is oft en violated when you sample 
observations belonging to the same group, for example employees working in the same department. Snowball 
sampling is another example that violates this assumption, as this calls for the sampling of observations that 
have been referred to by a previous sampled observation.

• Th e observations should be drawn from normally distributed populations. Th is assumption is oft en violated 
too, as we usually sample observations and then deduce multiple characteristics from these observations. For 
example, in a sample of self-employed people we might ask for diff erent characteristics such as age and work 
experience. While age is normally distributed, work experience might not be skewed towards lower values, as 
many people start their entrepreneurial careers in their thirties.

• Th ese populations should have equal variances. Again, this assumption is oft en violated as usually the variances 
of several characteristics in a population vary.
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• Th e measurement scales should be at least interval so that arithmetic operations can be used with them. In the 
preceding chapters, you have seen that many variables are measured on the nominal or ordinal level. If you are 
interested in gender diff erences, you have to measure gender at the nominal level and would still be interested 
in the eff ects the variable ‘gender’ has.

Th e researcher is responsible for reviewing the assumptions pertinent to the chosen test. Performing diagnostic 
checks on the data allows the researcher to select the most appropriate technique. Th e normality of a distribution 
may be checked in several ways. We have previously discussed the measures of location, shape and spread for pre-
liminary analysis and considered graphic techniques for exploring data patterns and examining distributions. 
Another diagnostic tool is the normal probability plot. Th is compares the observed values with those expected 
from a normal distribution.4 If the data display the characteristics of normality, the points will fall within a narrow 
band along a straight line. An example is shown in the upper-left  panel of Exhibit 18.6.

Exhibit 18.6 Probability plots and tests of normality.
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An alternative way to look at this is to plot the deviations from the straight line. Th ese are shown in a ‘detrended’ 
plot in the upper-right panel of the exhibit. Here we would expect the points to cluster without pattern around 
a straight line passing horizontally through 0. In the bottom two panels of Exhibit 18.6, there is neither a straight 
line in the normal probability plot nor a random distribution of points about 0 in the detrended plot. Visually, 
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the bottom two plots tell us that the variable is not normally distributed. In addition, two separate tests of the 
hypothesis that the data come from normal distributions are rejected at a signifi cance level of less than .01.5

If we wished to check another assumption – say, one of equal variance – a spread-and-level plot would be appro-
priate. Statistical soft ware programs oft en provide diagnostic tools for checking assumptions. Th ese may be nested 
within a specifi c statistical procedure, such as analysis of variance or regression, or provided as a general set of tools 
for examining assumptions.

Parametric tests place diff erent emphasis on the importance of assumptions. Some tests are quite robust and hold 
up well despite violations. For others, a departure from linearity or equality of variance may threaten the validity 
of the results. Assessing the consequences of violating a statistical assumption requires a lot of tacit knowledge with 
regard to the data used and the fi eld one investigates. As outlined above, violations of the assumptions are the rule 
rather than the exception in business research. Th erefore, interpretation of the results should never be based 
blindly on the statistical results. Rather the statistical results form a solid base for discussing how they can be 
explained and interpreted.

Non-parametric tests have fewer and less stringent assumptions. Th ey do not specify normally distributed popula-
tions or homogeneity of variance. Some tests require independence of cases; others are expressly designed for 
situations with related cases. Non-parametric tests are the only ones usable with nominal data; they are the only 
technically correct tests to use with ordinal data, although parametric tests are sometimes employed in this case. 
Non-parametric tests may also be used for interval and ratio data, although they waste some of the information 
available. Non-parametric tests are also easy to understand and use. Parametric tests have greater effi  ciency when 
their use is appropriate, but even in such cases non-parametric tests oft en achieve an effi  ciency as high as 95 per 
cent. Th is means that the non-parametric test with a sample of 100 will provide the same statistical testing power 
as a parametric test with a sample of 95.

How to select a test
In attempting to choose a particular signifi cance test, the researcher should consider at least three questions:

1 Does the test involve one sample, two samples or k samples?
2 If two samples or k samples are involved, are the individual cases independent or related?
3 Is the measurement scale nominal, ordinal, interval or ratio?

Additional questions may arise once answers to the fi rst ones are known:

• What is the sample size?
• If there are several samples, are they of equal size?
• Have the data been weighted?
• Have the data been transformed?

Oft en such questions are unique to the selected technique. Th e answers can complicate the selection, but once 
a tentative choice has been made, most standard statistics textbooks will provide further details.

Decision trees provide a more systematic means of selecting techniques. One widely used guide from the Institute 
for Social Research starts with questions about the number of variables, nature of the variables (continuous, 
discrete, dichotomous, independent, dependent, and so on) and level of measurement. It goes through a tree 
structure asking detailed questions about the nature of the relationships being searched, compared or tested. Over 
130 solutions to data analysis problems are paired with commonly asked questions.6

An expert system off ers another approach to choosing appropriate statistics. Capitalizing on the power and con-
venience of personal computers, expert system programs provide a comprehensive search of the statistical terrain 
just as a computer search of secondary sources does. Most programs ask about your research objectives, the nature 
of your data, and the intended audience for your fi nal report. When you are not 100 per cent confi dent of your 
answers, you can bracket them with an estimate of the degree of your certainty. One such program, Statistical 
Navigator, covers eight categories of statistics from exploratory data analysis through reliability testing and multi-
variate data analysis. In response to your answers, a report is printed containing recommendations, rationale for 
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selections, references and the statistical packages that off er the suggested procedure.7 SPSS and SAS include 
coaching and help modules with their soft ware.

In this chapter, we used the above three criteria to develop a classifi cation of the major parametric and nonpara-
metric tests and measures. Th is is shown in Exhibit 18.7.8 For example, if your testing situation involves two 
samples, the samples are independent, and the data are interval, the fi gure suggests the t-test of diff erences as the 
appropriate choice. Th e most frequently used of the tests listed in Exhibit 18.7 are covered next. For additional 
examples see Appendix D.

One-sample tests
One-sample tests are used when we have a single sample and wish to test the hypothesis that it comes from a 
specifi ed population. In this case we encounter questions such as these:

• Is there a diff erence between observed frequencies and the frequencies we would expect, based on some theory?
• Is there a diff erence between observed and expected proportions?
• Is it reasonable to conclude that a sample is drawn from a population with some specifi ed distribution (normal, 

Poisson, etc.)?
• Is there a signifi cant diff erence between some measures of central tendency (X̄) and its population parameter (µ)?

A number of tests may be appropriate in this situation. Th e parametric test is discussed fi rst.

Parametric tests
Th e Z test or t-test is used to determine the statistical signifi cance between a sample distribution mean and a 
parameter.

Th e Z distribution and t distribution diff er. Th e t has more tail area than that found in the normal distribution. 
Th is is compensation for the lack of information about the population standard deviation. Although the sample 
standard deviation is used as a proxy fi gure, the imprecision makes it necessary to go further away from 0 to 
include the percentage of values in the t distribution necessarily found in the standard normal.

When sample sizes approach 120, the sample standard deviation becomes a very good estimate of σ; beyond 120, 
the t and Z distributions are virtually identical.

Some typical real-world applications of the one-sample test are:

• fi nding the average monthly balance of credit card holders compared to the average monthly balance fi ve years ago
• comparing the failure rate of computers in a 20-hour test of quality specifi cations
• discovering the proportion of people who would shop in a new district compared to the assumed population 

proportion
• comparing the average income taxes collected this year to last year’s income tax revenues.

Exhibit 18.7 Recommended statistical techniques by measurement level and testing situation.

Measurement 
level 

One-sample case Two-samples case k-samples case

Related samples Independent samples Related samples Independent 
samples 

Nominal • Binomial
• χ 2 One-sample test

• McNemar • Fisher exact
• χ2 Two-samples test 

• Cochran Q • χ2 for k samples 

Ordinal • Kolmogorov–Smirnov 
one-sample test

• Runs test 

• Sign test
• Wilcoxon 

matched-pairs 
test 

• Median test
• Mann–Whitney U
• Kolmogorov–Smirnov
• Wald–Wolfowitz 

• Friedman two-way 
ANOVA 

• Median extension
• Kruskal–Wallis 

one-way ANOVA 

Interval and 
ratio 

• t-test
• Z-test 

• t-test for 
paired samples 

• t-test
• Z test 

• Repeated-measures 
ANOVA 

• One-way ANOVA
• n-way ANOVA 
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Example
To illustrate the application of the t-test to the one-sample case, consider again the controller’s problem mentioned 
earlier. With a sample of 100 accounts, she fi nds that the mean age of outstanding receivables is 52.5 days, with a 
standard deviation of 14. Do these results indicate the population mean might still be 50 days?

In this problem, we have only the sample standard deviation (σ). Th is must be used in place of the population 
standard deviation (σ). When we substitute s for σ, we use the t distribution, especially if the sample size is less than 
30. We defi ne t as:

t = (X-  − µ) n
s

Th is signifi cance test is conducted by following the six-step procedure recommended earlier.

