
CHAPTER 19
Measures of association

Learning objectives
When you have read this chapter, you should understand:

• how correlation analysis may be applied to study 
relationships between two or more variables

• the uses, requirements and interpretation of correlation 
coeffi  cients

• how predictions are made with regression analysis

• how to test regression models for linearity and assess 
their fi t

• the non-parametric measures of association and the 
alternatives they off er when key assumptions and 
requirements for parametric techniques cannot be met.
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19.1  Introduction
In the previous chapter, we emphasized testing hypotheses of diff erence. However, management questions in 
business frequently revolve around the study of relationships between two or more variables. In such cases, a 
relational hypothesis is necessary. In the research question, ‘Do homogeneous management teams perform better 
than heterogeneous teams?’ the nature of the relationship between the two variables (‘team homogeneity’ and 
‘performance’) is not specifi ed. Th e implication, nonetheless, is that one variable is responsible for the other. 
A correct relational hypothesis for this question would state that the variables occur together in some specifi ed 
manner without implying that one causes the other.

Various objectives are served with correlation analysis. Th e strength, direction, shape and other features of the 
relationship may be discovered. Or tactical and strategic questions may be answered by predicting the values of one 
variable from those of another. Some typical management questions are as follows:

• In the mail-order business, excessive catalogue costs quickly squeeze margins. Many mailings fail to reach 
receptive or active buyers. What is the relationship between various categories of mailings that delete inactive 
customers and the improvement in profi t margins?

• Medium-sized companies oft en have diffi  culty attracting the best business students, and when they are success-
ful, they have trouble retaining them. What is the relationship between the ranking of candidates based on 
executive interviews and the ranking obtained from testing and assessment?

• Retained cash fl ow, undistributed profi ts plus depreciation, is a critical source of funding for equipment invest-
ment. During a period of decline, capital spending suff ers. What is the relationship between retained cash fl ow 
and equipment investment over the last year? Between cash fl ow and dividend growth?

• Aggressive US high-technology companies have invested heavily in the European chip market, and their sales 
have grown 20 per cent over the three largest European fi rms. Can we predict next year’s sales based on present 
investment?

Exhibit 19.1 Commonly used measures of association.

Measurement Coefficient Comments and uses

Interval and ratio Pearson (product moment) correlation coefficient For continuous linearly related variables 
Correlation ratio (eta) For non-linear data or relating a main effect to a continuous 

dependent variable 
Biserial One continuous and one dichotomous variable with an underlying 

normal distribution 
Partial correlation Three variables; relating two with the third’s effect taken out 
Multiple correlation Three variables; relating one variable with two others 
Bivariate linear regression Predicting one variable from another’s scores 

Ordinal Gamma Based on concordant–discordant pairs: (P − Q); proportional reduction 
in error (PRE) interpretation 

Kendall’s tau b P − Q based; adjustment for tied ranks 
Kendall’s tau c P − Q based; adjustment for table dimensions 
Somers’s d P − Q based; asymmetrical extension of gamma 
Spearman’s rho Product moment correlation for ranked data 

Nominal Phi Chi-square (CS) based for 2 × 2 tables 
Cramer’s V CS based; adjustment when one table dimension > 2 
Contingency coefficient C CS based; flexible data and distribution assumptions 
Lambda PRE-based interpretation 
Goodman–Kruskal’s tau PRE-based with table marginals emphasis 
Uncertainty coefficient Useful for multidimensional tables 
Kappa Agreement measure 
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All these questions may be evaluated by means of measures of association. And all call for diff erent techniques 
based on the level at which the variables were measured or the intent of the question. Th e fi rst three use nominal, 
ordinal and interval data, respectively. Th e last one is answered through simple bivariate regression.

With correlation, one calculates an index to measure the nature of the relationship between variables. With regres-
sion, an equation is developed to predict the values of a dependent variable. Both are aff ected by the assumptions 
of measurement level and the distributions that underlie the data.

Exhibit 19.1 lists some common measures and their uses. Th e chapter follows the progression of the exhibit, fi rst 
covering bivariate linear correlation, then simple regression and concluding with non-parametric measures of 
association. Exploration of data through visual inspection and diagnostic evaluation of assumptions continues to 
be emphasized.

19.2  Bivariate correlation analysis
Bivariate correlation analysis diff ers from non-parametric measures of association and regression analysis in two 
important ways. First, parametric correlation requires two continuous variables measured on an interval or ratio 
scale. Second, the coeffi  cient does not distinguish between independent and dependent variables. It treats the 
variables symmetrically since the coeffi  cient rxy has the same interpretation as ryx.

Pearson’s product moment coeffi  cient r
Th e Pearson (product moment) correlation coeffi  cient varies over a range of +1 through 0 to −1. Th e designation 
r symbolizes the coeffi  cient’s estimate of linear association based on sampling data. Th e coeffi  cient r represents the 
population correlation.

Correlation coeffi  cients reveal the magnitude and direction of relationships. Th e magnitude is the degree to which 
variables move in unison or opposition. Th e size of a correlation of +.40 is the same as one of −.40. Th e sign says 
nothing about size. Th e degree of correlation is modest. Th e coeffi  cient’s sign signifi es the direction of the relation-
ship. Direction tells us whether large values on one variable are associated with large values on the other (and small 
values with small values). When the values correspond in this way, the two variables have a positive relationship: 
as one increases, the other also increases. Family income, for example, is positively related to household food 
expenditures. As income increases, food expenditures increase. Other variables are inversely related. Large values 
on the fi rst variable are associated with small values on the second (and vice versa). Th e prices of products and 
services are inversely related to their scarcity. In general, as products decrease in available quantity, their prices 
rise. Th e absence of a relationship is expressed by a coeffi  cient of approximately zero.

Scatterplots for exploring relationships

Scatterplots are essential for understanding the relationships between variables. Th ey provide a means for visual 
inspection of data that a list of values for two variables cannot. Both the direction and the shape of a relationship 
are conveyed in a plot. With a little practice, the magnitude of the relationship can be seen.

Exhibit 19.2 contains a series of scatterplots that depict some relationships across the range r. Th e three plots on 
the left  side of the fi gure have their points sloping from the upper left  to the lower right of each x − y plot.1 Th ey 
represent diff erent magnitudes of negative relationships. On the right side of the fi gure, three plots have opposite 
patterns and show positive relationships.

When stronger relationships are apparent (e.g. the ±.90 correlations), the points cluster close to an imaginary 
straight line passing through the data. Th e weaker relationships (±.40) depict a more diff use data cloud with points 
spread farther from the line.

Th e shape of linear relationships is characterized by a straight line, whereas non-linear relationships have cur-
vilinear, parabolic and compound curves representing their shapes. Pearson’s r measures relationships in variables 
that are linearly related. It cannot distinguish nonlinear data. Summary statistics alone do not reveal the appropriate-
ness of the data for the model, as the following example illustrates.
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One author constructed four small datasets possessing identical summary statistics but displaying strikingly diff er-
ent patterns.2 Exhibit 19.3 contains these data and Exhibit 19.4 plots them. In plot 1 of the fi gure, the variables are 
positively related. Th eir points follow a superimposed straight line through the data. Th is example is well suited 
to correlation analysis. In plot 2, the data are curvilinear in relation to the line, and r is an inappropriate measure 
of their relationship. Plot 3 shows the presence of an infl uential point that changed a coeffi  cient that would have 
otherwise been a perfect +1.0. Th e last plot displays constant values of x (similar to what you might fi nd in an 
animal or quality-control experiment). One leverage point establishes the fi tted line for these data.

We will return to these concepts and the process of drawing the line when we discuss regression. For now, com-
paring plots 2 through 4 with plot 1 suggests the importance of visually inspecting correlation data for underlying 
patterns. Careful analysts make scatterplots an integral part of the inspection and exploration of their data. 
Although small samples may be plotted by hand, statistical soft ware packages save time and off er a variety of 
plotting procedures.

The assumptions of r

Like other parametric techniques, correlation analysis makes certain assumptions about the data. Many of these 
assumptions are necessary to test hypotheses about the coeffi  cient.

Th e fi rst requirement for r is linearity. All the examples in Exhibit 19.2 with the exception of r = 0 illustrate a 
relationship between variables that can be described by a straight line passing through the data cloud. When r = 0, 
no pattern is evident that could be described with a single line. Parenthetically, it is also possible to fi nd coeffi  cients 
of 0 where the variables are highly related but in a non-linear form. As we have seen, plots make such fi ndings 
evident.

Th e second assumption for correlation is a bivariate normal distribution – that is, the data are from a random 
sample of a population where the two variables are normally distributed in a joint manner.

Exhibit 19.2 Scatterplots of correlation between two variables.
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Exhibit 19.3 Four datasets with the same summary statistics.

