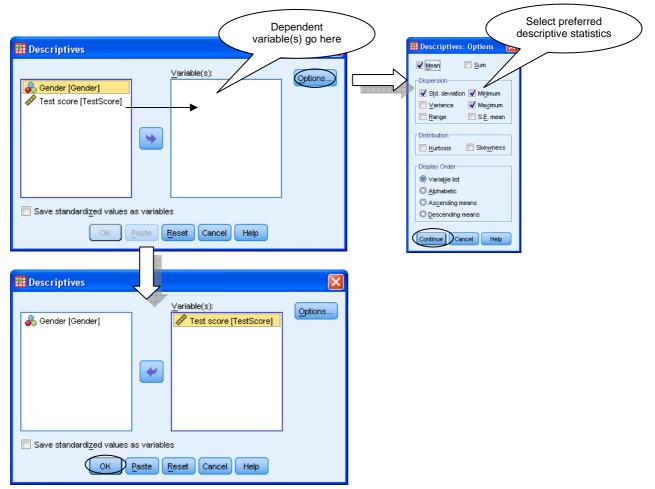

SPSS Explore procedure

One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stem-and-leaf plots and extensive descriptive statistics. To run the Explore procedure, go to the *Analyze* menu \rightarrow *Descriptive Statistics* \rightarrow *Explore*...

Analyze	Graphs	Utilities	Add-ons	Mindow	Help
Rep	orts		× .	00 ¥	
Desi	criptive Sta	listics	•	123 Frequer	ncies
Tabl	es		- P	Descrip	
Com	pare Mean:	5	- F -	A Explore	
Gen	eral Linear	Model	->	_	
Gen	erali <u>z</u> ed Lin	ear Models	- F	👫 <u>C</u> rossta	bs
Mige	d Models		- F	Ratio	
Corr	elote		- F	P-P Plot	s
Reg	ression		- F	💁 Q-Q Plo	ts
Logi	near		-		
Clas	sify		- F -		
Dime	nsion Red	action	- F -		
Son	e		- F -		
None	parametric	Tests	- F -		
Fore	casting		- F -		
Surv	ival		- F		
Multi	ple Respon	se	- F		
💯 Miss	ing Value A	Analysis			
Muti	ple Imputati	on	- F		
Com	plex Sempl	ēs.			
Qua	ity Control		- F		
ROC	Curve				

Transfer over any dependent measure variables to the *Dependent List* box by clicking on the variable and the arrow button. If you want to break results down according to different groups, transfer over the grouping variable to the *Factor List* box. To specify which plots you produce, click on *Plots* and select the desired plots. Click *Continue*. You have the option of obtaining statistics only, plots only, or both, so ensure that the correct button is selected in the *Display* section. Click on *OK* when you are ready to proceed.

III Explore	×
Dependent List: Test score [TestScore] Factor List: Gender [Gender] Label Cases by:	Statistics Plots Options
Display	
OK Paste Reset Cancel Help	

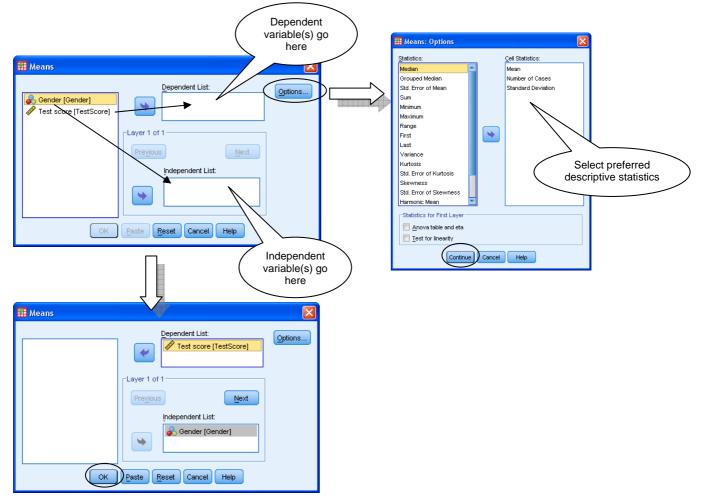

You should find that a new window – the SPSS output window – opens with the desired output. Remember to inspect histograms, boxplots and stem-and-leaf plots for any anomalies. The table entitled *Descriptives* provides you with a lot of statistics, so it's probably not best to copy this into a report – just select what is important.