1 Null hypothesis. H0: = 50 days.
 HA: > 50 days (one-tailed test).
2 Statistical test. Choose the t-test because the data are ratio measurements. Assume the underlying population is 

normal and we have randomly selected the sample from the population of customer accounts.
3 Signifi cance level. Let α = .05, with n = 100.
4 Calculated value.

t = (52.5 − 50) 100
14

 = 25
14

 = 1.768; d.f. = n − 1 = 99

5 Critical test value. We obtain this by entering the table of critical values of t (see Appendix E, Exhibit E.2), with 
99° of freedom (d.f.) and a level of signifi cance value of .05. We secure a critical value of about 1.66 (interpolated 
between d.f. = 60 and d.f. = 120 in Exhibit E.2).

6 Interpret. In this case, the calculated value is greater than the critical value (1.786 > 1.66), so we reject the null 
hypothesis and conclude that the average accounts receivable outstanding has increased.

SPSS reference

Pallant (2013) shows how to conduct a parametric test in SPSS in Chapter 17.

Non-parametric tests

A variety of non-parametric tests may be used in a one-sample situation, depending on the measurement scale 
used and other conditions. If the measurement scale is nominal (classifi catory only), it is possible to use either the 
binomial test or the chi-square (χ2) one-sample test. Th e binomial test is appropriate when the population is 
viewed as only two classes, such as male and female, buyer and non-buyer, and successful and unsuccessful, and all 
observations fall into one or the other of these categories. Th e binomial test is particularly useful when the size of 
sample is so small that the χ2 test cannot be used.

Chi-square test

Probably the most widely used non-parametric test of signifi cance is the chi-square (χ2) test. It is particularly useful 
in tests involving nominal data but can be used for higher scales. Typical are cases where persons, events or objects 
are grouped in two or more nominal categories such as sectors, social class, and so on.

Using this technique, we test for signifi cant diff erences between the observed distribution of data among categories 
and the expected distribution based on the null hypothesis. Chi-square is useful in cases of one-sample analysis, two 
independent samples, or k independent samples. It must be calculated with actual counts rather than percentages.

In the one-sample case, we establish a null hypothesis based on the expected frequency of objects in each category. 
Th en the deviations of the actual frequencies in each category are compared with the hypothesized frequencies. 
Th e greater the diff erence between them, the less is the probability that these diff erences can be attributed to 

SPSS reference

Pallant (2013) shows how to conduct a parametric test in SPSS in Chapter 17.
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chance. Th e value of χ2 is the measure that expresses the extent of this diff erence. Th e larger the divergence, the 
larger is the χ2 value.

Th e formula by which the χ2 test is calculated is:

χ2 = 
k

∑
i=1   

(Oi − Ei)2

Ei

in which

Oi = Observed number of cases categorized in the ith category.
Ei = Expected number of cases in the ith category under H0.
K = Th e number of categories.

Th ere is a diff erent distribution for χ2 for each number of degrees of freedom (d.f.), defi ned as (k − 1) or the number 
of categories in the classifi cation minus 1:

d.f. = k − 1

With chi-square contingency tables of the two-sample or k-sample variety, we have both rows and columns in the 
cross-classifi cation table. In that instance, d.f. is defi ned as rows minus 1 (r − 1) times columns minus 1 (c − 1):

d.f. = (r − 1)(c − 1)

In a 2 × ∞ 2 table there is 1 d.f., and in a 3 × 2 table there are 2 d.f. Depending on the number of degrees of freedom, 
we must be certain that the numbers in each cell are large enough to make the χ2 test appropriate. When d.f. = 1, 
each expected frequency should be at least 5 in size. If d.f. = 1, then the χ2 test should not be used if more than 
20 per cent of the expected frequencies are smaller than 5, or when any expected frequency is less than 1. Expected 
frequencies can oft en be increased by combining adjacent categories. Four categories of fi rst-, second-, third- and 
fourth-year students might be classifi ed into upper class and lower class. If there are only two categories and still 
there are too few in a given class, it is better to use the binomial test.

Assume a survey of student interest in the Lake University dining club discussed in Chapter 6 is taken. We have 
interviewed 200 students and learned of their intentions to join such a club. We would like to analyse the results 
by living arrangement (type and location of student housing and eating arrangements). Th e 200 responses are 
classifi ed into the four categories shown in Exhibit 18.8. Do these variations indicate that there is a signifi cant 
diff erence among these students, or are these sampling variations only?

Exhibit 18.8 Student interest in dining club.

Living arrangement Intend to join Number 
interviewed 

Percentage (number 
interviewed/200) 

Expected frequencies
(percentage × 60) 

Dorm/fraternity 16 90 45 27 

Apartment/room nearby 13 40 20 12 

Apartment/room distant 16 40 20 12 

Live at parent’s home 15 30 15 9 

Total 60 200 100 60 

Procedure

1 Null hypothesis. H0: Oi = Ei. Th e proportion in the population who intend to join the club is independent of 
living arrangement. In HA: Oi ≠ Ei, the proportion in the population who intend to join the club is dependent on 
living arrangement.

2 Statistical test. Use the one-sample χ2 to compare the observed distribution to a hypothesized distribution. Th e 
χ2 test is used because the responses are classifi ed into nominal categories and there are suffi  cient observations.

3 Signifi cance level. Let α = .05.
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4 Calculated value.

χ2 = 
k

∑
i=1   

(Oi − Ei)2

Ei

 Calculate the expected distribution by determining what proportion of the 200 students interviewed were in 
each group. Th en apply these proportions to the number who intend to join the club. Th en calculate the following:

 χ2 = (16 − 27)2

27
 + (13 − 12)2

12
 + (16 − 12)2

12
 + (15 − 9)2

9
 = 4.48 + 0.08 + 1.33 + 4.0
 = 9.89

d.f. = (4 − 1)(2 − 1) = 3 

5 Critical test value. Enter the table of critical values of χ2 (see Appendix E, Exhibit E.3), with 3 d.f., and secure 
a value of 7.82 for α = .05.

6 Interpret. Th e calculated value is greater than the critical value, so the null hypothesis is rejected.

SPSS reference

Pallant (2013) shows how to conduct non-parametric tests in SPSS in Chapter 16.

Two independent samples tests
Th e need to use two independent samples tests is oft en encountered in business research. We might compare the 
purchasing predispositions of a sample of subscribers from two magazines to discover if they are from the same 
population. Similarly, a test of output methods from two production lines or the price movements of common 
stock from two samples could be compared. A study of worker productivity from two groups or diff erent samples 
from a public opinion poll would also use this method.

Parametric tests

Th e Z and t-tests are frequently used parametric tests for independent samples, although the F-test can also be 
used.

Th e Z test is used with large sample sizes (exceeding 30 for both independent samples) or with smaller samples 
when the data are normally distributed and population variances are known. Th e formula for the Z test is:

Z = (X- 1 − X- 2) − (µ1 − µ2)0

S2
1

n1
+

S2
2

n2

With small sample sizes, normally distributed populations and assuming equal population variances, the t-test is 
appropriate:

Z = (X- 1 − X- 2) − (µ1 − µ2)0

1
n1

+
1
n2

S2
p
A
C

D
F

Where

(µ1 − µ2) is the diff erence between the two population means
S2

p is associated with the pooled variance estimate:

S2
p = (n1 − 1)S1

2 + (n2 − 1)S2
2

n1 + n2 − 2

SPSS reference

Pallant (2013) shows how to conduct non-parametric tests in SPSS in Chapter 16.
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To illustrate this application, consider a problem that might face a manager at Dean Merrill Brokerage, who wishes 
to test the eff ectiveness of two methods for training new account executives. Th e company selects 22 trainees 
who are randomly divided into two experimental groups. One receives type A and the other type B training. Th e 
trainees are then assigned and managed without regard to the training that they have received. At the year’s end, 
the manager reviews the performances of employees in these groups and fi nds the following results:

A group B group

Average hourly sales X̄ 1 = €1,500 X̄ 2 = €1,300 

Standard deviation s1 = 225 s2 = 251 

Following the standard testing procedure, we will determine whether one training method is superior to the other:

1 Null hypothesis. H0: Th ere is no diff erence in sales results produced by the two training methods. HA: Training 
method A produces sales results superior to those of method B.

2 Statistical test. Th e t-test is chosen because the data are at least interval and the samples are independent.
3 Signifi cance level. α = .05 (one-tailed test).
4 Calculated value.

t = (1,500 − 1,300 − 0)

+ 1
11

1
11

A
C

D
F

(10)(225)2 + (10)(251)2

20

 = 200
101.63

 = 1.97, d.f. = 20

 Th ere are n − 1 degrees of freedom in each sample, so total d.f. is:

d.f. = (11 − 1) + (11 − 1) = 20

5 Critical test value. Enter Appendix E, Exhibit E.2 with d.f. = 20, one-tailed test, α = .05. Th e critical value is 1.725.
6 Interpret. Since the calculated value is larger than the critical value (1.97 > 1.725), reject the null hypothesis and 

conclude that training method A is superior.

SPSS reference

Pallant (2013) shows how to conduct parametric tests in SPSS in Chapter 17.

Non-parametric tests

Th e chi-square (χ2) test is appropriate for situations in which a test for diff erences between samples is required. It 
is especially valuable for nominal data but can be used with ordinal measurements. When parametric data have 
been reduced to categories, they are frequently treated with χ2 although this results in a loss of information. Prepar-
ing to solve this problem is the same as presented earlier although the formula diff ers slightly:

χ2 = ∑
i   

∑
j   

(Oij − Eij)2

Eij

in which

Oij = Observed number of cases categorized in the ijth cell.
Eij = Expected number of cases under H0 to be categorized in the ijth cell.