SS X1 Y1 X2 Y2 X3 Y3 X4 Y4

 1 10  8.04 10 9.14 10  7.46 8  6.58
 2 8  6.95 8 8.14 8  6.77 8  5.76
 3 13  7.58 13 8.74 13 12.74 8  7.71
 4 9  8.81 9 8.77 9  7.11 8  8.84
 5 11  8.33 11 9.26 11  7.81 8  8.47
 6 14  9.96 14 8.10 14  8.84 8  7.04
 7 6  7.24 6 6.13 6  6.08 8  5.25
 8 4  4.26 4 3.10 4  5.39 19 12.50
 9 12 10.84 12 9.13 12  8.15 8  5.56
10 7  4.82 7 7.26 7  6.42 8  7.91
11 5  5.68 5 4.74 5  5.73 8  6.89
Pearson’s r .816 42 .816 24 .816 24 .816 52 
r2 .666 54 .666 24 .666 24 .666 71
Adjusted r2 .629 49 .629 16 .629 16 .629 67
Standard error 1.236 6 1.237 2 1.237 2 1.235 7

0 1 1 0 

Oft en these assumptions or the required 
measurement level cannot be met. Th en 
the analyst should select a non-linear or 
non-parametric measure of association, 
many of which are described later in this 
chapter.

Computation and testing of r

Th e formula for calculating Pearson’s r is

r = Σ(X − X-)(Y − Ȳ)
(N − 1)sxsy

where

N = Th e number of pairs of cases.
sx, sy = Th e standard deviations for 
X and Y.

Alternatively:

r = Σxy
(Σx2)(Σy2)

since

sx = Σx2

N
  sy = Σy2

N
If the numerator of the equation Σxy/ (Σx2)(Σy2) is divided by N, we have the covariance, the amount of deviation 
that the X and Y distributions have in common. With a positive covariance, the variables move in unison; with a 
negative one, they move in opposition. When the covariance is 0, there is no relationship. Th e denominator of the 
equation above represents the maximum potential variation that the two distributions share. Th us, correlation 
may be thought of as a ratio.

Exhibit 19.4 Diff erent scatterplots for the same 
summary statistics.
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Exhibit 19.5 contains a random subsample of 10 fi rms of the Forbes 500 sample. Th e variables chosen to illustrate 
the computation of r are cash fl ow and net profi ts. Beneath each variable is its mean and standard deviation. In 
columns 4 and 5 we obtain the deviations of the X and Y values from their means, and in column 6 we fi nd the 
product. Columns 7 and 8 are the squared deviation scores.

Substituting into the formula, we get:

r = 224 777.23
  × 138 419.71 442 139.76

 = .9298

In this subsample, net profi ts and cash fl ow are positively 
related and have a very high coeffi  cient. As net profi ts 
increase, cash fl ow increases; the opposite is also true. 
Linearity of the variables may be examined with a 
scatterplot such as the one shown in Exhibit 19.6. Th e 
data points fall along a straight line.

Common variance as an explanation

Th e amount of common variance in X (net profi ts) and 
Y (cash fl ow) may be summarized by r2, the coeffi  cient 
of determination. As Exhibit 19.7 shows, the overlap 
between the two variables is the proportion of their 
common or shared variance.

Th e area of overlap represents the percentage of the total relationship accounted 
for by one variable or the other. So 86 per cent of the variance in X is explained 
by Y, and vice versa.

Testing the significance of r

Is the coeffi  cient representing the relationship between net profi ts and cash 
fl ow real, or does it occur by chance? Th is question tries to discover whether 
our r is a chance deviation from a population p of zero. In other situations, the 
researcher may wish to know if signifi cant diff erences exist between two or 

Exhibit 19.5 Computation of Pearson’s product moment correlation.***

Corporation Net profits
($ mil.) X

Cash flow
($ mil.) Y

Deviations from means

(X − X)x (Y − Y)y xy x 2 Y 2

 1 82.6 126.5 −93.84 −178.64 16 763.58 8 805.95 31 912.25
 2 89.0 191.2 −87.44 −113.94 9 962.91 7 645.75 12 982.32
 3 176.0 267.0 −0.44 −38.14 16.78 0.19 1 454.66
 4 82.3 137.1 −94.14 −168.04 15 819.29 8 862.34 28 237.44
 5 413.5 806.8 237.06 501.66 11 9923.52 56 197.44 251 602.56
 6 19.1 35.2 158.34 −269.94 42 742.30 25 071.56 72 867.60
 7 337.3 425.5 160.86 120.36 19 361.11 25 875.94 14 486.60
 8 145.8 380.0 −30.64 74.86 −2 293.71 938.81 5 604.02
 9 172.6 326.6 −3.84 21.36 −82.02 14.75 456.25
10 247.2 355.5 70.76 50.36 3 563.47 5 006.98 2 536.13

X̄  = 176.44 Ȳ  = 305.14 ΣXY = 224 777.23
sx = 216.59 sy = 124.01 ΣX 2 = 138 419.71 ΣY 2 = 422 139.76

Exhibit 19.6 Plot of net profi t against cash fl ow.
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more rs. In either case, r’s signifi cance should be checked before r is used in other calculations or comparisons. For 
this test, we must have independent random samples from a bivariate normal distribution. Th en the Z or t-test 
may be used for the null hypothesis, p = 0.

Th e formula for small samples is:

t = r
1 − r2

n − 2

where

r = .93
n = 10

Substituting into the equation, we calculate t:

t = .93
1 − .86

8

 = 7.03

With n − 2 degrees of freedom, the statistical program calculates the value of t (7.03) at a probability less than .005 
for the one-tailed alternative, HA: ñ > 0. We reject the hypothesis that there is no linear relationship between net 
profi ts and cash fl ow in the population. Th e above statistic is appropriate when the null hypothesis states a correla-
tion of 0. It should be used only for a one-tailed test.3 However, it is oft en diffi  cult to know in advance whether the 
variables are positively or negatively related, particularly when a computer removes our contact with the raw data. 
Soft ware programs produce two-tailed tests for this eventuality. Th e observed signifi cance level for a one-tailed test 
is half of the printed two-tailed version in most programs.

Correlation matrix

A correlation matrix is a table used to display coeffi  cients for more than two variables. Exhibit 19.8 shows the 
intercorrelations among six variables for the full Forbes 500 dataset.4

Exhibit 19.8 Correlation matrix for Forbes 500 sample.

Assets
($ m)

Cash flow
($ m)

Number employed
(thousands)

Market value
($ m)

Net profits
($ m)

Sales
($ m)

Assets 1.0000 
Cash flow .3426 1.0000 
Employed .3898 .8161 1.0000 
Market value .3642 .9353 .8106 1.0000 
Net profits .2747 .9537 .7467 .9101 1.0000
Sales .5921 .7990 .8831 .7485 .7261 1.0000 

Notes: All coefficients are statistically significant, p < 0.1; n = 100.

It is conventional for a symmetrical matrix to report fi ndings in the triangle below the diagonal. Th e diagonal con-
tains coeffi  cients of 1.00 that signify the relationship of each variable with itself. Journal articles and management 
reports oft en show matrices with coeffi  cients at diff erent probability levels. A symbol beside the coeffi  cient keys the 
description of diff erences to a legend. Th e practice of reporting tests of the null hypothesis, r = 0, was followed in 
Exhibit 19.8.

Correlation matrices have utility beyond bivariate correlation studies. Interdependence among variables is a com-
mon characteristic of most multivariate techniques. Matrices form the basis for computation and understanding 
of the nature of relationships in multiple regression, discriminant analysis, factor analysis and many others. Such 
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applications call for variations on the standard matrix. Pooled within-groups covariance matrices average the 
separate covariances for several groups and array the results as coeffi  cients. Total or overall correlation matrices 
treat coeffi  cients as if they came from a single sample.

Interpretation of correlations
A correlation coeffi  cient of any magnitude or sign, whatever its statistical signifi cance, does not imply causation. 
Increased net profi ts may cause an increase in market value, or improved satisfaction may cause improved per-
formance in certain situations, but correlation provides no evidence of cause and eff ect. Several alternate 
explanations may be provided for correlation results:

• X causes Y
• Y causes X
• X and Y are activated by one or more other variables
• X and Y infl uence each other reciprocally.

Ex-post facto studies seldom possess suffi  ciently powerful designs to demonstrate which of these conditions could 
be true. By controlling variables under an experimental design, we may obtain more rigorous evidence of causality.

Take care to avoid so-called artefact correlations, where distinct groups combine to give the impression of one. 
Th e upper panel of Exhibit 19.9 shows data from two business sectors. If all the data points for the X and Y variables 
are aggregated and a correlation is computed for a single group, a positive correlation results. Separate calculations 
for each sector (note that dark-coloured dots for Sector A form a circle, as do the light-coloured dots for Sector B) 
reveal no relationship between the X and Y variables. A second example shown in the lower panel contains a plot 
of data on assets and sales. We have enclosed and highlighted the data for the fi nancial sector. Th is is shown as a 
narrow band enclosed by an ellipse. Th ese companies score high on assets and low in sales – all are banks. When 

the data for banks are removed and treated 
separately, the correlation is nearly perfect (.99). 
When banks are returned to the sample and the 
correlation is recalculated, the overall relation-
ship drops to the mid-.80s. In short, data hidden 
or nested within an aggregated set may present 
a radically diff erent picture.