SPSS Descriptives Procedure

Another useful procedure for obtaining descriptive statistics in SPSS is the Descriptives procedure. Go to the *Analyze* menu \rightarrow *Descriptive Statistics* \rightarrow *Descriptives*...

Analyze	Graphs	Utilities	Add-or	s <u>Window</u>	Help
Rep	orts		•	00 ¥	
Des	criptive Sta	tistics	+	122 Erequenci	es
Tabl	es			Descriptiv	
Com	pare Mean	3	- F	A Explore	
Gen	eral Linear	Model	- F		
Gen	erali <u>z</u> ed Lin	ear Models	•	🐺 Grosstake	i
Mi <u>x</u> e	d Models		- F	Ratio	
Corr	elate			P-P Plots.	
Reg	ression		- F	💁 Q-Q Plots	
Logi	near		•		
Clas	sity		•		
Dime	nsion Red	uction			
Sca	e				
None	parametric	Tests	- F -		
Fore	casting		•		
Sun	ival		•		
Myb	ple Respor	ise.	- F -		
🚧 Miss	ing Value A	Analysis			
Mulji	ple Imputati	ion			
Com	plex Sampl	es			
Que	ity Control				
ROC BOC	Curve				

Transfer over any dependent variables to the *Variable(s)* box. If you want to change the types of descriptive statistics presented, click on *Options* and choose the options you want. Click on *Continue*. *OK* to finish. The *Descriptive Statistics* table should appear in the SPSS output window.

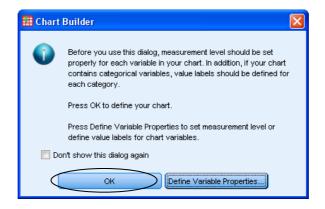


SPSS Means procedure

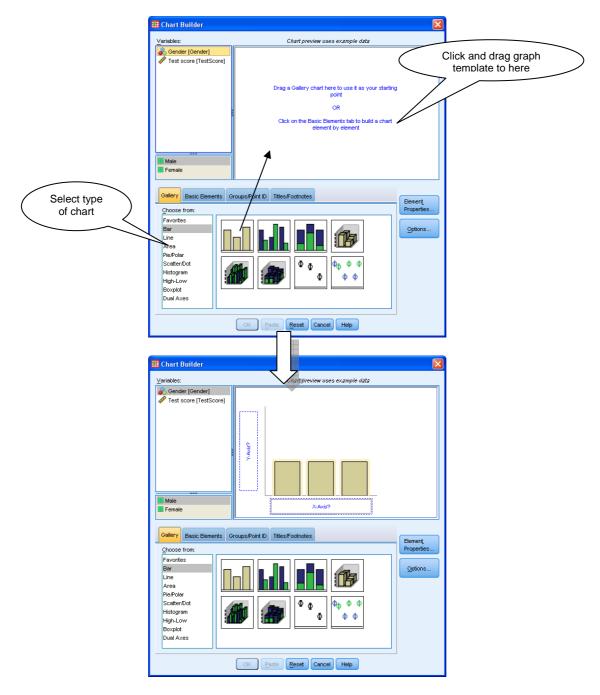
If you want to produce a table of means for different groups, you can use the Means procedure. Go to the *Analyze* menu \rightarrow *Compare Means* \rightarrow *Means*...

SI	atistics I	Data Edit	or					
	Analyze	Graphs	Utilities	Add-g	ns <u>W</u> n	dow	Help	
-	Reg	orts		*	89	*		📖 🖄
1	Des	criptive Stat	tistics.			1113)		
	Tab	es						
šc	Con	pare Mean:	\$		Me Me	ans		
	-	eral Linear		. *	3 On	p-Samp	le T Test	
		eralized Lin	vear Models	- F	3 104	ananda	nt-Samples	TTAH
1	-	d Models					nples T Tes	
	-	elate			_			L
		ression		. *	on 🔄	e-Way /	ANOVA	
-		inear						
-	Clas	-						
-		ension Redu	uction			-		
-	Scn					-		
-	_	parametric	Tests	•				
-		casting				-		
-	Sun					+		
-	-	ple Respon		•				
-		ing Value A	~			-		
-		iple Imputati		•		-		
-		plex Sampl	es					
-		ity Control				_		
-	ROC ROC	Curve						