Suppose Containers Ltd is implementing a smoke-free workplace policy and is interested in whether smoking 
aff ects worker accidents. Since the company has complete reports of on-the-job accidents, a sample of names of 
workers was drawn up who were involved in accidents during the last year. A similar sample from among workers 
who had no reported accidents in the last year was drawn. Members of both groups were interviewed to determine 
if they are smokers or not. Th e results appear in Exhibit 18.9.

SPSS reference

Pallant (2013) shows how to conduct parametric tests in SPSS in Chapter 17.
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Th e expected values have been calculated and are shown. Th e 
testing procedure is as follows:

1  Null hypothesis. H0: Th ere is no diff erence in on-the-job 
accident occurrences between smokers and non-smokers.

  HA: Th ere is a diff erence in on-the-job accident occur-
rences between smokers and non-smokers.

2  Statistical test. χ2 is appropriate but it may waste some of 
the data because the measurement appears to be ordinal.

3 Signifi cance level. α = .05, with d.f. = (3 − 1)(2 − 1) = 2.
4 Calculated value. Th e expected distribution is provided by 
 the marginal totals of the table. If there is no relationship 
 between accidents and smoking, there will be the same 
 proportion of smokers in both accident and non-accident 

classes. Th e numbers of expected observations in each cell are calculated by multiplying the two marginal totals 
common to a particular cell and dividing this product by n. For example:

34 × 16
66

 = 8.24, the expected value in cell (1,1)

χ2 = (12 − 8.24)2

8.24
 + (4 − 7.75)2

7.75
 + (9 − 7.73)2

7.73
 + (6 − 7.27)2

7.27
 + (13 − 18.03)2

18.03
 + (22 − 16.97)2

16.97
 = 6.86

5 Critical test value. Enter Appendix E, Exhibit E.3 and fi nd the critical value 5.99 with α = .05 and d.f. = 2.
6 Interpret. Since the calculated value is greater than the critical value, the null hypothesis is rejected.

For chi-square to operate properly, data must come from random samples of multinomial distributions, and the 
expected frequencies should not be too small. We previously noted the traditional caution that expected frequen-
cies below 5 should not compose more than 20 per cent of the cells, and no cell should have an Ei of less than 1. 
Some research has argued that these restrictions are too severe.9

In another type of χ2, the 2 × 2 table, a correction known as Yates’ correction for continuity is oft en applied when 
sample sizes are greater than 40 or when the sample is between 20 and 40 and the values of Ei are 5 or more. Th e 
formula for this correction is:

χ2 = 
nA

C|AD − BC | − n
2

D
F

2

(A ÷ B)(C ÷ D)(A ÷ C)(B ÷ D)

where the letters represent the cells desig-
nated as:

A B
C D

When the continuity correction is applied 
to the data shown in Exhibit 18.10, a χ2 value 
of 5.25 is obtained. Th e observed level of 
signifi cance for this value is .02192. If the level 
of signifi cance had been set at .01, we would 
accept the null hypothesis. However, had we 
calculated χ2 without correction, the value 
would have been 6.25, which has an observed 
level of signifi cance of .01242. Some researchers 
may be tempted to reject the null at this level. 
(But note that the critical value of χ2 at .01 with 

Exhibit 18.9 Output of on-the-job accidents.
On-the-job accident

Count
Expected values Yes

12
  8.24

  9
  7.73

13
18.03

Heavy

Smoker

Moderate

Non-smoker

Column total

  4
  7.75

  6
  7.27

22
16.97

34 32

No

16

15

35

66

Row total

Exhibit 18.10 Comparison of corrected and non-corrected 
chi-square results using SPSS procedure cross-tabs.

Income by possession of CPA

Count CPA

Yes
  1

30

10

Income

High 1

Row 2

Column
total

Chi-square Value

Pearson
Continuity correction
Likelihood ratio
Mantel–Haenszel
Minimum expected frequency:  16.000

6.25000
5.25174
6.43786
6.18750

Significance

.01242

.02192

.01117

.01287

D.F.

1
1
1
1

30

30

40
40.0

60
60.0

No
  2

60
60.0

40
40.0

100
100.0

Row
total
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1 d.f. is 6.64. See Appendix E, Exhibit E.3.) Th e literature is in confl ict regarding the merits of Yates’ correction, but 
this example suggests one should take care when interpreting 2 × 2 tables.10 To err on the conservative side would 
be in keeping with our prior discussion of Type I errors.

Th e Mantel–Haenszel test and the likelihood ratio also appear in Exhibit 18.10. Th e former is used with ordinal 
data, so it does not apply; the latter, based on maximum likelihood theory, produces results similar to Pearson’s 
chi-square.

SPSS reference

Pallant (2013) shows how to conduct non-parametric tests in SPSS in Chapter 16.

SPSS reference

Pallant (2013) shows how to conduct non-parametric tests in SPSS in Chapter 16.

Research Methods in Real Life
So, you’re a Gemini? Maybe I should drive . . .

Star signs are followed avidly by some and are a source of amusement to others. In a light-hearted study 
conducted by the Sydney-based insurance company Suncorp Metway, the number of car accident claims 
over a three-year period was compared with the star signs. More than 14,500 drivers born between 21 May 
and 21 June (Geminis) had crashed their cars. Warren Duke, national manager of personal insurance, said, 
‘It was interesting that Geminis, typically described as restless, easily bored and frustrated by things moving 
slowly, had more car accidents than any other sign.’ Th ose with the fewest were Capricorns, said to be patient 
and careful. Women also had more claims than men in 2001, according to the study. Duke added, ‘Women 
make signifi cantly fewer claims than men until their late twenties, but aft er that women, aged 29 and over, 
edge ahead of men, making slightly more claims.’ Suncorp Metway has no intention of using astrology as a 
rating factor in determining a customer’s motor insurance premium. But it had been fun looking for trends.

How might you construct a chi-square test of a star sign by gender? What variables would you use as controls?

Most likely to fi le an accident claim by star sign:

 1 Gemini (21 May–21 June)
 2 Taurus (20 April–20 May)
 3 Pisces (19 February–20 March)
 4 Virgo (23 August–22 September)
 5 Cancer (22 June–22 July)
 6 Aquarius (20 January–18 February)
 7 Aries (21 March–19 April)
 8 Leo (23 July–22 August)
 9 Libra (23 September–22 October)
10 Sagittarius (22 November–21 December)
11 Scorpio (23 October–21 November)
12 Capricorn (22 December–19 January)

References and further reading
‘Forget defensive driving, it’s in the stars’, news release, Suncorp Metway, 10 February 2002. carinsurance.
arrivealive.co.za/which-star-signs-have-the-best-and-the-worst-drivers.php

www.suncorpmetway.com.au
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Two related samples tests
Th e two related samples tests concern those situations in which persons, objects or events are closely matched 
or the phenomena are measured twice. One might compare the output of specifi c workers before and aft er vaca-
tions, the performance of the same stocks at two intervals, or the eff ects of an experimental stimulus when persons 
were randomly assigned to groups and given pre-tests and post-tests. Both parametric and non-parametric tests 
are applicable under these conditions.

Parametric tests

Th e t-test for independent samples would normally be inappropriate for this situation because one of its assump-
tions is that observations are independent. Th is problem is solved by a formula where the diff erence is found 
between each matched pair of observations, thereby reducing the two samples to the equivalent of a one-sample 
case – that is, there are now several diff erences, each independent of the other, for which one can compute various 
statistics.

In the following formula, the average diff erence, D̄, corresponds to the normal distribution when the α diff erence 
is known and the sample size is suffi  cient. Th e statistic t with (n − 1) degrees of freedom is defi ned as:

t = D-

SD/ n

Where

D- = ∑D
n

SD = 
∑D2 +

 
(∑D)2

n
n −

 
1

To illustrate this application, we use two years of Forbes’ sales data (in millions of dollars) from 10 companies, 
found in Exhibit 18.11.

1 Null hypothesis. H0: µ = 0; there is no diff erence between the two years’ sales records. HA: ≠ 0; there is a 
diff erence between sales for Years 1 and 2.

2 Statistical test. Th e matched- or paired-samples t-test is chosen because there are repeated measures on each 
company, the data are not independent, and the measurement is ratio.

3 Signifi cance level. Let α = .01, with n = 10 and d.f. = n − 1.
4 Calculated value.

t = D-

SD / n
 = 3.587.10

570
 = 678; d.f. = 9

5 Critical test value. Enter Appendix E, Exhibit E.2, with d.f. = 9, two-tailed test, α = .01. Th e critical value is 3.25.
6 Interpret. Since the calculated value is greater than the critical value (6.28 > 3.25), reject the null hypothesis and 

conclude that there is a statistically signifi cant diff erence between the two years of sales.

A computer solution to the problem is illustrated in Exhibit 18.12. Notice that an observed signifi cance level is 
printed for the calculated t value. With SPSS, this is oft en rounded and would be interpreted as signifi cant at the 
.0005 level. Th e correlation coeffi  cient, to the left  of the t value, is a measure of the relationship between the two 
pairs of scores. In situations where matching has occurred (such as husbands’ and wives’ scores), it reveals the 
degree to which the matching has been eff ective in reducing the variability of the mean diff erence.
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Exhibit 18.11 Sales data.

