Student as researcher: how to approach a research project

Step 8: Analyze Data and Form Conclusions
In the Limburg Business Starter study, we questioned about 1200 potential business starters in a one hour personal interview. What are we going to do with these responses (called data)? The next step in a research project involves data analysis, in which we summarize people's responses and determine whether the data supports the hypothesis. In this section, we will review the three stages of data analysis: check the data, summarize the data, and confirm what the data reveals.

How do I check the data? 

In the first analysis stage, researchers become familiar with the data. At a basic level, this involves looking to see if the numbers in the data make sense. Errors can occur if responses are not recorded correctly and if data is entered incorrectly into computer statistical software for analysis. 

We also look at the distribution of scores. This can be done by generating a frequency distribution (e.g. a stem-and-leaf display) for the dependent variable. When examining the distribution of scores, we may discover "outliers." Outliers are data values that are very different from the rest of the scores. Outliers sometimes occur if a participant did not follow instructions or if equipment in the experiment did not function properly. When outliers are identified, we may decide to exclude the data from the analyses.

How do I summarize the data?
< Descriptive statistics; means, standard deviations, effect sizes
The second step of data analysis is to summarize participants' responses. Researchers rarely report the responses for an individual participant; instead, they report how participants responded on average. Descriptive statistics begin to answer the question, what happened in the research project?

Often, researchers measure their dependent variables using rating scales. Two common descriptive statistics for this data are the mean and standard deviation. The mean represents the average score on a dependent variable across all the participants in a group. The standard deviation tells us about the variability of participants' scores' approximately how far, on average, scores vary from a group mean.

Another descriptive statistic is the effect size. Measures of effect size tell us the strength of the relationship between two variables. For example, a correlation coefficient represents the strength of the predictive relationship between two measured variables. Another indicator of effect size is Cohen's d. This statistic tells us the strength of the relationship between a manipulated independent variable and a measured dependent variable. Based on the effect size for their variables, researchers decide whether the effect size in their study is small, medium, or large (Cohen, 1988).

How do I know what the data reveals?
< Inferential statistics; confidence intervals, null hypothesis testing
In the third stage of data analysis, researchers decide what the data tell us about behaviour and mental processes and decide whether the research hypothesis is supported or not supported. At this stage, researchers use inferential statistics to try to rule out whether the obtained results are simply "due to chance." We generally use two types of inferential statistics, confidence intervals and null hypothesis testing.

Recall that we use samples of participants to represent a larger population. Statistically speaking, the mean for our sample is an estimate of the mean score for a variable for the entire population. It's unlikely, however, that the estimate from the sample will correspond exactly to the population value. A confidence interval gives us information about the probable range of values in which we can expect the population value, given our sample results.

Another approach to making decisions about results for a sample is called null hypothesis testing. In this approach, we begin by assuming an independent variable has no effect on participants' behavior (the "null hypothesis"). Under the null hypothesis, any difference between means for groups in an experiment is attributed to chance factors. However, sometimes the difference between the means in an experiment seems too large to attribute to chance. Null hypothesis testing is a procedure by which we examine the probability of obtaining the difference between means in the experiment if the null hypothesis is true. Typically, computers are used to calculate the statistics and probabilities. An outcome is said to be statistically significant when the difference between the means in the experiment is larger than would be expected by chance if the null hypothesis were true. When an outcome is statistically significant, we conclude that the independent variable caused a difference in participants' scores on the dependent variable.
Before going through the steps for analyzing data, we will review the findings of a study by Blumberg & Letterie
 based on the data on business starters in South Limburg. The primary objective of this study was to investigate which kind of business starters apply for a loan from a bank and which loans are granted by the banks. 
Did the results support their hypothesis?
Let us focus on the question ‘which business starters will obtain a loan if they apply for one?’ Blumberg & Letterie hypothesized that granting of a loan becomes more likely if the business starter can provide collaterals, i.e. even if the business fails the bank has something it can take, and if the chances of success of the business are high, i.e. the chance that the business starter, as the borrower, cannot repay the loan are small. To analyse this we employed a logistic regression technique as our dependent variable could only have two values, namely either loan is denied or not. The results of the analysis (see table 1) show that the coefficients of variables representing collaterals, such as previous income, home ownership and own equity did increase the chance of loan granting. 
Table 1: Logistic regression model with the dependent variable “denial”