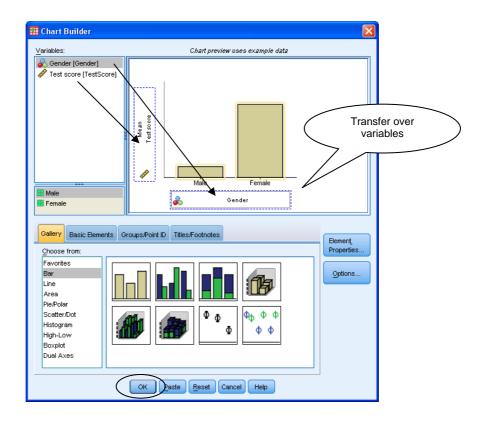
Transfer over the dependent variable to the *Dependent List* box, and the grouping variable to the *Independent List*. If you want to change what statistics appear in the output, click on *Options* and transfer over the desired statistics to the *Cell Statistics* box; click on *Continue*. Click on *OK* to finish. You now have a nice table of means and standard deviations!



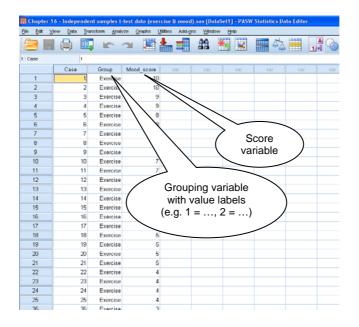
Producing graphs in SPSS


In SPSS, there are two main ways of producing graphs – the interactive Chart Builder option or the Legacy Dialogs option. The Chart Builder is more flexible and intuitive, so we will focus on that. To run the Chart Builder, go to the *Graphs* menu \rightarrow *Chart Builder*...

atistics	Data Edi	tor			
Analyze	Graphs	Utilities	Add-ons	Window	Help
	ili o	hart Builder.			
	<u></u>	aphboard 1	emplate Cha	oser	
r	Le	egacy Dialog	js	1	•
ore	var	va	r	var	var
21					
34					
19					
18					
22					
21					
20					


You may get a message warning you to make sure that the measurement level for each variable is correct. If you are happy that you selected the correct scale of measurement in the *Measure* column in the Variable View, then click on *OK* to proceed.

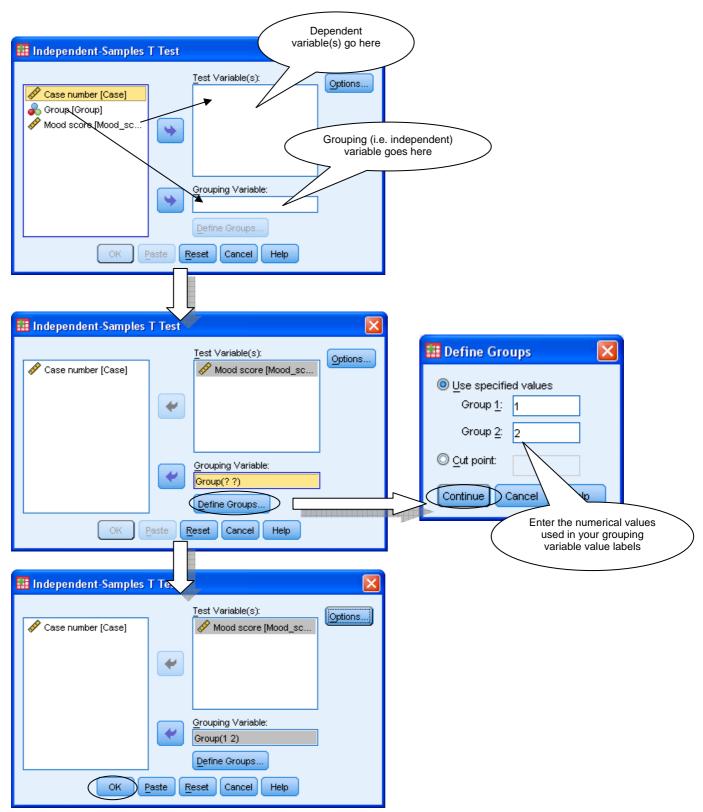
In the Chart Builder dialog box, select the desired type of graph from the *Choose from* list, click on the appropriate picture of a graph and transfer it to the *Chart Preview* window.