Company Sales year 2 Sales year 1 Difference D D 2

GM 126 932 123 505 3 427 11 744 329 

GE 54 574 49 662 4 912 24 127 744 

Exxon 86 656 78 944 7 712 59 474 944 

IBM 62 710 59 512 3 192 10 227 204 

Ford 96 146 92 300 3 846 14 791 716 

AT&T 36 112 35 173 939 881 721 

Mobil 50 220 48 111 2 109 4 447 881 

DuPont 35 099 32 427 2 632 6 927 424 

Sears 53 794 49 975 3 819 14 584 761 

Amoco 23 966 20 779 3 187 10 156 969 

Totals ΣD = 35 781 ΣD 2 = 157 364 693 

Exhibit 18.12 SPSS output for paired sample t-test.
t-tests for paired samples

Variable
Number
of cases

Year 2 sales
Year 1 sales

10
10

Mean
62 620.9
59 039.8

Standard
deviation

31 777.649
31 072.871

Standard
error

10 048.375
  9 836.104

(Difference
mean)

Standard
deviation

3 512.1000 1 803.159

Standard
error

570.209

2-tail
prob.
.000

t
value
6.28

Degrees of
freedom

9

2-tail
prob.
.000

Corr.
.999

Non-parametric tests

Th e McNemar test may be used with either nominal or ordinal data, and is especially useful with before/aft er 
measurement of the same subjects. Test the signifi cance of any observed change by setting up a fourfold table of 
frequencies to represent the fi rst and second set of responses:

Before After

Do not favour Favour 

Favour A B 

Do not favour C D 

Since A + D represents the total number of people who changed (B and C are no-change responses), the expecta-
tion under a null hypothesis is that 1/2 (A + D) cases change in one direction and the same proportion in the other 
direction. Th e McNemar test uses the following transformation of the χ2 test:

χ2 = (|A − D | − 1)2

A + D
 with d.f. = 1

Th e ‘−1’ in the equation is a correction for continuity since the χ2 is a continuous distribution and the observed 
frequencies represent a discrete distribution.

To illustrate this test’s application, we use survey data from SteelShelf Corporation, whose management decided to 
tell employees of the ‘values of teamwork’ in an internal education campaign. Managers took a random sample of 
their employees before the campaign, asking them to complete a questionnaire on their attitudes on this topic. On 
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the basis of their responses, the workers were divided into equal groups refl ecting their favourable or unfavourable 
views of teamwork. Aft er the campaign, the same 200 employees were asked again to complete the questionnaire. 
Th ey were again classifi ed as to favourable or unfavourable attitudes. Th e testing process is:

1 Null hypothesis. H0: P(A) = P(D).

HA: P(A) ≠ P(D).

2 Statistical test. Th e McNemar test is chosen because nominal data are used and the study involves before/aft er 
measurements of two related samples.

3 Signifi cance level. Let α = .05, with n = 200.
4 Calculated value.

χ2 = (100 − 401 − 1)2

10 + 40
 = 841

50
 = 16.82; d.f. = 1

Before After

Do not favour Favour 

Favour A = 10 B = 90

Do not favour C = 60 D = 40

5 Critical test value. Enter Appendix E, Exhibit E.3, and fi nd the critical value to be 3.84 with α = .05 and d.f. = 1.
6 Interpret. Th e calculated value is greater than the critical value (16.82 > 3.84), indicating that one should reject 

the null hypothesis. In fact, χ2 is so large that it would have surpassed an α of .001.

SPSS reference

If you would like to replicate what is shown here in SPSS yourself and get stuck with the use of SPSS, see 
Chapter 17 of Pallant (2013).

k independent samples tests

In management and economic research, we oft en use k independent samples tests when three or more samples 
are involved. Under this condition, we are interested in learning whether the samples might have come from 
the same or identical populations. When the data are measured on an interval-ratio scale and we can meet the 
necessary assumptions, analysis of variance and the F-test are used. If preliminary analysis shows that the assump-
tions cannot be met or if the data were measured on an ordinal or nominal scale, a non-parametric test should 
be selected.

As with the two-samples case, the samples are assumed to be independent. Th is is the condition of a completely 
randomized experiment when subjects are randomly assigned to various treatment groups. It is also common for 
an ex-post facto study to require comparison of more than two independent sample means.

Parametric tests

Th e statistical method for testing the null hypothesis that the means of several populations are equal is analysis of 
variance (ANOVA). One-way analysis of variance is described in this section. It uses a single-factor, fi xed-eff ects 
model to compare the eff ects of one factor (brands of coff ee, varieties of residential housing, types of retail stores) 
on a continuous dependent variable. In a fi xed-eff ects model, the levels of the factor are established in advance, and 
the results are not generalizable to other levels of treatment. For example, if coff ee were Jamaican grown, Colom-
bian grown and Honduran grown we could not extend our inferences to coff ee grown in Guatemala or Mexico.

To use ANOVA, certain conditions must be met. Th e samples must be randomly selected from normal popula-
tions, and the populations should have equal variances. In addition, the distance from one value to its group’s 

SPSS reference

If you would like to replicate what is shown here in SPSS yourself and get stuck with the use of SPSS, see 
Chapter 17 of Pallant (2013).
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mean should be independent of the distances of other values to that mean (independence of error). ANOVA is 
reasonably robust, and minor variations from normality and equal variance are tolerable. Nevertheless, the analyst 
should check the assumptions with the diagnostic techniques previously described.

Analysis of variance, as the name implies, breaks down or partitions total variability into component parts. Unlike 
the t-test, which uses sample standard deviations, ANOVA uses squared deviations of the variance. Hence, the 
distances of the individual data points from their own mean or from the grand mean can be summed. Recall that 
standard deviations always sum to zero.

In an ANOVA model, each group has its own mean and values that deviate from that mean. Similarly, all the data 
points from all the groups produce an overall grand mean. Th e total deviation is the sum of the squared diff erences 
between each data point and the overall grand mean.

Th e total deviation of any particular data point may be partitioned into between-groups variance and within-
groups variance. Th e between-groups variance represents the eff ect of the treatment or factor. Th e diff erences of 
between-group means imply that each group was treated diff erently, and the treatment will appear as deviations of 
the sample mean from the grand mean. Even if this were not so, there would still be some natural variability among 
subjects and some variability attributable to sampling. Th e within-groups variance describes the deviations of the 
data points within each group from the sample mean. Th is results from variability among subjects and from 
random variation. It is oft en called error.

Intuitively, we might conclude that when the variability attributable to the treatment exceeds the variability arising 
from error and random fl uctuations, the viability of the null hypothesis begins to diminish. And this is exactly the 
way the test statistic for analysis of variance works.

Th e test statistic for ANOVA is the F ratio. It compares the variance from the last two sources:

F = between − groups var
within − groups var

 = mean squarebetween

mean squarewithin

where

mean squarebetween = sum of squaresbetween

degrees of freedombetween

mean squarewithin = sum of squareswithin

degrees of freedomwithin

To compute the F ratio, the sum of the squared deviations for the numerator and denominator are divided by their 
respective degrees of freedom. By dividing, we are computing the variance as an average or mean, thus the term 
‘mean square’. Th e degrees of freedom for the numerator, the mean square between groups, is one less than the 
number of groups (k − 1). Th e degrees of freedom for the denominator, the mean square within groups, is the total 
number of observations minus the number of groups (n − k).

If the null hypothesis is true, there should be no diff erence between the populations, and the ratio should be close 
to 1. If the population means are not equal, the numerator should manifest this diff erence, and the F ratio should 
be greater than 1. Th e F distribution determines the size of ratio necessary to reject the null hypothesis for a 
particular sample size and level of signifi cance.

To illustrate one-way ANOVA, consider Travel Industry Magazine’s reports from international travellers about 
the quality of in-fl ight service on various carriers from the USA to Europe. Before writing a feature story coinciding 
with a peak travel period, the magazine decided to retain a researcher to secure a more balanced perspective on 
the reactions of travellers. Th e researcher selected passengers who had current impressions of the meal service, 
comfort and friendliness of a major carrier. Th ree airlines were chosen and 20 passengers were selected at random 
for each airline. Th e data, found in Exhibit 18.13, are used for this and the next two examples. For the one-way 
analysis of variance problem, we are concerned only with the columns labelled ‘Flight service rating 1’ and 
‘Airline.’ Th e factor, airline, is the grouping variable for three carriers.
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Exhibit 18.13 Data table: analysis of variance example.

Flight service Flight service

Rating 1 Rating 2 Airline Seat selection Rating 1 Rating 2 Airline Seat selection 

1 40 36 1 1 31 52 65 2 2 
2 28 28 1 1 32 70 80 2 2 
3 36 30 1 1 33 73 79 2 2 
4 32 28 1 1 34 72 88 2 2 
5 60 40 1 1 35 73 89 2 2 
6 12 14 1 1 36 71 72 2 2 
7 32 26 1 1 37 55 58 2 2 
8 36 30 1 1 38 68 67 2 2 
9 44 38 1 1 39 81 85 2 2 
10 36 35 1 1 40 78 80 2 2 
11 40 42 1 2 41 92 95 3 1 
12 68 49 1 2 42 56 60 3 1 
13 20 24 1 2 43 64 70 3 1 
14 33 35 1 2 44 72 78 3 1 
15 65 40 1 2 45 48 65 3 1 
16 40 36 1 2 46 52 70 3 1 
17 51 29 1 2 47 64 79 3 1 
18 25 24 1 2 48 68 81 3 1 
19 37 23 1 2 49 76 69 3 1 
20 44 41 1 2 50 56 78 3 1 
21 56 67 2 1 51 88 92 3 2 
22 48 58 2 1 52 79 85 3 2 
23 64 78 2 1 53 92 94 3 2 
24 56 68 2 1 54 88 93 3 2 
25 28 69 2 1 55 73 90 3 2 
26 32 74 2 1 56 68 67 3 2 
27 42 55 2 1 57 81 85 3 2 
28 40 55 2 1 58 95 95 3 2 
29 61 80 2 1 59 68 67 3 2 
30 58 78 2 1 60 78 83 3 2 

Note: Airline: 1 = Delta; 2 = Lufthansa; 3 = KLM; seat selection: 1 = economy; 2 = business; all data are hypothetical.