Another issue aff ecting interpretation of coeffi  -
cients concerns practical signifi cance. Even when 
a coeffi  cient is statistically signifi cant, it must 
be practically meaningful. In many relationships, 
other factors combine to make the coeffi  cient’s 
meaning misleading. For example, in nature we 
expect rainfall and the height of reservoirs to be 
positively correlated. But in states where water 
management and fl ood control mechanisms are 
complex, an apparently simple relationship may 
not hold. Techniques like partial and multiple 
correlation or multiple regression are helpful in 
sorting out confounding eff ects.

With large samples, even exceedingly low 
coeffi  cients can be statistically signifi cant. Th is 
‘signifi cance’ only refl ects the likelihood of a 
linear relationship in the population. Should 
magnitudes less than .30 be reported when they 
are signifi cant? It all depends. We might con-
sider the correlations between variables such as 
cash fl ow, sales, market value or net profi ts to be 

Exhibit 19.9 Artefact correlations.
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interesting revelations of a particular phenomenon whether they were high, moderate or low. Th e nature of the 
study, the characteristics of the sample or other reasons will be determining factors. But a coeffi  cient is not remark-
able simply because it is statistically signifi cant.

By probing the evidence of direction, magnitude, statistical signifi cance and common variance together with the 
study’s objectives and limitations, we reduce the chances of reporting trivial fi ndings. Simultaneously, the com-
munication of practical implications to the reader will be improved.

SPSS reference

Pallant (2013) discusses how to calculate correlation coeffi  cients in SPSS in Chapter 11.

Bivariate linear regression5

In the previous section, we focused on relationships between variables. Th e product moment correlation was found 
to represent an index of the magnitude of the relationship, the sign governed the direction and r2 explained the 
common variance. Relationships also serve as a basis for estimation and prediction.

When we take the observed values of X to estimate or predict corresponding Y values, the process is called simple 
prediction.6 When more than one X variable is used, the outcome is a function of multiple predictors. Simple and 
multiple predictions are made with a technique called regression analysis.

Th e similarities and diff erences of regression and correlation are summarized in Exhibit 19.10. Th eir relatedness 
would suggest that beneath many correlation problems is a regression analysis that could provide further insight 
about the relationship of Y with X.

The basic model
A straight line is fundamentally the best way to model the relationship between two continuous variables. Th e 
bivariate linear regression may be expressed as:

Y = β0 + β1Xi

where the value of the dependent variable Y 
is a linear function of the corresponding 
value of the independent variable Xi in the ith 
observ ation. Th e slope, β1, and the Y inter-
cept, β0, are known as regression coeffi  cients. 
Th e slope, β1, is the change in Y for a one-unit 
change in X. It is sometimes called the ‘rise 
over run’. Th is is defi ned by the formula:

β1 = ∆Y
∆X

Th is is the ratio of change (.) in the rise of 
the line relative to the run or travel along 
the X axis. Exhibit 19.11 shows a few of the 
many possible slopes you may encounter.

Th e intercept, β0, is the value for the linear 
function when it crosses the Y axis; it is the 
estimate of Y when X = 0. A formula for the 
intercept based on the mean scores of the X 
and Y variables is:

β = Ȳ − β1X-

SPSS reference

Pallant (2013) discusses how to calculate correlation coeffi  cients in SPSS in Chapter 11.

Exhibit 19.10 Comparison of bivariate linear 
correlation and regression.

Measurement
level

Correlation Regression

Interval or ratio scale Interval or ratio scale

Both continuous,
linearly related

Both continuous,
linearly related

The correlation of X and
Y produces an estimate
of linear association
based on sampling data

Correlation of Y – X  is the
same as the correlation
between the predicted values
of Y and observed values of Y

Explains common
variance of X and Y

Proportion of variability of Y
explained by its least-squares
regression on X

X and Y are symmetric;
rx y = ryx

Y is dependent, X  is
independent; regression of X
on Y differs from Y on X

Nature of
variables

X – Y
relationship

Correlation

Coefficient of
determination

9780077157487_C19.indd   5899780077157487_C19.indd   589 16/12/2013   5:46 PM16/12/2013   5:46 PM



Chapter 19 Measures of association
590

Concept application

Th e price of investment-grade red wine is infl uenced in 
several ways, not the least of which is tasting. Tasting from 
the barrel is a major determinant of market ‘en primeur’ or 
futures contracts, which represent about 60 per cent of the 
harvest. Aft er the wine rests for 19–24 months in oak casks, 
further tasting occurs and the remaining stock is released.

Weather is widely regarded as being responsible for pro-
nouncements about wine quality. A Princeton economist has 
elaborated on that notion. He suggested that just a few facts 
about local weather conditions may be better predictors of 
vintage French red wines than the most refi ned palates and 
noses.7 Th e regression model developed predicts an auction 
price index for about 80 wines from winter and harvest 
rainfall amounts and average growing-season temperatures. 

Interestingly, the calculations suggested that the 1989 Bordeaux would be one of the best since 1893. Th e ‘guardians 
of tradition’ reacted hysterically to these methods yet agreed with the conclusion.

Our fi rst example uses one predictor with highly simplifi ed data. Let X represent the average growing-season 
temperature in degrees Celsius and Y the price of a 12-bottle case in French Francs (FF). Th e data appear in 
Exhibit 19.12.

Th e plotted data in Exhibit 19.12 show a linear relationship 
between the pairs of points and a perfect positive correlation, 
ryx = 1.0. Th e slope of the line is calculated:

 β = 
Yi − Yj

Xi − Xj
 = 

4000 − 3000
20 − 16

 = 
1000

4
 = 250

where the XiYi values are the data points (20, 4000) and XiYi are 
points (16, 3000). Th e intercept β0 is −1000, the point at which 
X = 0 in this plot. Th is area is off  the graph and appears in an 
insert on the fi gure.

 β = Ȳ − β1X-  = 3500 − 250(19) = −1000

Substituting into the formula, we have the simple regression 
equation:

Y = −1000 + 250Xi

We could now predict that a warm growing season with 25.5°C temperature would bring a case price of 5,375 
French Francs. Ŷ (called Y-hat) is the predicted value of Y.

Ŷ = −1000 + 250(25.5) = 5375

Unfortunately, one rarely comes across a dataset composed of four paired values, a perfect correlation and an 
easily drawn line. A model based on such data is deterministic in that for any value of X, there is only one possible 
corresponding value of Y. It is more likely that we will collect data where the values of Y vary for each X value. 
Considering Exhibit 19.13, we should expect a distribution of price values for the temperature X = 16, another for 
X = 20 and another for each value of X. Th e means of these Y distributions will also vary in some systematic way 
with X. Th ese variabilities lead us to construct a probabilistic model that also uses a linear function.8 Th is function 
is written:

Yi = β0β1X1 + ε1

where ε symbolizes the deviation of the ith observation from the mean, β0 + β1X1.

Exhibit 19.11 Examples of diff erent slopes.
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Exhibit 19.12 Plot of wine price by 
average growing temperature.

X Y

Average temperature Celsius Price per case (FF)

12 2,000 
16 3,000 
20 4,000 
24 5,000 
X̄  = 19 Ȳ  = 3,500 
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As shown in Exhibit 19.13, the actual values of 
Y may be found above or below the regression 
line represented by the mean value of Y (β0 + 
β1Xi) for a particular value of X. Th ese devia-
tions are the error in fi tting the line and are 
oft en called the error term.

SPSS reference

Th e exercise presented here could be 
replicated in SPSS, and if you want to do 
so, read Chapter 11 and the very short 
Chapter 12 on partial correlation in 
Pallant (2013).

Method of least squares

Exhibit 19.14 contains a new dataset for the 
wine price example. Our prediction of Y from X 
must now account for the fact that the X and Y 
pairs do not fall neatly along the line. Actually, 
the relationship could be summarized by several lines. Exhibit 19.15 suggests a few alternatives based on visual 
inspection – all of which produce errors, or vertical distances from the observed values to the line. Th e method of 
least squares allows us to fi nd a regression line, or line of best fi t, which will keep these errors to a minimum. It 
uses the criterion of minimizing the total squared errors of estimate. When we predict values of Y for each Xi, the 
diff erence between the actual Yi and the predicted N is the error. Th is error is squared and then summed. Th e line 
of best fi t is the one that minimizes the total squared errors of prediction.9

n

∑
i=1  

ei
2 minimized

Exhibit 19.13 Distribution of Y for observations of X.
5,500

5,000

4,500

4,000

3,500

3,000

2,500

2,000

1,500
10

–

Regression line

Probability distribution

β0 + β1Xj

γ = β0 + β1Xj + εγ = β0 + β1Xi + ε

+

12 14 16 18 20 22 24 26
X

Exhibit 19.14 Data for wine price study.