You can then click and transfer variables over to the *Chart Preview* window until you're happy with what appears in the preview. Note that the preview doesn't show the graph exactly as it will finally appear, but it gives you the general idea. Clicking on *Element Properties* will allow you to make changes to the graph (e.g. display median rather than mean). When you're ready, click on *OK*.

If you want to edit the finished graph in the SPSS output window, double-click anywhere on the graph. The Chart Editor window will open and you can edit by clicking on elements of the graph (e.g. axes, bars) and using the menus. The best way to learn how to use this function is to just have a go.

SPSS procedure for independent samples t-test

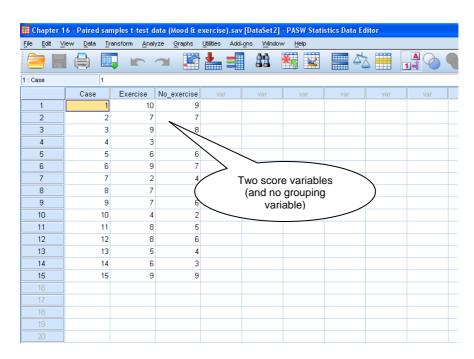
Before running an independent samples *t*-test you should check that your data are in the appropriate format. As you are comparing different groups, you will need a variable which indicates which group someone belongs to. Remember to use value labels (e.g. 1 = ..., 2 = ...). You will also need a score variable, giving each participant's individual score.



You should explore the data thoroughly (e.g. by producing histograms, boxplots etc.) to check that the assumptions of the test have been met. Once you are satisfied that the parametric assumptions have been met, you can run the *t*-test. Go to *Analyze* \rightarrow *Compare Means* \rightarrow *Independent-Samples T Test...*

Monte Organity Other instruction Other instruction Registra Addiegra Vertical Registra Vertical Vertical Description Vertical Vertical Tables Vertical Vertical Tables Vertical Vertical Concording Liner Models Vertical Exe General Liner Models Exe Begression Vertical Exe General Reauction Vertical Exe Dispective Vertical Exe Scale Vertical Exe Magnetal Response Vertical Exe Magnetal Response Vertical Exe Magnetal Response Vertical Exe Magnetal Response Vertical Exe Output Vertical Exe	amp	les t-tes	t data (ex	ercise 8	i mood	l).sav [Da	taSet1] - PASV	/ Statisti	cs Dat
Descriptive Statistics Image: Competence of the statistics Tables Image: Competence of the statistics Tables Image: Competence of the statistics Trades Image: Competence of the statistics Eve General Linear Model Image: Competence of the statistics Image: Competence of the statistics Eve General Linear Model Eve Competer Statistics Eve Scale Eve Scale Eve Scale Eve Scale Eve Scale Eve Scale Eve Magtele Response Eve Magtele Response Eve Magtele Response Eve Conglex: Samples	rm	Analyze	Graphs	Lillies	Add-g	ns <u>Wi</u> nd	ow H	elip		
Eve General Linear Model Image: Consention of the section of the sectin of the section of the section of the section of the sect		Desi Tabl	criptive Stal es				*:	2		4
	Exe Exe Exe Exe Exe Exe Exe Exe Exe Exe	Gen Gen Mige Corr Regr Logi Clas Sogi Son Ford Surv Migt Miss Miss Com	eral Linear eralized Lin el Models elate ression inear sity ansion Redu le parametric costing vival ple Respon sing Value / ple Imputati plex Sampk Ity Control	Model ear Models action Tests se unalyzeis on	р 1 - Р	Cone-	Sample 1 bendenţ- d-Sampli	Samples 1 es T Test.		

In the *Independent-Samples T Test* dialogue box, transfer the dependent variable (e.g. Scores) to the *Test Variable(s)* box and the independent variable (e.g. Confederate) to the *Grouping Variable* box. (You transfer over variables by clicking on the variable and then the arrow button.)