Again, we follow the procedure:

1 Null hypothesis. H0 : µA1 = µA2 = µA3.
 HA: Th e means are not equal.
2 Statistical test. Th e F-test is chosen because we have k independent samples, accept the assumptions of analysis 

of variance, and have interval data.
3 Signifi cance level. Let α = .05, and d.f. = [numerator (k − 1) = (3 − 1) = 2], [denominator (n − k) = (60 − 3) = 57] 

= (2, 57).
4 Calculated value.

F = MSb

MSw
 = 5,822,017

205,695
 = 28.304, d.f. (2.57)

 See summary in Exhibit 18.14.
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5 Critical test value. Enter Appendix E, Exhibit E.9, with d.f. (2, 57), α = .05. Th e critical value is 3.16.
6 Interpret. Since the calculated value is greater than the critical value (28.3 > 3.16), we reject the null hypothesis 

and conclude that there are statistically signifi cant diff erences between two or more pairs of means. Note in 
Exhibit 18.14 that the p value equals .0001. Since the p value (.0001) is less than the signifi cance level (.05), we 
have a second method for rejecting the null hypothesis.

Exhibit 18.14 Summary tables for one-way ANOVA example.

Model summary

Source d.f. Sum of squares Mean square F value p value 

Model Airline  2 11 644.033 5 822.017 28.304 .0001 

Residual Error 57 11 724.550 205.694 

Total 59 23 368.583 

Factor: Airline.
Dependent: Flight service rating 1.

Means table

Count Mean Std dev. Std error 

Delta 20 38.950 14.006 3.132 

Lufthansa 20 58.900 15.089 3.374 

KLM 20 72.900 13.902 3.108 

Scheffé’s S multiple comparison

Vs. Diff. Crit. diff. p value 

Delta Lufthansa 19.950 11.400 .0002 S 

KLM 33.950 11.400 .0001 S 

Lufthansa KLM 14.000 11.400 .0122 S 

Note: S = Significantly different at the .05 level; significance level: .05; all data are hypothetical. 

Th e ANOVA model summary in Exhibit 18.14 is a standard way of summarizing the results of analysis of variance. 
It contains the sources of variation, degrees of freedom, sum of squares, mean squares and calculated F value. Th e 
probability of rejecting the null hypothesis is computed up to 100 per cent α, that is, the probability value column 
reports the exact signifi cance for the F ratio being tested.

SPSS reference

If you would like to replicate the one-way ANOVA analysis shown here in SPSS yourself and get stuck with 
the use of SPSS, see Chapter 18 of Pallant (2013).

A priori contrasts
When we compute a t-test, it is not diffi  cult to discover the reasons why the null is rejected. But with one-way 
ANOVA, how do we determine which pairs are not equal? We could calculate a series of t-tests, but they would not 
be independent of each other and the resulting Type I error would increase substantially. Obviously, this is not 

SPSS reference

If you would like to replicate the one-way ANOVA analysis shown here in SPSS yourself and get stuck with 
the use of SPSS, see Chapter 18 of Pallant (2013).
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recommended. If we decided in advance that a comparison of specifi c populations was important, a special class 
of tests known as a priori contrasts could be used aft er the null was rejected with the F-test (a priori because the 
decision was made before the test).11

A modifi cation of the F-test provides one approach for computing contrasts:

F = MSCON

MSW

Th e denominator, the within-groups mean square, is the same as the error term of the one-way’s F ratio (recorded 
in the summary table, Exhibit 18.14). We have previously referred to the denominator of the F ratio as the error 
variance estimator. Th e numerator of the contrast test is defi ned as:

MSCON = SSCON = 

A
C∑j  

cjx- j
D
F

∑
j  

c j
2

n

where

Cj = the contrast coeffi  cient for the group j
nj = the number of observations recorded for group j

A contrast is useful for experimental and quasi-experimental designs when the researcher is interested in answer-
ing specifi c questions about a subset of the factor. For example, in a comparison of coff ee products, we have a 
factor with six levels. Th e levels, blends of coff ee, are ordered meaningfully. Assume we are particularly interested 
in two central US-grown blends and one Colombian blend. Rather than looking at all possible combinations, 
we can channel the power of the test into fewer degrees of freedom by stating the comparisons of interest. Th is 
increases our likelihood of detecting diff erences if they really exist.

Multiple comparison tests

For the probabilities associated with the contrast test to be properly used in the report of our fi ndings, it is import-
ant that the contrast strategy be devised ahead of the testing. In the airline study, we had no theoretical reason for 
an a priori contrast. However, examining the means table (Exhibit 18.14) revealed that the airline means were quite 
disparate. Comparisons aft er the results are compared require post hoc tests or pair-wise multiple comparison 
(post hoc) procedures to determine which means diff er. Range tests fi nd homogeneous subsets of means that are 
not diff erent from each other. Multiple comparisons test the diff erence between each pair of means and indicate 
signifi cantly diff erent group means at an α level of .05, or another level that you specify. Multiple comparison tests 
use group means and incorporate the MSerror term of the F ratio. Together they produce confi dence intervals for the 
population means and a criterion score. Diff erences between the mean values may be compared.

Th ere are more than a dozen such tests with diff erent optimization goals: maximum number of comparisons, 
unequal cell size compensation, cell homogeneity, Type I or Type II error reduction, and so on. Th e merits of 
various tests have produced considerable debate among statisticians, leaving the researcher without much 
guidance for the selection of a test. In Exhibit 18.15, we provide a general guide. For the example in Exhibit 18.14, 
we chose Scheff é’s S. It is a conservative test that is robust to violations of assumptions.12 Th e computer calculated 
the critical diff erence criterion as 11.4; all the diff erences between the pairs of means exceed this. Th e null hypo-
thesis for the Scheff é was tested at the .05 level. Th erefore, we can conclude that all combinations of fl ight service 
mean scores diff er from each other.

While the table in Exhibit 18.14 provides information for understanding the rejection of the one-way null hypo-
thesis and the Scheff é null, in Exhibit 18.16 we use plots for the comparisons. Th e means plot shows relative 
diff erences among the three levels of the factor. Th e means by standard deviations plot reveals lower variability in 
the opinions recorded by the hypothetical Delta and KLM passengers. Nevertheless, these two groups are sharply 
divided on the quality of in-fl ight service, and that is apparent in the upper plot.
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Exploring the findings with two-way ANOVA

Is the airline on which the passengers travelled the only factor infl uencing perceptions of in-fl ight service? By 
extending the one-way ANOVA, we can learn more about the service ratings. Th ere are many possible explana-
tions. We have chosen to look at the seat selection of the travellers, in the interests of brevity.

Recall that in Exhibit 18.13, data were entered for the variable seat selection: economy and business-class travellers. 
Adding this factor to the model, we have a two-way analysis of variance. Now three questions may be considered 
with one model:

1 Are diff erences in fl ight service ratings attributable to airlines?
2 Are diff erences in fl ight service ratings attributable to seat selection?
3 Do the airline and the seat selection interact with respect to fl ight service ratings?

Th e third question reveals a distinct advantage of the two-way model. A separate one-way model on airlines aver-
ages out the eff ects of seat selection. Similarly, a single factor test of seat selection averages out the eff ects of the 
airline. But an interaction test of airline by seat selection considers them jointly.

Exhibit 18.15 Selection of multiple comparison procedures.

Test Pairwise 
comparisons

Complex 
comparisons

Equal
n’s only

Unequal n’s Equal variances
assumed 

Unequal variances
not assumed 

Fisher LSD x x x 

Bonferroni x x x 

Tukey HSD x x x

Tukey–Kramer x x x 

Games–Howell x x x 

Tamhane T2 x x x 

Scheffé S x x x 

Brown–Forsythe x x x

Newman–Keuls x x x x 

Duncan x x x 

Dunnett’s T3 x 

Dunnett’s C x 

Exhibit 18.16 NE-way analysis of variance plots.
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Exhibit 18.17 reports a test of the hypotheses for these three questions. Th e signifi cance level was established at the 
.01 level. We fi rst inspect the interaction eff ect, airline by seat selection, since the individual main eff ects cannot be 
considered separately if factors operate jointly. Th e interaction was not signifi cant at the .01 level, and the null is 
accepted. Now the separate main eff ects, airline and seat selection, can be verifi ed. As with the one-way ANOVA, 
the null for the airline factor was rejected, and seat selection was also found signifi cant at .0001.