	Home ownership
	-0.620**
	(0.201)

	Business plan
	-0.133
	(0.132)

	Accountant
	-0.381
	(0.264)

	Own equity
	-1.300**
	(0.685)

	Income<25000
	 0.353**
	(0.174)

	High education
	 0.108
	(0.146)

	Age
	-0.005
	(0.054)

	Age2
	 0.000
	(0.001)

	Job similarity
	-0.273**
	(0.104)

	Previously self-employed
	 0.164
	(0.244)

	Leadership
	-0.099
	(0.134)

	Parental self-employment
	-0.052
	(0.149)

	Married
	 0.115
	(0.186)

	Children
	 0.244
	(0.275)

	Foreign
	 0.043
	(0.252)

	Single ownership
	0.267**
	(0.145)

	Constant
	 0.421
	(1.215)

	
	
	

	Rho
	-0.839
	(0.861)

	
	
	

	Log Likelihood
	-813.59
	

	N
	1140
	

	Chi2
	69.77**
	


What did they conclude based on their findings?
The results show that the hypothesis on the relationship between the availability of collaterals and the granting of loans was supported. However, out hypothesis regarding signs of the chances of success of a business and loan granting was not supported, i.e. the coefficients of variables, such as previous experience in self-employment, age or education were not significant, i.e. not different from zero.This suggests that banks are rather reluctant in employing non-financial criteria in their credit decisions, although many studies provide support for the fact that, for example, parental self-employment strongly enhances business success.
Sample Data Analysis

In what follows, we will "walk through" the steps of data analysis using a random subsample of the data used by Blumberg & Letterie (2008). This section provides many details that you might only need when you analyze your own data.

Hypothetical Research Study

This hypothetical study is a simplified version of the Blumberg & Letterie (2008) paper. Suppose your hypothesis is that the likelihood that a bank denies is related to the age of the applicant and whether the applicant owns a house or not.

The data set used can be downloaded as a separate file from the Research Skills Centre.

For the first 20 respondents (ID. no. 1 to 20), we observe the following values for the variables denied, age and house. Using a spreadsheet, the data would look like this:
Table 2: Spreadsheet of three variables of the first 20 respondents

	ID. no.
	denied
	age
	House

	1
	0
	33
	1

	2
	1
	36
	1

	3
	1
	25
	0

	4
	0
	34
	1

	5
	1
	34
	0

	6
	0
	41
	0

	7
	1
	42
	0

	8
	0
	37
	2

	9
	0
	50
	1

	10
	1
	33
	0

	11
	0
	29
	1

	12
	0
	39
	1

	13
	0
	41
	1

	14
	1
	34
	1

	15
	1
	25
	1

	16
	0
	33
	0

	17
	0
	36
	1

	18
	1
	45
	1

	19
	1
	32
	1

	20
	1
	47
	1


The variable ‘denied’ is 0 if a loan request was not denied and it is 1 if a loan request was denied, age is measured in years and the variable ‘house’ takes the value 0 if the respondent does not own a house and 1 if the respondent owns a house.

Three Stages of Data Analysis
1)   Check the data. Do the numbers make sense? Are there any values that are out of range? Are there any outliers?

In our example, the variables ‘denial’ and ‘house’ should have a range between 0 and 1, while the age variable should range between 18 and ~100. In this sample the minimum value for the variables ‘denial’ and ‘house’ is 0 and their maximum value is 1. The variable ‘age’ ranges from 18 to 69, all these ages are reasonable.

For continuous variables, such as age. we can also examine the distribution using stem-and-leaf displays:

2 | 223333444455555666777777777899999999999

3 | 00000000111111111222222222333333333444444444555555555555566666666666777777888888888999999999

4 | 00111111111122223333334444444444445555566666677777888999

5 | 00011222337

6 | 48

Figure 1: Stem and leaf display of the variable age
We can read this stem-and-leaf display as follows. Two respondents are age 18, six respondents are age 43 etc. Moreover, we can see that there is no real outlier problem; we would detect an outlier if, for example, a couple at the end were empty, as one observation occurs in the last row. Moreover, the scores seem to center around a middle value.