Click on *Define Groups*... and specify the values used in your Value Labels coding scheme (usually 0 and 1 or 1 and 2). Click on *Continue*.

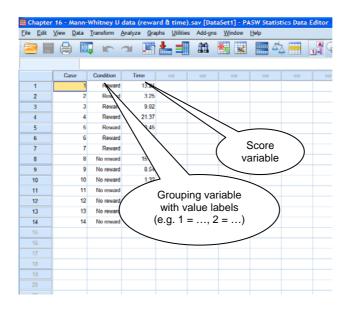
(If you want to change the default confidence interval setting of 95%, you can click on *Options...* and change the value.) Click on *Continue*. *OK* to run the *t* test.

SPSS procedure for paired samples *t*-test

Before proceeding with the paired samples *t*-test check that your data are laid out appropriately. The two sets of scores being compared should be in two separate variables (i.e. each "case" has two scores). Note that there is no need for a grouping variable here as you are not comparing independent groups.

Once you have explored the data and are satisfied that the parametric assumptions have been met, you can run the *t*- test. Go to Analyze \rightarrow Compare Means \rightarrow Paired-Samples T Test...

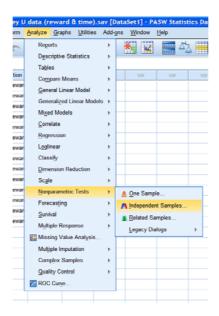
s t-t	est data	(Mood &	exercise)	.sav [DataSet2	2] - PAS	W Stati	stics Dat	a Editor
rm	<u>A</u> nalyze	Graphs	Utilities	Add-o	ns <u>Wi</u> nd	low <u>H</u>	elp		
	Repo	orts		•	<u>Å</u>	*			Az
	Desc	criptive Sta	tistics						
	Table	es		•					
erc	Com	pare Mean	s	- Þ.	Mea	ns			
	Gen	eral Linear	Model	•	🚺 One	-Sample	T Test		
	Gen	erali <u>z</u> ed Lir	near Models	•	_		Samples '	Tool	
	Mi <u>x</u> e	d Models		•					
	Corr	elate		•			es T Test		
	Regr	ression		•	🚺 <u>O</u> ne	-Way AN	OVA		
	Logli	inear		•					
	Clas	si <u>f</u> y		•					
	Dime	ension Red	uction	•					
	Scal			•					
	Non	parametric	Tests			_			
	Fore	casting		•		_			
	Surv					_			
	Multi	ple Respor	ise			_			
	💋 Miss	ing Value /	Anal <u>y</u> sis			_			
	Mulți	ple Imputat	ion	•		_			
	Com	plex Sampl	es			_			
	Qual	lity Control							
	🖉 ROC	Cur <u>v</u> e							
						_			

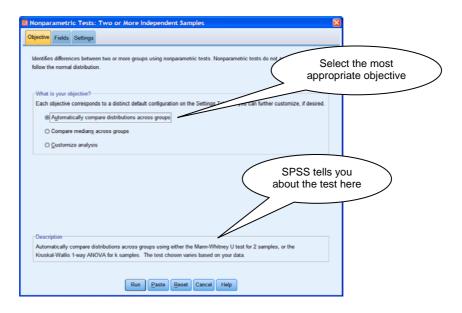

In the Paired-Samples T test dialogue box, transfer over your paired variables to the Paired Variables box using the arrow button – one variable to the Variable1 column and the other to Variable2.

		\langle	Transfer over the two score variables to here	
🏭 Paired-Samples T Test			×	
Case number [Case]	OK F	Paired <u>Variables:</u> Pair Variable1 Variable2 1 aste Reset Cancel Help	Qptions ↑ ↓	
📅 Paired-Samples T Test			×	
Case number [Case]	*	Paired Variables: Pair Variable1 Variable2 1 Mood sc Mood s 2	C	
	OK	easte Reset Cancel Help		

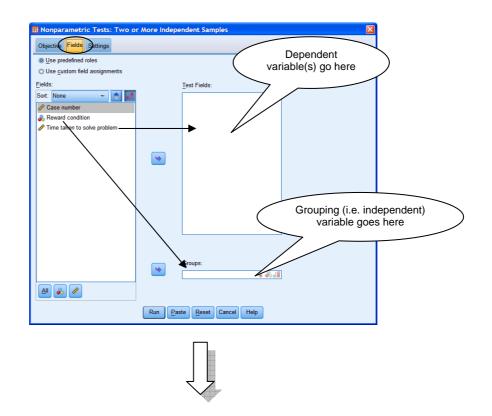
(If you want to change the confidence interval, go to *Options...*, change the value and click *Continue*.) Press *OK* to run the paired samples *t*-test.