Means and standard deviations listed in the table are plotted in Exhibit 18.18. We note a band of similar deviations 
for economy-class travellers and a band of lower variability for business class – with the exception of one carrier. 

Exhibit 18.17 Summary table for two-way ANOVA example.

Model summary 

Source d.f. Sum of squares Mean square F value P value 

Airline 2 11 644.033 5 822.017 39.178 .0001 

Seat selection 1 3 182.817 3 182.817 21.418 .0001 

Airline by seat selection 2 517.033 258.517 1.740 .1853 

Residual 54 8 024.700 148.606

Dependent: Flight service ratings 1.

Means table effect: Airline by seat selection

Count Mean Std dev. Std error 

Delta economy 10 35.600 12.140 3.839 

Delta business 10 42.300 15.550 4.917 

Lufthansa economy 10 48.500 12.501 3.953 

Lufthansa business 10 69.300 9.166 2.898 

KLM economy 10 64.800 13.037 4.123 

KLM business 10 81.000 9.603 3.037 

Note: All data are hypothetical.

Exhibit 18.18 Two-way analysis of variance plots.

30 35

economy

business

economy

business

economy

business

40

Cell means of flight service rating 1

45 50 55 60 65 70 75 80 85

St
an

da
rd

 de
via

tio
n 

of
 ra

tin
g 1

Scattergram of cell means
versus standard deviation effect:

airline by seat selection
16

15

14

13

12

11

10

9

Ce
ll m

ea
ns

 of
 ra

tin
g 1

BusinessEconomy

KLM Lufthansa Delta

Class

Interaction plot effect: airline
by seat selection

85
80
75
70
65
60
55
50
45
40
35
30

9780077157487_C18.indd   5709780077157487_C18.indd   570 26/12/2013   11:55 AM26/12/2013   11:55 AM



18.4 Tests of signifi cance
571

Th e plot of cell means confi rms visually what we already know from the summary table: there is no interaction 
between airline and seat selection (p = .185). If an interaction had occurred, the lines connecting the cell means 
would have crossed rather than displaying a parallel pattern.

Analysis of variance is an extremely versatile and powerful method that may be adapted to a wide range of testing 
applications. Discussions of further extensions in n-way and experimental designs may be found in the ‘Recom-
mended further reading’ section at the end of the chapter.

SPSS reference

If you would like to replicate what is shown here in SPSS yourself and get stuck with the use of SPSS, 
see Chapter 19 of Pallant (2013).

Non-parametric tests

When there are k independent samples for which nominal data have been collected, the chi-square test is appro-
priate. It can also be used to classify data at higher measurement levels, but metric information is lost when reduced. 
Th e k-sample χ2 test is an extension of the two independent samples cases treated earlier. It is calculated and 
interpreted in the same way.

Th e Kruskal–Wallis test is appropriate for data that are collected on an ordinal scale or for interval data that do 
not meet F-test assumptions, that cannot be transformed, or that for another reason prove to be unsuitable for 
a parametric test. Kruskal–Wallis is a one-way analysis of variance by ranks. It assumes random selection and 
independence of samples and an underlying continuous distribution.

Data are prepared by converting ratings or scores to ranks for each observation being evaluated. Th e ranks range 
from the highest to the lowest of all data points in the aggregated samples. Th e ranks are then tested to decide if 
they are samples from the same population. An application of this technique is provided in Appendix D.

k-related samples case

Parametric tests

A k-related samples test is required for situations where (i) the grouping factor has more than two levels, (ii) observa-
tions or subjects are matched or the same subject is measured more than once, and (iii) the data are at least interval. 
In experimental or ex-post facto designs with k samples, it is oft en necessary to measure subjects several times. 
Th ese repeated measurements are called trials. For example, multiple measurements are taken in studies of stock 
prices, products evaluated by quality assurance, inventory, sales and measures of human performance. Hypotheses 
for these situations may be tested with a univariate or multivariate general linear model. Th e latter is beyond the 
scope of this discussion.

Th e repeated-measures ANOVA is a special type of n-way analysis of variance. In this design, the repeated 
measures of each subject are related just as they are in the related t-test when only two measures are present. In this 
sense, each subject serves as its own control requiring a within-subjects variance eff ect to be assessed diff erently 
than the between-groups variance in a factor like airline or seat selection. Th e eff ects of the correlated measures are 
removed before calculation of the F ratio.

Th is model is an appropriate solution for the data presented in Exhibit 18.13. You will remember that the one-way 
and two-way examples considered only the fi rst rating of in-fl ight service. Assume a second rating was obtained 
aft er a week by re-interviewing the same respondents.

We now have two trials for the dependent variable, and we are interested in the same general question as with the 
one-way ANOVA, with the addition of how the passage of time aff ects perceptions of in-fl ight service.

SPSS reference

If you would like to replicate what is shown here in SPSS yourself and get stuck with the use of SPSS, 
see Chapter 19 of Pallant (2013).

9780077157487_C18.indd   5719780077157487_C18.indd   571 26/12/2013   11:55 AM26/12/2013   11:55 AM



Chapter 18 Hypothesis testing
572

Following the testing procedure, we state:

1 Null hypotheses.
(1) Airline: H0: µA1 = µA2 = µA3

(2) Ratings: H0: µR1 = µR2

(3) Ratings ∞. Airline: H0: (µR2A1 − µR2A2 − µR2A3) = (µR1A1 − µR1A2 − µR1A3)
 For the alternative hypotheses, we will generalize to the statement that not all the groups have equal means for 

each of the three hypotheses.
2 Statistical test. Th e F-test for repeated measures is chosen because we have related trials on the dependent 

variable for k samples, accept the assumptions of analysis of variance, and have interval data.
3 Signifi cance level. Let d = .05 and d.f. = [airline (2, 57), ratings (1, 57), ratings by airline (2, 57)].
4 Calculated values. See summary in Exhibit 18.19.
5 Critical test value. Enter Appendix E, Exhibit E.9, with d.f. (2, 57), α = .05 and (1, 57), α = .05. Th e critical values 

are 3.16 (2, 57) and 4.01 (1, 57).
6 Interpret. Th e statistical results are grounds for rejecting all three null hypotheses and concluding that there 

are statistically signifi cant diff erences between means in all three instances. We conclude that the perceptions 
of in-fl ight service were signifi cantly aff ected by the diff erent airlines, the interval between the two measures 
had a signifi cant eff ect on the ratings, and the measures’ time interval and the airlines interacted to a signifi cant 
degree.

Exhib it 18.19 Summary tables for repeated-measures ANOVA.

Model summary 

Source d.f. Sum of squares Mean square F value P value

Airline 2 35 527.550 17 763.775 67.199 .0001 

Subject (group) 57 15 067.650 264.345 

Ratings 1 625.633 625.633 14.318 .0004 

Ratings by air 2 2 061.717 1 030.858 23.592 .0001 

Ratings by subj 57 2 490.650 43.696 

Dependent: Flight service ratings 1 and 2.

Means table rating by airline

Count Mean Std dev. Std error

Rating 1, Delta 20 38.950 14.006 3.132 

Rating 1, Lufthansa 20 58.900 15.089 3.374 

Rating 1, KLM 20 72.900 13.902 3.108 

Rating 2, Delta 20 32.400 8.268 1.849 

Rating 2, Lufthansa 20 72.250 10.572 2.364 

Rating 2, KLM 20 79.800 11.265 2.519 

Means table effect: Ratings

Count Mean Std dev. Std error

Rating 1 60 56.917 19.902 2.569 

Rating 2 60 61.483 23.208 2.996 

Note: All data are hypothetical.
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Th e ANOVA summary table in Exhibit 18.19 records the results of the tests. A means table provides the means 
and standard deviations for all combinations of ratings by airline. A second table of means reports the diff erences 
between fl ight service ratings 1 and 2. In Exhibit 18.20, there is an interaction plot for these data. Note that the 
second in-fl ight service rating was improved in two of the three groups aft er one week, and for the third carrier, 
there was a decrease in favourable response. Th e intersecting lines in the interaction plot refl ect this fi nding.

SPSS reference

If you would like to replicate the repeated measurement ANOVA in SPSS yourself and get stuck with the 
use of SPSS, see Chapter 18 of Pallant (2013).

SPSS reference

If you would like to replicate the repeated measurement ANOVA in SPSS yourself and get stuck with the 
use of SPSS, see Chapter 18 of Pallant (2013).

Exhibit 18.20 Repeated-measures ANOVA plot.
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Non-parametric tests

When the k-related samples have been measured on a nominal scale, the Cochran Q-test is a good choice.13 Th is 
test extends the McNemar test, discussed earlier, for studies having more than two samples. It tests the hypothesis 
that the proportion of cases in a category is equal for several related categories.

When the data are at least ordinal, the Friedman two-way analysis of variance is appropriate. It tests matched 
samples, ranking each case and calculating the mean rank for each variable across all cases. It uses these ranks 
to compute a test statistic. Th e product is a two-way table where the rows represent subjects and the columns 
represent the treatment conditions.14
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Summary
1 Th ere are two approaches to hypothesis testing – classical or sampling theory statistics and the Bayesian 

approach. With classical statistics, we make inferences about a population based on evidence gathered 
from a sample. Although we cannot state unequivocally what is true about the entire population, repre-
sentative samples allow us to make statements about what is probably true and how much error is likely 
to be encountered in arriving at a decision. Th e Bayesian approach also employs sampling statistics 
but has an additional element of prior information to improve the decision-maker’s judgement. With 
prudent use of prior probabilities, the Bayesian approach will also provide good results.