Y price (FF) X temperature (°C) XY Y 2 X 2

1 1 913.00 11.80 21 393.40 3 286 969.00 139.24 
2 2 558.00 15.70 40 160.60 6 543 364.00 246.49 
3 2 628.00 14.00 36 792.00 6 906 384.00 196.00 
4 3 217.00 22.90 73 669.30 10 349 089.00 524.41 
5 3 228.00 20.00 64 560.00 10 419 984.00 400.00 
6 3 629.00 20.10 72 942.90 13 169 641.00 404.01 
7 3 886.00 17.90 69 559.40 15 100 996.00 320.41 
8 4 897.00 23.40 114 589.80 23 980 609.00 547.56 
9 4 933.00 24.60 121 351.80 24 334 489.00 605.16 

10 5 199.00 25.70 133 614.30 27 029 601.00 660.49 
Σ 35 988.00 196.10 748 633.50 141 121 126.00 4 043.77 
Mean 3 598.80 19.61 
s 1 135.66 4.69 
Sum of squares (SS) 11 607 511.59 198.25 42 908.82 
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Regression coeffi  cients β0 and β1 are used to fi nd the least-squares solution. Th ey are computed as follows:

β = 
ΣXY − (ΣX)(ΣY)

n

ΣX2 − (ΣX)2

n
Substituting data from Exhibit 19.14 into both formulas, we get:

β1 = 
748633.5 − (196.1)(35988)

10

4043.77 −  (19.61)2

10

 = 216.439

β0 = 3598.8 − (1216.439)(19.61) = −645.569

Th e predictive equation is now Ȳ = −645.57 + 216.44Xi.

Drawing the regression line

Before drawing the regression line, we select two 
values of X to compute. Using values 13 and 24 for 
Xi, the points are:

Ȳ = −645.57 + 216.44(13) = 2168.15

Ȳ = −645.57 + 216.44(24) = 4548.99

Comparing the line drawn in Exhibit 19.16 to the trial 
lines in Exhibit 19.15, one can readily see the success 
of the least-squares method in minimizing the error of 
prediction.

Residuals
We now turn our attention to the plot of standardized 
residuals in Exhibit 19.17. A residual is what remains 
aft er the line is fi t or (Yi = Ȳi). When standardized, 
residuals are comparable to Z scores with a mean of 
0 and a standard deviation of 1. In this plot, the 
standardized residuals should fall between 2 and −2, 
be randomly distributed about zero and show no dis-
cernible pattern. All these conditions say the model is 
applied correctly.

In our example, we have one residual at −2.2, a 
random distribution about zero and few indications 
of a sequential pattern. It is important to apply other 
diagnostics to verify that the regression assumptions 
are met. Various soft ware programs provide plots 
and other checks of normality, linearity, equality of 
variance and independence of error.10

Predictions

If we wanted to predict the price of a case of 
investment-grade red wine for a growing season that 
averages 21°C, our prediction would be:

Exhibit 19.15 Scatterplot and possible regression 
line based on visual inspection: wine price study.

Possible
line 1

Possible
line 2

Pr
ice

 (F
F)

5,500

5,000

4,500

4,000

3,500

3,000

2,500

2,000

1,500
10 12 14 16

Temperature [°C]

18 20 22 24 26 28

Exhibit 19.16 Drawing the least-squares line: 
wine price study.

Y = –645.57 + 216.44X

Pr
ice

 (F
F)

5,500

5,000

4,500

4,000

3,500

3,000

2,500

2,000

1,500
10 12 14 16

Temperature [°C]

18 20 22 24 26 28
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Ŷ = −645.57 + 216.44(21)Ȳ = 3899.67

Th is is a point prediction of Y and should be corrected for greater precision.

As with other confi dence estimates, we establish the degree of confi dence desired and substitute into the formula:

Ŷ ± tα/2s 1 + 
1

10
 + (X − X-)2

SSx

where
tα/2 = Th e two-tailed critical value for t at the desired level (95 per cent in this example).
s = Th e standard error of estimate (also the square root of the mean square error from the analysis of variance 
of the regression model) (see Exhibit 19.14).
SSx = Th e sum of squares for X (Exhibit 19.14).

3899.67 ± (2.306)(538.559) 1
10

 + (21 − 19.61)2

198.25
3899.67 ± 1308.29

We are 95 per cent confi dent of our prediction that a case of investment-quality French red wine grown in a 
particular year at 21°C average temperatures will be initially priced at 3899.67 ± 1308.29, or from approximately 
FF2,591 to FF5,208. Th e comparatively large bandwidth results from the amount of error in the model (refl ected 
by r2), some peculiarities in the Y values and the use of a single predictor.

It is more likely that we would want to predict the average price of all cases grown at 21°C. Th is prediction would 
use the same basic formula omitting the fi rst digit (the 1) under the radical. A narrower confi dence band is the 
result since the average of all Y values is being predicted from a given X. In our example, the confi dence interval 
for 95 per cent is 3899.67 ± 411.42, or from FF3,488 to FF4,311.

Th e predictor we selected, 21°C, was close to the mean of X (19.61). Because the prediction and confi dence bands 
are shaped like a bow tie, predictors farther from the mean have larger bandwidths. For example, X values of 15, 20 
and 25 produce confi dence bands of ±565, ±397 and ±617, respectively. Th is is illustrated in Exhibit 19.18. Th e 
farther one’s selected predictor is from X, the wider is the prediction interval.

Testing the goodness of fi t
With the regression line plotted and a few illustrative predictions, we should now gather some evidence of good-
ness of fi t – how well the model fi ts the data. Th e most important test in bivariate linear regression is whether the 
slope, β1, is equal to zero.11 We have already observed a slope of zero in Exhibit 19.11, line b. Zero slopes result from 
various conditions:

Exhibit 19.17 Plot of standardized residuals: wine price study.

0.0

∗
∗

∗
∗

∗
∗

∗
∗

∗

∗

3.0–3.0

0.0 3.0–3.0

Case
1
2
3
4
5
6
7
8
9

10

Y
Price
1813
2558
2628
3217
3228
3629
3886
4897
4933
5199

Predicted
price

1908.4112
2752.5234
2384.5771
4310.8844
3683.2112
3704.8551
3228.6893
4419.1039
4678.8307
4916.9137

Residual  
–95.4112

–194.5234
243.4229

–1093.8844
–455.2112

–75.8551
657.3107
477.8961
254.1693
282.0863
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•  Y is completely unrelated to X and no 
systematic pattern is evident

•  there are constant values of Y for every value 
of X

•  the data are related but represented by a 
non-linear function.

The t-test

To test whether β1 = 0, we use a two-tailed test 
(since the actual relationship is positive, nega-
tive or zero). Th e test follows the t distribution 
for n − 2 degrees of freedom.

 t = 
b1

s(b1)
 = 

216.439
34.249

 = 5.659

where
 b1 was previously defi ned as the slope β1.
 s(b1) is the standard error of β1.12

We reject the null, β1 = 0, because the calculated 
t is greater than any t value for 8° of freedom 
and α = .01.

SPSS reference
T-tests and parametric tests are discussed in Chapter 17 of Pallant (2013).

The F-test
Computer printouts generally contain an analysis of variance (ANOVA) table with an F-test of the regression 
model. In bivariate regression, t- and F-tests produce the same results since t2 is equal to F. In multiple regression, 
the F-test has an overall role for the model and each of the independent variables is evaluated with a separate t-test. 
From the last chapter, recall that ANOVA partitions variance into component parts. For regression, it comprises 
explained deviations, Ŷ − Ȳ, and unexplained deviations, Y − Ŷ. Together they constitute the total deviation, Y − Ȳ. 
Th is is shown graphically in Exhibit 19.19. Th ese sources of deviation are squared for all observations and summed 
across the data points.

SPSS reference
T-tests and parametric tests are discussed in Chapter 17 of Pallant (2013).

Exhibit 19.18 Prediction and confi dence bands 
based on proximity to x.

Confidence band

Y = β0 + β1X1

X
X-

Y
-

Y

Prediction band

10

Predictions 15 20 25

28

ˆ

Exhibit 19.19 Components of variation.

Residual (error)
[Xj, Yj] Data point

X

Unexplained variation

Explained variation

Total variation

γ̂  = β0 + β1Xi

[Xj, Yj] Regression
 prediction

[Y – Y ]

[Y – Y
-

]

[Y – Y
-

]

[X
-

j, Y
-
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 X and Y
 distributions

X
-

Y
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In Exhibit 19.20, we develop this concept sequentially concluding with the F-test of the regression model for the 
wine data. Based on the results presented in that table, we fi nd statistical evidence of a linear relationship between 
variables. Th e alternative hypothesis, r2 ≠ 0, is accepted with F = 32.02, d.f., (1,8), p < .005. Th e null hypothesis for 
the F-test had the same eff ect as β1 = 0 since we could select either test.