SPSS Procedure for Mann-Whitney U-test


First of all, check that your data are laid out appropriately. They should be in the same format as for an independent-samples t test, with a grouping variable and a score variable.


There are two different ways of running the Mann-Whitney *U*-test in newer versions of SPSS (version 18 and on): (1) using the automatic "Independent Samples" procedure, or (2) using the "Legacy Dialogs" procedure. The output produced by both methods is quite different. Note that if you are using an earlier version of SPSS, you can only use the second option here.

(1) Running the Mann-Whitney U-test using the automatic "Independent Samples" procedure

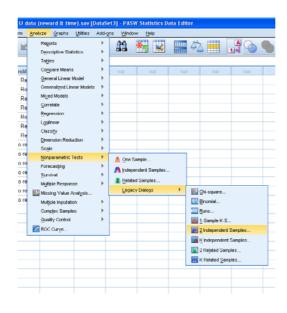

To run the "automatic" Mann-Whitney *U*-test in newer versions of SPSS, go to *Analyze* \rightarrow *Nonparametric Tests* \rightarrow *Independent Samples...*

Under *Objective*, check that your objective is to automatically compare distributions across groups. Notice that in *Description* at the bottom of the window SPSS tells you that Mann-Whitney U has been selected.

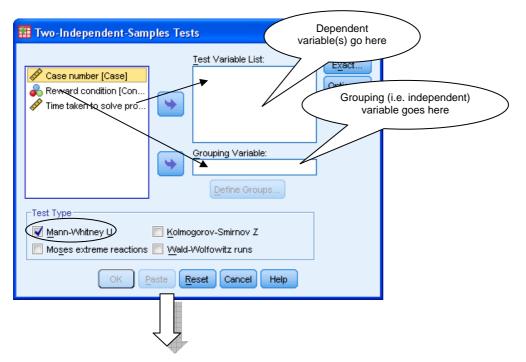
Click on the *Fields* tab, and transfer over the variables, with the dependent variable(s) going to the *Test Fields* box, and the grouping (i.e. independent) variable going to the *Groups* box. When you are ready you can click on *Run* to run the test.

🔢 Nonparametric Tests: Two o	r More Indepe	ndent Samples	×
Objective Fields Settings			
O Use predefined roles			
Ose custom field assignments			
<u>F</u> ields:		Test Fields:	
Sort: None 👻 🌲		🔗 Time taken to solve problem	
🛷 Case number			
	\$		
	-		
		a de la companya de la	
		47	
		Groups:	
	*	Reward condition	
	Run Pas	te Reset Cancel Help	

Alternatively, if you don't like the idea of letting SPSS automatically decide the type of analysis for you, you can always click on the *Settings* tab, click on *Customize tests* and select *Mann-Whitney U (2 samples)* and run the test that way.

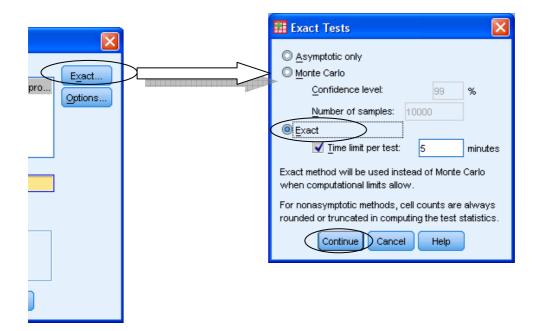

Select an item:	Automatically choose the tests based on the test in the test is	Select test here
Test Options User-Missing Values	© <u>Customize tests</u>	
	Mann-Whitney U (2 samples	
	wann-winney O (2 samples	Multiple comparisons: All pairwise
	Kolmogorov-Smimov (2 sam	oles) Test for ordered alternatives (Jonckheere-Terpstra for k samples)
	Test sequence for randomne	
	(Wald-Wolfowitz for 2 samp	es) Multiple comp <u>a</u> risons: All pairwise
	Compare Ranges across Groups	Compare Medians across Groups
	Moses extreme reaction (2 s © Compute outliers from sar © Custom number of outliers Qutiers: 1	nple
	Estimate Confidence Interval acro	oss Groups
	🥅 Hodges-Lehman estimate (2	samples)