2 A diff erence between two or more sets of data is statistically signifi cant if it actually occurs in a popula-
tion. To have a statistically signifi cant fi nding based on sampling evidence, we must be able to calculate 
the probability that some observed diff erence is large enough for there to be little chance that it could 
result from random sampling. Probability is the foundation for deciding on the acceptability of the null 
hypothesis, and sampling statistics facilitate acquiring the estimates.

3 Hypothesis testing can be viewed as a six-step procedure:
a Establish a null hypothesis as well as the alternative hypothesis. It is a one-tailed test of signifi cance 

if the alternative hypothesis states the direction of diff erence. If no direction of diff erence is given, it 
is a two-tailed test.

b Choose the statistical test on the basis of the assumption about the population distribution and 
measurement level. Th e form of the data can also be a factor. In light of these considerations, one 
typically chooses the test that has the greatest power effi  ciency or ability to reduce decision errors.

c Select the desired level of confi dence. While α = .05 is the most frequently used level, many others 
are also used. Th e α is the signifi cance level that we desire and is typically set in advance of the 
study. Alpha or Type I error is the risk of rejecting a true null hypothesis and represents a decision 
error. Th e β or Type II error is the decision error that results from accepting a false null hypothesis. 
Usually, one determines a level of acceptable α error and then seeks to reduce the β error by increas-
ing the sample size, shift ing from a two- to a one-tailed signifi cance test, or both.

d Compute the actual test value of the data.
e Obtain the critical test value, usually by referring to a table for the appropriate type of distribution.
f Interpret the result by comparing the actual test value with the critical test value.

4 Parametric and non-parametric tests are applicable under the various conditions described in this 
chapter. Th ey were also summarized in Exhibit 18.7. Parametric tests operate with interval and ratio 
data, and are preferred when their assumptions can be met. Diagnostic tools examine the data for 
violations of those assumptions. Non-parametric tests do not require stringent assumptions about 
population distributions and are useful with less powerful nominal and ordinal measures.

5 In selecting a signifi cance test, one needs to know, at a minimum, the number of samples, their 
independence or relatedness, and the measurement level of the data. Th e statistical tests emphasized in 
this chapter were the Z and t-tests, analysis of variance and chi-square. Th e Z and t-tests may be used to 
test for the diff erence between two means. Th e t-test is chosen when the sample size is small. Variations 
on the t-test are used for both independent and related samples.

 One-way analysis of variance compares the means of several groups. It has a single grouping variable, 
called a factor, and a continuous dependent variable. Analysis of variance (ANOVA) partitions the total 
variation among scores into between-groups (treatment) and within-groups (error) variance. Th e 
F ratio, the test statistic, determines if the diff erences are large enough to reject the null hypothesis. 
ANOVA may be extended to two-way, n-way, repeated measures and multivariate applications.

 Chi-square is a non-parametric statistic that is used frequently for cross-tabulation or contingency 
tables. Its applications include testing for diff erences between proportions in populations and testing for 
independence. Corrections for chi-square were discussed.
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Discussion questions
Terms in review
 1 Distinguish between the following:

a parametric tests and non-parametric tests
b Type I error and Type II error
c null hypothesis and alternative hypothesis
d acceptance region and rejection region
e one- and two-tailed tests
f Type II error and the power of the test.

Making research decisions
 2 Summarize the steps of hypothesis testing. What is the virtue of this procedure?

 3 In analysis of variance, what is the purpose of the mean square between and the mean square within? If the null 
hypothesis is accepted, what do these quantities look like?

 4 Describe the assumptions for ANOVA, and explain how they may be diagnosed.

 5 Suggest situations where the researcher should be more concerned with Type II error than with Type I error.
a How can the probability of a Type I error be reduced? A Type II error?
b How does practical signifi cance diff er from statistical signifi cance?
c Suppose you interview all the members of a fi rst- and fourth-year course and fi nd that 65 per cent of the 

fi rst-year students and 62 per cent of the fourth-year students favour a certain ecological proposal. Is this 
diff erence signifi cant?

From concept to practice
 6 What hypothesis-testing procedure would you use in the following situations?

a A test classifi es applicants as accepted or rejected. On the basis of data on 200 applicants, we test the 
hypothesis that success is not related to gender.

b A production batch of 26 gaskets must be evaluated on thickness specifi cations: a 3 mm thickness is 
specifi ed by the quality control department.

c A company manufactures automobiles at two diff erent facilities. We want to know if the fuel consumption 
is the same for vehicles from both facilities. Th ere are samples of 45 units from each facility.

d A company has three categories of manager: (i) with professional qualifi cations but without work 
experience; (ii) with professional qualifi cations and with work experience; and (iii) without professional 
qualifi cations but with work experience. A study exists that measures each manager’s motivation level 
(classifi ed as high, normal and low). A hypothesis of no relation between manager category and motivation 
is to be tested.

e A company has 24 salespeople. Th e test must evaluate whether their sales performance is unchanged or has 
improved aft er a training programme.

f A company has to evaluate whether it should attribute increased sales to product quality, advertising, or an 
interaction of product quality and advertising.

 7 You conduct a survey of a sample of 25 members of this year’s graduating class and fi nd that their average mark 
is 3.2. Th e standard deviation of the sample is 0.4. Over the last 10 years, the average mark has been 3.0. Is the mark 
of this year’s class signifi cantly diff erent from the long-run average? At what alpha level would it be signifi cant?

 8 You are curious about whether the professors and students at your school are of diff erent political persuasions, 
so you take a sample of 20 professors and 20 students drawn randomly from each population. You fi nd that 
10 professors say that they are conservative and six students say that they are conservative. Is this a statistically 
signifi cant diff erence?

 9 You contact a random sample of 36 graduates of Erasmus University Rotterdam and learn that their starting 
salaries were €28,000 last year. You then contact a random sample of 40 graduates from Mannheim University 
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and fi nd that their average starting salary was €28,800. In each case, the standard deviation of the sample 
was €1,000.
a Test the null hypothesis that there is no diff erence between average salaries received by the graduates of the 

two schools.
b What assumptions are necessary for this test?

10 A random sample of students is interviewed to determine if there is an association between class and attitudes 
towards corporations. With the following results, test the hypothesis that there is no diff erence among students 
on this attitude.

Favourable Neutral Unfavourable 

1st-year students 100 50 70 

2nd-year students 80 60 70 

3rd-year students 50 50 80 

4th-year students 40 60 90 

11 You do a survey of business school students and liberal arts school students to fi nd out how many times a week 
they read a daily newspaper. In each case, you interview 100 students. You fi nd the following:

Xb = 4.5 times per week
sb = 1.5
Xla = 5.6 times per week
sla = 2.0

 Test the hypothesis that there is no signifi cant diff erence between these two samples.

12 One-Koat Paint Company has developed a new type of porch paint that it hopes will be the most durable on the 
market. Th e R&D group tests the new product against the two leading competing products by using a machine 
that scrubs until it wears through the coating. One-Koat runs fi ve trials with each product and secures the 
following results (in thousands of scrubs):

Trial One-Koat Competitor A Competitor B 

1 37 34 24 

2 30 19 25 

3 34 22 23 

4 28 31 20 

5 29 27 20 

 Test the hypothesis that there are no diff erences between the means of these products (α = .05).

13 A computer manufacturer is introducing a new product specifi cally targeted at the home market and wishes to 
compare the eff ectiveness of three sales strategies: computer stores, home electronics stores and department 
stores. Numbers of sales by 15 salespeople are recorded below:

Electronics store: 5, 4, 3, 3, 3
Department store: 9, 7, 8, 6, 5
Computer store: 7, 4, 8, 4, 3

a Test the hypothesis that there is no diff erence between the means of the retailers (α = .05).
b Select a post hoc test, if necessary, to determine which groups diff er in mean sales (α = .05).

14 At a press conference, the managing director of Schiphol international airport in Amsterdam smiles as he 
announces that the number of passengers has increased by 6.9 per cent compared to last year. A journalist asks 
how this performance compares to that of other airports in Europe. Th e managing director responds that 

9780077157487_C18.indd   5769780077157487_C18.indd   576 26/12/2013   11:55 AM26/12/2013   11:55 AM



Discussion questions
577

Schiphol maintained its position as the fourth largest airport in Europe and that London Heathrow, the largest 
airport in Europe, grew by only 2.6 per cent, while Rome Fiumicino actually shrunk by 5.7 per cent. Looking at 
the table below:
a Should a test of independent or related samples be used?
b Is there a diff erence in growth between the two years?
c Should the managing director keep smiling?

Airport Passengers 1998 (millions) Passengers 1999 (millions) 

London Heathrow 60.7 62.3 

Frankfurt am Main 42.8 45.9 

Paris CDG 38.6 43.6 

Amsterdam 34.2 36.8 

London Gatwick 29.1 30.5 

Madrid 25.4 27.5 

Paris Orly 24.9 25.3 

Rome Fiumicino 25.3 23.9 

Munich 19.3 21.3 

Zurich 19.3 20.9 

Brussels 18.5 20.0 

Palma de Mallorca 17.6 19.2 

Manchester 17.6 17.8 

Copenhagen 16.7 17.4 

Barcelona 16.2 17.4 

15 Every year Forbes magazine publishes a list of the 500 richest people in the world. Below is an adjusted list of 
the 51 richest people holding a European passport. A common fi nding is that the ‘really rich’ live in tax havens 
to reduce their tax burdens.