Exhibit 19.20 Progressive applications of partitioned variance concepts.

General concept

(Ŷ − Ȳ ) + (Y − Ŷ ) = (Y − Ȳ ) 
Explained variation (the 
regression relationship
between X and Y) 

Unexplained variation 
(cannot be explained by 
the regression relationship) 

Total variation

ANOVA application

n

∑
i =1  

(Ŷ − Ȳ )2 +
n

∑
i =1  

(Y − Ȳ )2 =
n

∑
i =1  

(Y − Ȳ )2

SSr SSr SSr

Sum of squares regression Sum of squares error Sum of squares total

Content of summary table

Source Degree of freedom Sum of squares Mean square F ratio

Regression 1 SSr MSr = 
SSr

1
MSr

Error n − 2 SSe MSr = 
SSe

n − 2
MS—

e

Total SSr

ANOVA summary table: test of regression model

Source Degree of freedom Sum of squares Mean square F ratio
Regression 1 9 287 143.11 9 287 143.11 32.02
Residual (error) 8 2 320 368.49 290 046.06
Total 11 607 511.60 Significance of F = .0005

Coefficient of determination

In predicting the values of Y without any knowledge of X, our best estimate would be Ȳ, its mean. Each predicted 
value that does not fall on Y contributes to an error of estimate, (Y − Ȳ). Th e total squared error for several predic-
tions would be Σ(Ȳi − Ȳ)2. By introducing known values of X into a regression equation, we attempt to reduce this 
error even further. Naturally, this is an improvement over using Ȳ, and the result is (Ȳ − Ȳ). Th e total improvement 
based on several estimates is Σ(Ȳi − Ȳ)2, the amount of variation explained by the relationship between X and Y in 
the regression. Based on the formula, the coeffi  cient of determination is the ratio of the line of best fi t’s error over 
that incurred by using Y. One purpose of testing, then, is to discover whether the regression equation is a more 
eff ective predictive device than the mean of the dependent variable.

As in correlation, the coeffi  cient of determination is symbolized by r2.13 It has several purposes. As an index of fi t, 
it is interpreted as the total proportion of variance in Y explained by X. As a measure of linear relationship, it 
tells us how well the regression line fi ts the data. It is also an important indicator of the predictive accuracy of the 
equation. Typically, we would like to have an r2 that explains 80 per cent or more of the variation. Lower than that, 
predictive accuracy begins to fall off . Th e coeffi  cient of determination, r2, is calculated like this:

r2 = 

n

∑
j =1  

(Ŷ − Ȳ)2

n

∑
j =1  

(Y − Ȳ)2
 = SSr

SSe
 = 1 − SSe

SSt
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For the wine price study, r2 was found by using the data from the bottom of Exhibit 19.20.

r2 = 1 − 2320368.49
11607511.60

 = .80

A total of 80 per cent of the variance in price may be explained by growing-season temperatures. With actual data 
and multiple predictors, our results would improve.

19.3  Non-parametric measures of association14

Measures for nominal data
Nominal measures are used to assess the strength of relationships in cross-classifi cation tables. Th ey are oft en used 
with chi-square or may be used separately. In this section, we provide examples of three statistics based on 
chi-square and two that follow the proportional reduction in error approach.

Th ere is no fully satisfactory all-purpose measure for categorical data. Some are adversely aff ected by table shape 
and number of cells; others are sensitive to sample size or marginals. It is perturbing to fi nd similar statistics 
reporting diff erent coeffi  cients for the same data. Th is occurs because of a statistic’s particular sensitivity or the way 
it was devised.

Technically, we would like to fi nd two characteristics with nominal measures:

1 When there is no relationship at all, the coeffi  cient should be 0.
2 When there is a complete dependency, the coeffi  cient should display unity or 1.

Th is does not always happen. In addition to the sensitivity problem, analysts should be alerted to the need for 
careful selection of tests.

Chi-square-based measures

Exhibit 19.21 reports a 2 × 2 variation of the Containers Ltd shipping study on smoking and job-related accidents 
introduced in Chapter 17. In this example, the observed signifi cance level is less than the testing level (α = .05) and 
the null hypothesis is rejected. A correction to chi-square is provided. We now turn to measures of association to 

Exhibit 19.21 Chi-square-based measures of association.
On-the-job accident

Yes

21

13

34

No

10

22

32

Row
total

 31

 35

 66

Count

Yes

No

Column
total

Smoker

Chi-square

Pearson
Community correction

Minimal expected frequency 

Value

6.16257
4.99836

d.f.

1
1

Significance

.01305

.02537

Statistic

Phi
Cramer’s V
Contingency coefficient C

Note: *Pearson chi-square probability.

Value

.30557

.30557

.29223

Approximate significance

.01305*
  .01305*  
  .01305*  

15.030
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detect the strength of the relationship. Notice that the exhibit also provides an approximate signifi cance of the 
coeffi  cient based on the chi-square distribution. Th is is a test of the null hypothesis that no relationship exists 
between the variables of accidents and smoking.

Th e fi rst chi-square-based measure is applied to smoking and on-the-job accidents. It is called phi (φφ). Phi ranges 
from 0 to +1.0 and attempts to correct χ2 proportionately to N. Phi is best employed with 2 × 2 tables like this one 
since its coeffi  cient can exceed +1.0 when applied to larger tables. Phi is calculated:

φ = χ2

N
 = 6.616257

66
 = .3056

Phi’s coeffi  cient shows a moderate relationship between smoking and job-related accidents. Th ere is no sugges-
tion in this interpretation that one variable causes the other, nor is there an indication of the direction of the 
relationship.

Cramer’s V is a modifi cation of phi for larger tables and has a range up to 1.0 for tables of any shape. It is calculated 
like this:

V = χ2

N(k − 1)
 = 6.616257

66(1)
 = .3056

where

k = the lesser number of rows or columns.

In Exhibit 19.21, the coeffi  cient is the same as phi.

Th e contingency coeffi  cient C is reported last. It is not comparable to other measures and has a diff erent upper 
limit for various table sizes. Th e upper limits are determined as:

k − 1
k

where

k = the number of columns.

For a 2 × 2 table, the upper limit is .71; for a 3 × 3, .82; and for a 4 × 4, .87. Although this statistic operates well with 
tables having the same number of rows as columns, its upper-limit restriction is not consistent with a criterion of 
good association measurement. C is calculated as:

C = χ2

χ2 + N
 = 6.616257

6.616257 + 66
 = .2922

Th e chief advantage of C is its ability to accommodate data in almost every form: skewed or normal, discrete or 
continuous, and nominal or ordinal.

Proportional reduction in error
Proportional reduction in error (PRE) statistics are the second type used with contingency tables. Lambda 
and tau are the examples discussed here. Th e coeffi  cient lambda (λλ) is based on how well the frequencies of one 
nominal variable off er predictive evidence about the frequencies of another. Lambda is asymmetrical – allowing 
calculation for the direction of prediction – and symmetrical, predicting row and column variables equally.

Th e computation of lambda is straightforward. In Exhibit 19.22, we have results from an opinion survey with a 
sample of 400 shareholders. Only 180 out of 400 (45 per cent) favour capping executives’ salaries; 220 (55 per cent) 
do not favour it. With this information alone, if asked to predict the opinions of an individual in the sample, we 
would achieve the best prediction record by always choosing the modal category. Here it is ‘do not favour’. By 
doing so, however, we would be wrong 180 out of 400 times. Th e probability estimate for an incorrect classifi cation 
is .45, P(1) = (1 − .55).
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Now suppose we have prior information about the respondents’ occupational status and are asked to predict 
opinion. Would it improve predictive ability? Yes, we would make the predictions by summing the probabilities of 
all cells that are not the modal value for their rows (for example, cell [2, 1] is 20/400 or .05):

P(2) = cell (1, 2) .05 + cell (2, 1) .15 + cell (3, 1) .075 = .275

Lambda is then calculated:

λ = P(1) − P(2)
P(1)

 = .45 − .275
.45

 = .3889

Note that the asymmetric lambda in Exhibit 19.22, where opinion is the dependent variable, refl ects this com-
putation. As a result of knowing the respondents’ occupational classifi cation, we improve our prediction by 39 per 
cent. If we wish to predict occupational classifi cation from opinion instead of the opposite, a λ of .24 would be 
secured. Th is means that 24 per cent of the error in predicting occupational class is eliminated by knowledge of 
opinion on the executives’ salary question. Lambda varies between 0 and 1, corresponding with no ability to 
eliminate errors to elimination of all errors of prediction.

Goodman and Kruskal’s tau (τ) uses table marginals to reduce prediction errors. In predicting opinion on execu-
tives’ salaries without any knowledge of occupational class, we would expect a 50.5 per cent correct classifi cation 
and a 49.5 per cent probability of error. Th ese are based on the column marginal percentages in Exhibit 19.22.