The output produced by these methods is fairly basic, but it does tell you whether the null hypothesis was supported or not. To get more detail on the test results (e.g. test statistic), double-click on the output; the Model Viewer window will open, which provides a bar chart and further statistics.


(2) Running the Mann-Whitney U-test using the "Legacy Dialogs" procedure

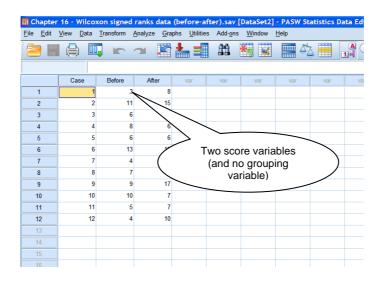
If you are using a version of SPSS earlier than version 18, the "automatic" Mann-Whitney Utest will not be available; you will have to use a different method to run the test. You may also want to use this alternative method if you are using SPSS 18 (or newer version) but have had experience with the earlier method of running the test.

To run the Mann-Whitney U test in SPSS 18 (and newer), go to Analyze \rightarrow Nonparametric Tests \rightarrow Legacy Dialogs \rightarrow 2 Independent Samples... In earlier versions of SPSS, go to Analyze \rightarrow Nonparametric Tests \rightarrow 2 Independent Samples...


In the *Two-Independent-Samples Tests* dialogue box, transfer over the dependent variable to the *Test Variable List* box and the independent variable to the *Grouping Variable* box. Make sure that *Mann-Whitney U* is selected under *Test Type*.

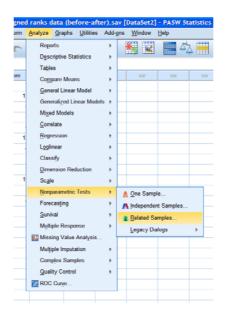
III Two-Independent-Sam	ples Tests		
🖋 Case number [Case]	Test Variable List:	Exact Options	
Test Type Mann-Whitney U Moses extreme reactions			Group <u>1</u> : 1 Group <u>2</u> : 2 Continue Car Help
OK	Cancel Help		Enter the numerical values used in your grouping variable value labels

Click on *Define Groups* and specify the values used in your grouping variable coding scheme. Click on *Continue*.


By default, SPSS calculates p values for some non-parametric tests using a method that is suitable for larger samples. However, it is not always accurate for smaller samples or very unusual data distributions. You are therefore recommended to change this method of calculation to give you the most accurate p value. Click on *Exact...* and select *Exact.* (Don't worry too much about the time limit per test – if the data set is very large, the exact calculation can take some time, but your data sets are unlikely to be huge.) Click on *Continue. OK* to run the test.

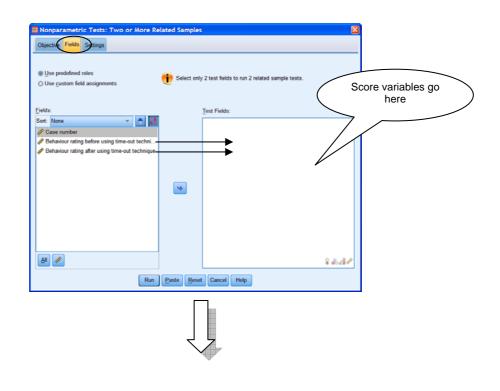
III Two-Independent-Sam	ples Tests		
✓ Case number [Case]	Test Variable List: Image: Time taken to solve pro Grouping Variable: Condition(1 2) Define Groups	Exact	
Test Type ✓ Mann-Whitney U Moses extreme reactions	Edimogorov-Smirnov Z Wald-Wolfowitz runs		