Rank World rank Name Age Worth (billion US$) Country of citizenship Country of residence 

1 3 Karl Albrecht 84 23.0 GER GER 

2 11 Liliane Bettencourt 81 18.8 FRA FRA 

3 13 Ingvar Kamprad 77 18.5 SWE SUI 

4 14 Theo Albrecht 81 18.1 GER GER 

5 21 Bernard Arnault 55 12.2 FRA FRA 

6 30 Silvio Berlusconi 67 10.0 ITA ITA 

7 32 Birgit Rausing and family 80 9.3 SWE SUI 

8 33 Amancio Ortega 68 9.2 ESP ESP 

9 36 Gerald Cavendish Grosvenor 52 8.7 UK UK 

10 37 Stefan Persson 56 8.6 SWE SWE 

11 40 Susanne Klatten 42 8.1 GER GER �
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Rank World rank Name Age Worth (billion US$) Country of citizenship Country of residence 

12 41 Michael Otto and family 60 8.0 GER GER 

13 41 Hans Rausing 77 8.0 SWE UK 

14 50 Rudolf August Oetker 87 7.5 GER GER 

15 51 Ernesto Bertarelli 38 7.4 SUI SUI 

16 55 Leonardo Del Vecchio 68 6.9 ITA ITA 

17 57 August von Finck 73 6.8 GER SUI 

18 59 Stefan Quandt 38 6.5 GER GER 

19 60 Serge Dassault and family 79 6.4 FRA FRA 

20 64 Maria and Georg Schaeffler – 6.1 GER GER 

21 68 Curt Engelhorn 77 5.9 GER Bermuda 

22 70 Friedrich Flick Jr. 77 5.8 GER AUT 

23 73 Alain and Gerard 
Wertheimer 

– 5.6 FRA FRA 

24 76 Hasso Plattner 60 5.4 GER GER 

25 78 Adolf Merckle 69 5.3 GER GER 

26 78 Johanna Quandt 76 5.3 GER GER 

27 80 Antonia Johnson 60 5.2 SWE SWE 

28 82 Maersk Mc-Kinney Moller 90 5.1 DEN DEN 

29 84 Philip Green 52 5.0 UK Monaco 

30 91 Francois Pinault 67 4.7 FRA FRA 

31 94 Karl-Heinz Kipp 80 4.6 GER SUI 

32 94 Charlene de Carvalho-
Heineken 

49 4.6 NET UK 

33 100 Erwin Haub and family 71 4.5 GER GER 

34 100 Luciano Benetton and family 68 4.5 ITA ITA 

35 100 Walter Haefner 93 4.5 SUI SUI 

36 103 Reinhold Würth 68 4.4 GER GER 

37 103 Spiro Latsis and family 57 4.4 GRE SUI 

38 111 Reinhard Mohn and family 82 4.2 GER GER 

39 116 David Sainsbury and family 63 4.0 UK UK 

40 128 Robert Bosch Jr. and family 76 3.7 GER GER 

41 128 Jean-C. Decaux and family 66 3.7 FRA FRA 

42 128 Michele Ferrero 77 3.7 ITA BEL 

43 136 Bernie Ecclestone and family 73 3.5 UK UK 

44 136 Jorgen Clausen and family 55 3.5 DEN DEN 

45 140 Klaus Tschira 63 3.4 GER GER 
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Rank World rank Name Age Worth (billion US$) Country of citizenship Country of residence 

46 143 Anton Schlecker 59 3.3 GER GER 

47 153 Antonio Champalimaud 85 3.1 POR POR 

48 159 David and Frederick Barclay – 3.0 UK UK 

49 159 Heidi Horten 63 3.0 AUT AUT 

50 159 Rafael del Pino and family 83 3.0 ESP ESP 

51 159 Sergio Mantegazza 76 3.0 SUI SUI 

a Devise a grouping variable to classify the people according to (i) diff erent nationalities, (ii) diff erent age 
groups, and (iii) those whose residence diff ers from their citizenship.

b Using one-way analysis of variance, test the hypothesis that there is no diff erence in net worth among the 
groups.

16 A consumer testing fi rm is interested in testing two competing antivirus products for personal computers. It 
wants to know how many strains of virus will be removed.

Removed by Anti-V? Removed by Q-cure?

Yes No

Yes 45 33

No 58 20

 Are Anti-V and Q-Cure equally eff ective (α = .05)?

17 A researcher for a car manufacturer is examining preferences for styling features on larger sedans. Buyers were 
classifi ed as ‘fi rst time’ and ‘repeat’, resulting in the following table.

Preference

European styling Japanese styling

Repeat 40 20

First time  8 32

a Test the hypothesis that buying characteristic is independent of styling preference (α = .05).
b Should the statistic be adjusted?

18 Using the data in Exhibit 18.13 for the variables Flight service rating 2 and Airline (2, 3), test the hypothesis of 
no diff erence between means.

Recommended further reading
Aczel, Amir D. and J. Sounderpandian, Complete Business Statistics (7th edn). Chicago: McGraw-Hill, 2008. 
Th is excellent text is characterized by highly lucid explanations and numerous examples.
Cohen, Jacob, Statistical Power Analysis for the Behavioral Sciences. Mahwah, NJ: Lawrence Erlbaum Associ-
ates, 1990. A key reference on conducting power analysis.
DeFinetti, Bruno, Probability, Induction, and Statistics. New York: Wiley, 1972. A highly readable work on 
subjective probability and the Bayesian approach.
Kanji, Gopal K., 100 Statistical Tests (3rd edn). Th ousand Oaks, CA: Sage Publications, 2006. Coverage of the 
most commonly used statistics that students will encounter.
Kirk, Roger E. Experimental Design: Procedures for the Behavioral Sciences (4th edn). Th ousand Oaks, CA: 
Sage, 2006. An advanced text on the statistical aspects of experimental design.
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Levine, David M., Timothy C. Krehbiel and Mark L. Berenson, Business Statistics: A First Course (5th edn). 
Upper Saddle River, NJ: Prentice Hall, 2009. For students or managers without recent statistical coursework, this 
text provides an excellent review.

Siegel, Sidney and N.J. Castellan Jr., Nonparametric Statistics for the Behavioral Sciences (2nd edn). New York: 
McGraw-Hill, 1988. Th e classic book on non-parametric statistics.

Notes
 1 A more detailed example is found in Amir D. Aczel and Jayauel Sounderpandian, Complete Business Statistics 

(5th edn). Chicago: Irwin/McGraw-Hill, 2001.
 2 Th e standardized random variable, denoted by Z, is a deviation from expectancy and is expressed in terms of 

standard deviation units. Th e mean of the distribution of a standardized random variable is 0, and the standard 
deviation is 1. With this distribution, the deviation from the mean by any value of X can be expressed in stand-
ard deviation units.

 3 Procedures for hypothesis testing are reasonably similar across authors. Th is outline was infl uenced by Sidney 
Siegel, Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill, 1956, Chapter 2.

 4 Marija J. Norusis/SPSS, Inc., SPSS for Windows Base System User’s Guide, Release 6.0. Chicago: SPSS, Inc., 1993, 
pp. 601–6.

 5 For further information on these tests, see ibid., pp. 187–8.
 6 F.M. Andrews, L. Klem, T.N. Davidson, P.M. O’Malley and W.L. Rodgers, A Guide for Selecting Statistical Tech-

niques for Analyzing Social Science Data. Ann Arbor: Institute for Social Research, University of Michigan, 1976.
 7 Statistical Navigator is a product from Th e Idea Works, Inc.
 8 Exhibit 18.7 is partially adapted from Siegel, Nonparametric Statistics, fl yleaf.
 9 See B.S. Everitt, Th e Analysis of Contingency Tables. London: Chapman & Hall, 1977.
10 Th e critiques are represented by W.J. Conover, ‘Some reasons for not using the Yates’ continuity correction on 

2 × 2 contingency tables’, Journal of the American Statistical Association 69 (1974), pp. 374–6; and N. Mantel, 
‘Comment and a suggestion on the Yates’ continuity correction’, Journal of the American Statistical Association 
69 (1974), pp. 378–80.

11 See, for example, Roger E. Kirk, Experimental Design: Procedures for the Behavioral Sciences. Belmont, CA: 
Brooks/Cole, 1995, pp. 115–33. An exceptionally clear presentation for step-by-step hand computation is 
found in James L. Bruning and B.L. Kintz, Computational Handbook of Statistics (3rd edn). Glenview, IL: Scott, 
Foresman, 1987, pp. 143–68. Also, when you use a computer program, the reference manual typically provides 
helpful advice in addition to the set-up instructions.

12 Kirk, Experimental Design, pp. 90–115. Alternatively, see Bruning and Kintz, Computational Handbook of 
Statistics, pp. 113–32.

13 For a discussion and example of the Cochran Q test, see Sidney Siegel and N.J. Castellan Jr., Nonparametric 
Statistics for the Behavioral Sciences (2nd edn). New York: McGraw-Hill, 1988.

14 For further details, see Siegel and Castella Jr., Nonparametric Statistics.
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