2) Summarize the data. We can summarize the data numerically using measures of central tendency (e.g. mean or average) and measures of variability (e.g. standard deviation)

Table 3: Summarized statistics

	Variable
	Mean
	Median
	Mode
	Range
	Std. Dev.
	Variance

	Denied
	.31
	0
	0
	0-1
	.464
	.215

	Age
	36.88
	36
	35
	22-68
	8.178
	66.874

	House
	.725
	1
	1
	0-1
	.448
	.200


Central Tendency

The mean (M) is the average score, the median (Md) is the value that cuts the distribution of scores in half (100 scores below and 100 scores above the value), and the mode is the most frequent score.

Variability (dispersion) 
The range is the highest and lowest score. The variance and standard deviation are measures of how far scores are away from the mean (average) score. Variance is the sum of the average deviations from the sample mean, squared, and divided by n-1 ("n" is the number of participants in the group). Standard deviation is the square root of the variance. 

Three Stages of Data Analysis

3) Confirm what the data reveals. Descriptive statistics are rarely sufficient to allow us to make causal inferences about what happened in the experiment. We need more information. The problem is that we typically describe data from a sample, not an entire population. A population represents all the data of interest; a sample is just part of that data. Most of the time, researchers investigate behaviour and seek to make a conclusion about the effect of an independent variable for the population, based on the sample. The problem is that samples can differ from the population simply by chance. When the results for a sample differ from what we'd observe if the entire population were tested because of chance factors, we say the findings for the sample are unreliable.

To compound this problem, one sample can vary from another sample simply by chance. So, if we hold a survey and identify two groups (e.g., one that experienced credit denial and the other that did not experience credit denial) and we observe differences between the two groups regarding other variables, how do we know that these two groups didn't differ simply by chance? To put it another way, how do we know that the difference between our sample means is reliable? These questions bring us to the third stage of data analysis, confirming what the data reveals.

At this point researchers typically use inferential statistics to draw conclusions based on their sample data and to determine whether their hypotheses are supported. Inferential statistics provide a way to test whether the differences in a dependent variable associated with various conditions of an experiment can be attributed to an effect of the independent variable (and not to chance factors). 

In what follows, we first introduce you to "confidence intervals," an approach for making inferences about the effects of independent variables that can be used instead of, or in conjunction with, null hypothesis testing. Then, we will discuss the more common approach to making inferences based on null hypothesis testing.

Confidence intervals 

Confidence intervals are based on the idea that data for a sample is used to describe the population from which the data is drawn. A confidence interval tells us the range of values in which we can expect a population value to be, with a specified level of confidence (usually 95%). We cannot estimate the population value exactly because of sampling error; the best we can do is estimate a range of probable values. The smaller the range of values expressed in our confidence interval, the better is our estimate of the population value.

If we now look at home ownership and age, we have for each of these two variables two sample means, one for those who experienced credit denial and one for those who did not experience credit denial. With two sample means, we can estimate the range of expected values for the difference between the two population means based on the results of the experiment.

Confidence intervals tell us the likely range of possible effects for the independent variable. The .95 confidence interval for age is -2.98 to 1.96. That is, we can say with 95% confidence that this interval contains the true difference between the population means of age in the two groups. The difference between population means could be as small as the lower boundary of the interval (i.e., -2.98) or as large as the upper boundary of the interval (i.e., 1.96). That is, the difference between the denied and non denied group in age is likely to fall within -2.98 and 1.96 years. As the confidence interval includes zero and a "zero difference" indicates there is no difference in age between the two groups. When the confidence interval includes zero, the results of the independent variable are inconclusive. We can't conclude that the independent variable, type of writing, did not have an effect because the confidence interval goes all the way to 4. However, we also have to keep in mind that the independent variable produces a zero difference so we simply don't know.