Column marginal Column per cent Correct cases

180 * 45 =  81
220 * 55 = 121
Total correct classifications 210

Correct classifications of the opinion variable = .505 = 202 
400

Probability of error, P(1) = (1 − .505) = .495

Exhibit 19.22 Proportional reduction in error measures.
What is your opinion about capping executives’ salaries?

Favour

  90
  82.0%
  60
  43.0%
  30
  20.0%
180
  45.0%

Do not
favour
  20
  18.0%
  80
  57.0%
120
  80.0%
220
  55.0%

Row
total

110

140

150

400
100.0%

Count
Row Pct.
Managerial

White collar

Blue collar

Column
total

Occupational class

Chi-square

Pearson
Likelihood ratio

Minimal expected frequency                                          49.500

Value

  98.38646
104.96542

d.f.

2
2

Significance

.00000

.00000

Statistic

Lambda:
 symmetric
 with occupation dependent
 with opinion dependent
Goodman–Kruskal tau:
 with occupation dependent
 with opinion dependent
Note: *Based on chi-square approximation.

Value

.30233

.24000

.38889

.11669

.24597

ASEI

.03955

.03820

.04555

.02076

.03979

T value

6.77902
5.69495
7.08010

Approximate significance

.00000*

.00000*
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When additional knowledge of occupational class is used, information for correct classifi cation of the opinion 
variable is improved to 62.7 per cent with a 37.3 per cent probability of error. Th is is obtained by using the cell 
counts and marginals for occupational class (see Exhibit 19.22), as shown below:

Row 1 = 73.6364 + 3.6364 = 77.2727
Row 2 = 25.7143 + 45.7142 = 71.4286
Row 3 =   6.0 + 96.0 = 102.0000

Total correct classifications (with additional information on occupational classes) 250.7013

Correct classifications of the opinion variable = .627 = 250.7 
400

Probability of error, P(2) = (1 − .505) = .373

Tau is then computed like this:

τ P(1) − P(2)
P(1)

 = .495 − .373
.495

 = .246

Exhibit 19.22 shows that the information about occupational class has reduced error in predicting opinion to 
approximately 25 per cent. Th e table also contains information on the test of the null hypothesis that tau = 0 with 
an approximate observed signifi cance level and asymptotic error (for developing confi dence intervals). Based on 
the small observed signifi cance level, we would conclude that tau is signifi cantly diff erent from a coeffi  cient of 0 
and that there is an association between opinion on executives’ salaries and occupational class in the population 
from which the sample was selected. We can also establish the confi dence level for the coeffi  cient at the 95 per cent 
level as approximately .25 ±.04.

Measures for ordinal data
When data require ordinal measures, there are several statistical alternatives. In this section we will illustrate:

• gamma
• Kendall’s tau b and tau c
• Somers’s d
• Spearman’s rho.

All but Spearman’s rank-order correlation are based on the concept of concordant and discordant pairs. None of 
these statistics requires the assumption of a bivariate normal 
distribu tion, yet by incorporating order, most produce a range 
from +1.0 (a perfect negative relationship) to −1.0 (a perfect 
positive one). Within this range, a coeffi  cient with a larger 
magnitude (absolute value of the measure) is interpreted as 
having a stronger relationship. Th ese characteristics allow the 
analyst to interpret both the direction and the strength of the 
relationship.

Exhibit 19.23 presents data for 70 managerial employees of 
KeyDesign, a large industrial design fi rm. All 70 employees 
have been evaluated for coronary risk by the fi rm’s health 
insurer. Th e management levels are ranked, as are the fi tness 
assessments by the physicians. If we were to use a nominal 
measure of association with this data (such as Cramer’s V), the 
computed value of the statistic would be positive since order is 
not present in nominal data. But using ordinal measures of 
association reveals the actual nature of the relationship. In this 
example, all coeffi  cients have negative signs.

Th e information in the exhibit has been arranged so that the 
number of concordant and discordant pairs of individual 

Exhibit 19.23 Tabled ranks for 
management and fi tness levels 

at KeyDesign.
Management level

Lower
14
18
  2
34

Middle
  4
  6
  6
16

20
26
24
70

Count
High
Moderate
Low

Fitness

Statistic

Gamma
Kendall’s tau b
Kendall’s tau c
Somers’s d
 Symmetric
 With fitness dependent
 With management-level dependent
Note: *The t value for each coefficient is –5.86451.

Value*

–.70242
–.51279
–.49714

–.51263
–.52591
–.50000

Upper
  2
  2
16
20
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observations may be calculated. When a subject that ranks higher on one variable also ranks higher on the other 
variable, the pairs of observations are said to be concordant. If a higher ranking on one variable is accompanied by 
a lower ranking on the other variable, the pairs of observations are discordant. Let P stand for concordant pairs and 
Q stand for discordant. When concordant pairs exceed discordant pairs in a P − Q relationship, the statistic reports 
a positive association between the variables under study. As discordant pairs increase over concordant pairs, the 
association becomes negative. A balance indicates no relationship between the variables. Exhibit 19.24 summarizes 
the procedure for calculating the summary terms needed in all the statistics we are about to discuss.15

Exhibit 19.24 Calculation of concordant (p), discordant (q), tied (tx, ty) 
and total paired observations: KeyDesign example.

H

M

L

20

26

24

Fit
ne

ssTotal
pairs

Concordant
pairs

Discordant
pairs

Tied
pairs

Ty = ∑ 
r

i = 1

c

j = 1

=mj [mj – 1]

2

70

18

14

6

2[6 + 18 + 2] + + +

2

18

26

6 2

6 16

34 16 20 70

2

2 6

2 4

4

2

18

18

6

6

16 16

26

6[2]

n[n – 1]/2 = 70[69]/2 = 2,415

= 1724[18 + 2] 2[6 + 2]

14[6 + 2 + 6 + 16] + + +

+

6[16] = 9844[2 + 16] 18[6 + 16]

Lower Middle Upper
Management

20[19]

2
= 26[25]

2
= = 791

Total tied
fitness

24[23]

2

Tx = ∑ =mj [mj – 1]

2

34[33]

2
= 16[15]

2
= = 871

Total tied
management

where Tx is the total pairs of ties on the column variable
Ty is the total pairs of ties on the row variable
mij are the marginals

24[23]

2

+

Goodman and Kruskal’s gamma (γ) is a statistic that compares concordant and discordant pairs and then stand-
ardizes the outcome by maximizing the value of the denominator. It has a proportional PRE interpretation that 
connects nicely with what we already know about PRE nominal measures. Gamma is defi ned as:

γ  = P − Q
P + Q

 = 172 − 984
172 + 984

 = −812
1152

 = −.7024

For the fi tness data, we conclude that as management level increases, fi tness decreases. Th is is immediately 
apparent from the larger number of discordant pairs.
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A more precise explanation for gamma takes its absolute value (ignoring the sign) and relates it to PRE. 
Hypothetically, if one was trying to predict whether the pairs were concordant or discordant, one might fl ip a coin 
and classify the outcome. A better way is to make the prediction based on the preponderance of concordance or 
discordance; the absolute value of gamma is the proportional reduction in error when prediction is done the 
second way. For example, you would get a 50 per cent hit ratio using the coin.

A PRE of .70 improves your hit ratio to 85 per cent (.50 × .70) + (.50) = .85.

With a γ of −.70, 85 per cent of the pairs are discordant and .15 per cent are concordant.16 Th ere are almost six times 
as many discordant pairs as concordant pairs. In situations where the data call for a 2 × 2 table, the appropriate 
modifi cation of gamma is Yule’s Q.17

Kendall’s tau b (τb) is a refi nement of gamma that considers tied pairs. A tied pair occurs when subjects have the 
same value on the X variable, on the Y variable or on both. For a given sample size, there are n(n − 1)/2 pairs of 
observations.18 Aft er concordant pairs and discordant pairs are removed, the remainder are tied. Tau b does not 
have a PRE interpretation but does provide a range of −1.0 to +1.0 for square tables. Its compensation for ties uses 
the information found in Exhibit 19.24. It may be calculated as:

τb = P − Q
n(n − 1)

2
A
C − Tx

D
F

A
C

D
F

n(n − 1)
2

− Ty

 = 172 − 984 
(2415 − 871)(2415 − 791)

 = −.5218

Kendall’s tau c (τc) is another adjustment to the basic P − Q relationship of gamma. Th is approach to ordinal 
association is suitable for tables of any size. Although we illustrate tau c, we would select tau b since the cross-
classifi cation table for the fi tness data is square. Th e adjustment for table shape is seen in the formula:

τc = 2m(P − Q)
N2(M − 1)

 = 2(3)(172 − 984)
(70)2(3 − 3)

 = −.4971

where m is the smaller number of rows or columns.

Somers’s d rounds out our coverage of statistics employing the concept of concordant pairs. Th is statistics utility 
comes from its ability to compensate for tied ranks and adjust for the direction of the dependent variable. Again, 
we refer to the preliminary calculations provided in Exhibit 19.24 to compute the symmetric and asymmetric ds. 
As before, the symmetric coeffi  cient (equation 1) takes the row and column variables into account equally. Th e 
second and third calculations show fi tness as the dependent and management level as the dependent, respectively.

1  dsym = (P − Q)
n(n − 1) − TxTy/2

 = −812
1584

 = −.5126

2 dy−x = (P − Q)
n(n − 1)

2
 − Tx

 =  −812
2415 − 871

 = −.5259

3 dx−y = (P − Q)
n(n − 1)

2
 − Ty

 =  −812
2415 − 791

 = −.5000

Th e Spearman’s rho (ρ) correlation is a popular ordinal measure. Along with Kendall’s tau, it is among the most 
widely used of ordinal techniques. Rho correlates ranks between two ordered variables. Occasionally, researchers 
fi nd continuous variables with too many abnormalities to correct. Th en scores may be reduced to ranks and calcu-
lated with Spearman’s rho.

As a special form of Pearson’s product moment correlation, rho’s strengths outweigh its weaknesses. When data 
are transformed by logs or squaring, rho remains unaff ected. Second, outliers or extreme scores that were trouble-
some before ranking no longer pose a threat since the largest number in the distribution is equal to the sample size. 
Th ird, it is an easy statistic to compute. Th e major defi ciency is its sensitivity to tied ranks. Too many ties distort 
the coeffi  cient’s size. However, there are rarely too many ties to justify the correction formulas available.
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To illustrate the use of rho, consider a situation where Dean Merrill, a brokerage fi rm, is recruiting account execu-
tive trainees. Assume that the fi eld has been narrowed to 10 applicants for fi nal evaluation. Th ey arrive at the 
company headquarters, go through a battery of tests and are interviewed by a panel of three executives. Th e test 
results are evaluated by an industrial psychologist who then ranks the 10 candidates. Th e executives produce 
a composite ranking based on the interviews. Your task is to decide how well these two sets of ranking agree. 
Exhibit 19.25 contains the data and preliminary calculations. Substituting into the equation, we get:

ρs = 1 − 6Σd 2

n3 − n
 = 6(57)

(10)3 − 10
 = .654

where n is the number of subjects being ranked.

Th e relationship between the panel’s and the psychologist’s ranking is moderately high, suggesting agreement 
between the two measures. Th e test of the null hypothesis that there is no relationship between the measures 
(rs = 0) is rejected at the .05 level with n − 2 degrees of freedom.

t = rs
n − 2
1 − r s

2  = 8
1 − .4277

 = 2.45

SPSS reference

Pallant (2013) is an accessible source to help you get acquainted with SPSS. It covers most of the statistical 
procedures and tests available in SPSS, and provides you with a grounding to use the system for more 
advanced procedures.

SPSS reference

Pallant (2013) is an accessible source to help you get acquainted with SPSS. It covers most of the statistical
procedures and tests available in SPSS, and provides you with a grounding to use the system for more
advanced procedures.

Exhibit 19.25 Dean Merrill data for Spearman’s rho.

Applicant Rank by

Panel x Psychologist y d d 2

1 3.5 6 −2.5 6.25
2 10 5 5 25.00
3 6.5 8 −1.5 2.25
4 2 1.5 0.5 0.25
5 1 3 −2 4.00
6 9 7 2 4.00
7 3.5 1.5 2 4.00
8 6.5 9 −2.5 6.25
9 8 10 −2 4.00

10 5 4 1 1.00
57.00

Note: Tied ranks were assigned the average (of ranks) as if no ties had occurred.

9780077157487_C19.indd   6029780077157487_C19.indd   602 16/12/2013   5:46 PM16/12/2013   5:46 PM



Summary
603

Summary
1 Management questions frequently involve relationships between two or more variables. Correlation 

analysis may be applied to study such relationships. A correct correlational hypothesis states that the 
variables occur together in some specifi ed manner without implying that one causes the other.

2 Parametric correlation requires two continuous variables measured on an interval or ratio scale. Th e 
product moment correlation coeffi  cient represents an index of the magnitude of the relationship: its 
sign governs the direction and its square explains the common variance. Bivariate correlation treats X 
and Y variables symmetrically and is intended for use with variables that are linearly related.

 Scatterplots allow the researcher to visually inspect relationship data for appropriateness of the selected 
statistic. Th e direction, magnitude and shape of a relationship are conveyed in a plot. Th e shape of linear 
relationships is characterized by a straight line, whereas non-linear relationships are curvilinear or 
parabolic, or have other curvature. Th e assumptions of linearity and bivariate normal distribution may 
be checked through plots and diagnostic tests.

 A correlation matrix is a table used to display coeffi  cients for more than two variables. Matrices form 
the basis for computation and understanding of the nature of relationships in multiple regression, 
discriminant analysis, factor analysis and many multivariate techniques.

 A correlation coeffi  cient of any magnitude or sign, regardless of statistical signifi cance, does not imply 
causation. Similarly, a coeffi  cient is not remarkable simply because it is statistically signifi cant. Practical 
signifi cance should be considered in interpreting and reporting fi ndings.

3 Regression analysis is used to further our insight into the relationship of Y with X. When we take the 
observed values of X to estimate or predict corresponding Y values, the process is called simple 
pre diction. When more than one X variable is used, the outcome is a function of multiple predictors. 
Simple and multiple predictions are made with regression analysis.

 A straight line is fundamentally the best way to model the relationship between two continuous 
variables. Th e method of least squares allows us to fi nd a regression line, or line of best fi t, that 
minimizes errors in drawing the line. It uses the criterion of minimizing the total squared errors of 
estimate. Point predictions made from well-fi tted data are subject to error. Prediction and confi dence 
bands may be used to fi nd a range of probable values for Y based on the chosen predictor. Th e bands are 
shaped in such a way that predictors farther from the mean have larger bandwidths.

4 W e test regression models for linearity and to discover whether the equation is eff ective in fi tting the 
data. An important test in bivariate linear regression is whether the slope is equal to zero. In bivariate 
regression, t-tests and F-tests of the regression produce the same result since t2 is equal to F.

5 Oft en the assumptions or the required measurement level for parametric techniques cannot be met. 
Non-parametric measures of association off er alternatives. Nominal measures of association are used to 
assess the strength of relationships in cross-classifi cation tables. Th ey are oft en used in conjunction with 
chi-square or may be based on the PRE approach.

 Phi ranges from 0 to +1.0 and attempts to correct chi-square proportionately to N. Phi is best employed 
with 2 × 2 tables. Cramer’s V is a modifi cation of phi for larger tables and has a range up to 1.0 for tables 
of any confi guration. Lambda, a PRE statistic, is based on how well the frequencies of one nominal 
variable off er predictive evidence about the frequencies of another. Goodman and Kruskal’s tau uses 
table marginals to reduce prediction errors.

 Measures for ordinal data include gamma, Kendall’s tau b and tau c, Somers’s d and Spearman’s rho. All 
but Spearman’s rank-order correlation are based on the concept of concordant and discordant pairs. 
None of these statistics require the assumption of a bivariate normal distribution, yet by incorporating 
order, most produce a range from −1 to +1.
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Discussion questions
Terms in review
 1 Distinguish between the following:

a regression coeffi  cient and correlation coeffi  cient
b r = 0 and ρ = 0
c the test of the true slope, the test of the intercept and r2 = 0
d r2 and r
e a slope of 0 and β0 = 0
f F and t2.

 2 Describe the relationship between the two variables in the four plots below.

Making research decisions
 3 A tax on the market value of stock and bond transactions has been proposed as one remedy for the budget 

defi cit. Th e following data were collected on a sample of 60 registered voters by a polling organization.
a Compute gamma for the table.
b Compute tau b or tau c for the same data.
c What accounts for the diff erences?
d Decide which is more suitable for this data.

Opinion about market tax Education

High school Bachelor’s degree MBA 

Favourable 15 5 0 

Undecided 10 8 2 

Unfavourable 0 2 19 

 4 Using the table data in question 3, compute Somers’s d symmetric and then use opinion as the dependent 
variable. Decide which approach is best for reporting the decision.

(a) (b)

(c) (d)
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 5 A research team conducted a study of voting preferences on a referendum on the European Constitution 
among 260 members of political parties, 130 members of the Labour Party and 130 members of the Conserva-
tive Party. Th ey secured the following results.

Favour Against 

Labour Party 80 50 

Conservative Party 40 90 

 Calculate an appropriate measure of association and decide how to present your results.

From concept to practice
 6 Using the data below:

a create a scatterplot
b fi nd the least-squares line
c plot the line on the diagram
d predict Y if X is 10, Y if X is 17.