For the variable ‘house’ indicating home ownership, we can look whether the proportion of homeowners is larger in the non-denial group than in the denial group. The .95 confidence interval for the difference in the proportions is .092 to .373. In this case, the 0 indicating no differences in the proportions between the two groups is not included in the confidence interval. This suggests that homeowners are less likely to experience credit denial.
Null hypothesis testing

As we've seen, descriptive statistics alone are not sufficient to determine if experimental and comparison groups differ reliably on the dependent variable in a study. Based on descriptive statistics alone, we have no way of knowing whether our group means are reliably different (i.e. not due to chance). Confidence intervals are one way to draw conclusions about the effects of independent variables; a second, more common method is called null hypothesis testing.

When researchers use null hypothesis testing, they begin by assuming the independent variable has no effect; this is called the null hypothesis. For example, the null hypothesis for our writing experiment states that the population means for emotional writing and superficial writing are not different. Under the null hypothesis, any observed difference between sample means can be attributed to chance.   

However, sometimes the difference between sample means is too large to be simply due to chance if we assume the population means don't differ. Null hypothesis testing asks the question, ‘how likely is the difference between sample means observed in our survey (e.g., 2.0), assuming there is no difference between the population means?’ If the probability of obtaining the mean difference in our survey is small, then we reject the null hypothesis and conclude that the independent variable did have an effect on the dependent variable.

How do we know the probability of obtaining the mean difference observed in our experiment? Most often we use inferential statistics such as the t test and Analysis of Variance (ANOVA), which provides the F test. The t test typically is used to compare whether two means are different (as in our example). Each value of t and F has a probability value associated with it when the null hypothesis is assumed to be true. Once we calculate the value of the statistic, we can obtain the probability of observing the mean difference in our experiment.

In our example, because we have two means we can calculate a t test. The difference between the two age means is .51 (37.22 - 36.71). The t statistic for the comparison between the two group means is -.408, and the probability value associated with this value is .685 (these values were obtained from output from the SPSS statistics program). Does this value tell us that the mean difference of .51 is statistically significant?          

We have two possible conclusions when we do null hypothesis testing: We either reject the null hypothesis or we fail to reject the null hypothesis. Outcomes (i.e., observed differences between means) that lead us to reject the null hypothesis are said to be statistically significant. A statistically significant outcome indicates that the difference between means we observed in our study is larger than would be expected if by chance the null hypothesis were true. We conclude that the independent variable caused the difference between means. 

A statistically significant outcome is one that has only a small likelihood of occurring if the null hypothesis is true. That is, when we look at the results of our statistical test, the probability value associated with the statistic is low. But just how small does this likelihood have to be? Although there is no definitive answer to this important question, the consensus among members of the scientific community is that outcomes associated with probabilities of less than 5 times out of 100 (or .05) are judged to be statistically significant. The probability we choose to indicate an outcome is statistically significant is called the level of significance. The level of significance is indicated by the Greek letter alpha (α). Thus, we speak of the .05 level of significance, which we report as α = .05.         

When we conduct an experiment and observe that the effect of the independent variable is not statistically significant, we do not reject the null hypothesis. However, we do not accept the null hypothesis of no difference either. The results are inconclusive (this is similar to a confidence interval that includes "zero"). There may have been some factor in our experiment that prevented us from observing an effect of the independent variable (e.g., few subjects, poor operationalization of the independent variable).

To determine whether an outcome is statistically significant we compare the obtained probability value with our level of significance, " = .05. In our example, because our probability value (p = .685) is more than .05, we accept the null hypothesis and need to state that two groups do not differ in age and age does not have an effect.
If we look at the differences in home ownership between the two groups, the difference is .23 (.80-.57), that means 57% of those who experienced credit denial owned a house, but 80% of those who did not experience credit denial. This difference is significant at α = .0007, which is well below the suggested .05. Thus the difference in proportions of home ownership between the two groups is significant and we could conclude that home ownership affects the chances of credit denial.

Researchers seldom report their procedures for checking the data, but often do report their summaries and inferential statistics. These questions will help you to evaluate their statistical procedures:

• Does the researcher describe checking the data-for example, is the distribution of scores described or outliers identified?
• Are appropriate summary statistics provided for all variables-for example, are the means, standard deviations, and effect sizes reported?
• Does the researcher present inferential statistics, such as confidence intervals or results of null hypothesis significance testing?
� Blumberg, Boris F. und Wilko A. Letterie (2008) “Business starters and credit rationing” Small Business Economics 30, S. 187-200. 