X 3 6 9 12 15 21 

Y 6 10 15 24 21 20 

 7 A home pregnancy test claims to be 97 per cent accurate when consumers obtain a positive result. To what 
extent are the variables of ‘actual clinical condition’ and ‘test readings’ related?
a Compute phi, Cramer’s V and the contingency coeffi  cient for the table below. What can you say about the 

strength of the relationship between the two variables?
b Compute lambda for this data. What does this statistic tell you?

Test readings of in-vitro pregnancy diagnostics

Positive (pregnant) Negative (not pregnant) Total 

Actual clinical condition Pregnant 451  36 487 

Not pregnant  15 193 198 

Total 466 219 685 

 8 Fill in the question marks for the ANOVA summary table below on net profi ts and market value used with 
regression analysis.
a What does the F tell you? (α = .05)
b What is the t value? Explain its meaning.

d.f. Sum of 
squares 

Mean square F 

Regression 1 11 116 995.47 ? ? 

Error ? ? 116 104.63 

Total 9 12 045 832.50 
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 9 Using a computer program, produce a correlation matrix for the following data (the data are also included as 
an Excel fi le Entitled ‘dutch_banks’ on the website).

Revenue Expenses Result B.T. Net profit Total assets Net equity No. of foreign 
countries

Total 
employees

19 469 13 744 4 725 2 498 543 169 15 523 73 115 098 

70 109 42 642 27 467 1 739 3 922 875 156 529 5 298 

21 087 14 216 6 871 4 442 274 889 72 454 0 85 

3 515 947 2 568 16 839 2 094 225 49 119 1 97 

56 043 46 262 9 781 4 124 694 037 21 613 86 80 000 

328 005 167 504 160 501 92 154 16 921 968 763 115 2 1 238 

77 003 38 689 38 314 25 514 3 068 801 205 567 0 389 

228 486 17 369 117 658 76 929 3 600 246 2 423 025 0 6 092 

50 009 23 316 26 693 1 735 3 673 928 339 689 33 39 044 

111 963 88 905 23 058 1 682 2 473 537 2 038 1 612 

27 839 21 037 6 802 4 949 940 033 131 000 42 98 000 

64 206 25 931 38 275 2 488 1 303 115 146 642 3 206 

77 908 22 178 5 573 36 286 4 229 011 345 096 0 199 

43 617 23 968 19 649 12 761 157 934 80 828 8 217 

474 275 432 926 41 349 27 676 4 380 827 151 968 64 62 881 

158 274 10 794 50 334 57 205 562 453 35 892 0 1034 

58 584 44 615 13 969 11 984 650 172 25 274 64 92 650 

12 378 79 686 44 094 29 365 5 417 193 176 419 4 792 

15 089 057 12 801 053 2 288 004 812 284 14 772 538 5 222 542 21 22 000 

161 425 64 813 96 612 66 221 1 079 605 219 636 5 370 

10 Secure Spearman’s rank-order correlations for the largest Pearson coeffi  cient in the matrix from question 9. 
Explain the diff erences between the two fi ndings.

11 Using the matrix data in question 9, select a pair of variables and run a simple regression. Th en investigate the 
appropriateness of the model for the data using diagnostic tools for evaluating assumptions.

12 For the data in the table below:
a calculate the correlation between X and Y
b interpret the sign of the correlation
c interpret the square of the correlation
d plot the least-squares line
e test for a linear relationship

i β1 = 0
ii r = 0
iii an F-test.

X 25 19 17 14 12 9 8 7 3 

Y 5 7 12 23 20 25 26 28 20 
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Recommended further reading
Aczel, Amir D. and Jayauel Sounderpandian, Complete Business Statistics (7th edn). Chicago: McGraw-Hill, 
2008. Th e chapter on simple regression/correlation has impeccable exposition and examples and is highly 
recommended.

Agresti, Alan and Barbara Finlay, Statistical Methods for the Social Sciences (4th edn). Upper Saddle River, NJ: 
Pearson, 2008. Very clear coverage of non-parametric measures of association.

Chatterjee, Samprit and Ali S. Hadi, Regression Analysis by Example (5th edn). New York: Wiley, 2012. 
Updated version of widely used examples textbook.

Cohen, Jacob, Patricia Cohen, Stephen G. West and Leona S. Aiken, Applied Multiple Regression/Correlation 
Analysis for the Behavioral Sciences (3rd edn). Mahwah, NJ: Lawrence Erlbaum Associates, 2003. A classic 
reference work.

Neter, John, Michael H. Kutner, Christopher J. Nachtsheim and William Wasserman, Applied Linear Statist-
ical Models (5th edn). New York: McGraw-Hill, 2004, Chapters 1–10 and 15 provide an excellent introduction 
to regression and correlation analysis.

Siegel, S. and N.J. Castellan Jr., Nonparametric Statistics for the Behavioral Sciences (2nd edn). New York: 
McGraw-Hill, 1988.

Notes
 1 Typically, we plot the x (independent) variable on the horizontal axis and the y (dependent) variable on the 

vertical axis. Although correlation does not distinguish between independent and dependent variables, the 
convention is useful for consistency in plotting and will be used later with regression.

 2 F.J. Anscombe, ‘Graphs in statistical analysis’, American Statistician 27 (1973), pp. 17–21. Cited in Samprit 
Chatterjee and Bertram Price, Regression Analysis by Example. New York: Wiley, 1977, pp. 7–9.

 3 Amir D. Aczel, Complete Business Statistics (2nd edn). Homewood, IL: Irwin, 1993, p. 433.

 4 Th e coeffi  cient for net profi ts and cash fl ow in the example calculation used a subsample (n = 10) and was 
found to be .93. Th e matrix shows the coeffi  cient as .95. Th e matrix calculation was based on the larger sample 
(n = 100).

 5 Th is section is partially based on the concepts developed by Emanuel J. Mason and William J. Bramble, Under-
standing and Conducting Research. New York: McGraw-Hill, 1989, pp. 172–82; and elaborated in greater detail 
by Aczel, Complete Business Statistics, pp. 414–29.

 6 Technically, estimation uses a concurrent criterion variable where prediction uses a future criterion. Th e 
statistical procedure is the same in either case.

 7 Peter Passell, ‘Can math predict a wine? An economist takes a swipe at some noses’, International Herald 
Tribune, 5 March 1990, p. 1; Jacques Neher, ‘Top quality Bordeaux cellar is an excellent buy’, International 
Herald Tribune, 9 July 1990, p. 8.

Get started with understanding statistical techniques!
When you have read this chapter, log on to the Online Learning Centre website 
at www.mcgraw-hill.co.uk/textbooks/blumberg to explore chapter-by-chapter test 
questions, additional case studies, a glossary and more online study tools for 
Business Research Methods.
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 8 See Alan Agresti and Barbara Finlay, Statistical Methods for the Social Sciences. San Francisco: Dellen Publish-
ing, 1986, pp. 248–9. See also the discussion of basic regression models in John Neter, William Wasserman and 
Michael H. Kutner, Applied Linear Statistical Models. Homewood, IL: Irwin, 1990, pp. 23–49.

 9 We distinguish between the error terms e1 = Yi − E[Yi] and the residual ei = (Yi − Ȳi). Th e fi rst is based on the 
vertical deviation of Yi from the true regression line. It is unknown and estimated. Th e second is the vertical 
deviation of Yi from the fi tted N on the estimated line. See Neter et al., Applied Linear Statistical Models, p. 47.

10 For further information on soft ware-generated regression diagnostics, see the most current release of soft ware 
manuals for SPSS, MINITAB, BMDP and SAS.

11 Aczel, Complete Business Statistics, p. 434.

12 Th is calculation is normally listed as the standard error of the slope (SE B) on computer printouts. For these 
data it is further defi ned as:

s(b1) = 8
SSx

 + 538.559
198.249

 = 38.249

 where

s = Th e standard error of estimate (and the square root of the mean square error of the regression)
SSx = Th e sum of squares for the X variable

13 Computer printouts use uppercase (R2) because most procedures are written to accept multiple and bivariate 
regression.

14 Th e table output for this section has been modifi ed from SPSS and is described in Norusis/SPSS, Inc., SPSS Base 
System User’s Guide. For further discussion and examples of non-parametric measures of association, see 
S. Siegel and N.J. Castellan Jr., Nonparametric Statistics for the Behavioral Sciences (2nd edn). New York: 
McGraw-Hill, 1988.

15 Calculation of concordant and discordant pairs is adapted from Agresti and Finlay, Statistical Methods for the 
Social Sciences, pp. 221–3.

16 We know that the percentage of concordant plus the percentage of discordant pairs sums to 1.0. We also 
know their diff erence is −.70. Th e only numbers satisfying these two conditions are .85 and .15 (.85 + .15 = 1.0, 
.15 − .85 = −.70).

17 G.U. Yule and M.G. Kendall, An Introduction to the Th eory of Statistics. New York: Hafner, 1950.

18 M.G. Kendall, Rank Correlation Methods (4th edn). London: Charles W. Griffi  n, 1970.
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