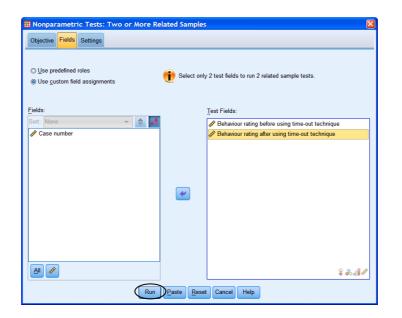
SPSS procedure for Wilcoxon Signed Ranks Test (& Sign Test)


Before proceeding, check that your data are laid out correctly– you should have one row per participant/case and two score variables.

There are two different ways of running the Wilcoxon Signed Ranks test (and the Sign Test) in newer versions of SPSS (version 18 and on): (1) using the automatic "Related Samples" procedure, or (2) using the "Legacy Dialogs" procedure. The output produced by both methods is quite different. Note that if you are using an earlier version of SPSS, you can only use the second option here.

(1) Running the Wilcoxon Signed Ranks test (& Sign Test) using the automatic "Related Samples" procedure

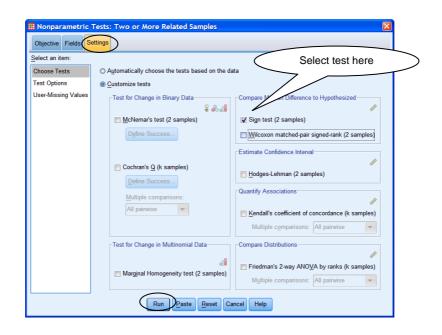

To run the "automatic" Wilcoxon Signed Ranks test in newer versions of SPSS, go to Analyze \rightarrow Nonparametric Tests \rightarrow Paired Samples...



Under *Objective*, check that your objective is to automatically compare observed data to hypothesized. Notice that in *Description* at the bottom of the window, SPSS tells you that Wilcoxon Matched-Pair Signed-Ranks is suitable.

Ionparametric Tests: Two or More Related Samples	×	
sjective Fields Settings		
Identifies differences between two or more related fields using one or more nonparametric tests. Nonparam assume your data follow the normal distribution.		t the most ate objective
-What is your objective?		
Each objective corresponds to a distinct default configuration on the Settinger and you can further customize,	if desired.	
Automatically compare observed data to hypothesized		
Customize analysis		
Description		SPSS tells you bout the test here
Automatically compare observed data to hypothesized data using McNemar's Test, Cochran's Q, Wilcoxon Match Signed Rank, or Friedman's 2-Way ANOVA by Ranks. The test chosen varies based on your data.	ned-Pair	
Run Paste Reset Cancel Help		

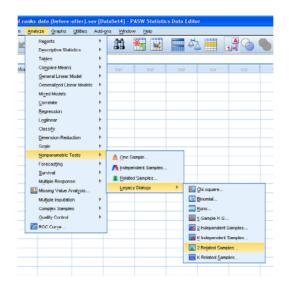
Click on the *Fields* tab, and transfer over the two score variables that you want to compare. When you are ready you can click on *Run* to run the test.

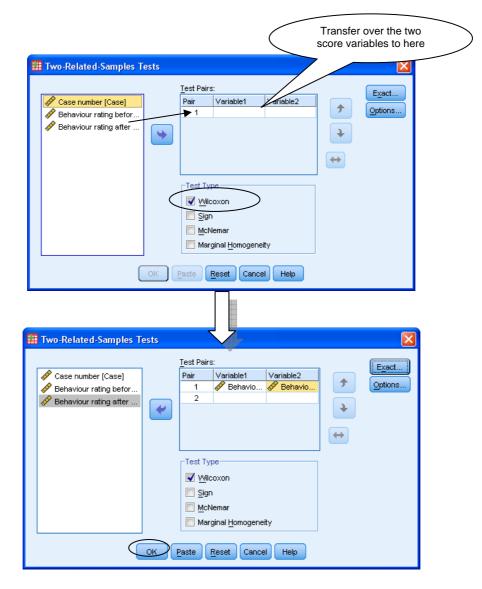


Alternatively, if you don't like the idea of letting SPSS automatically decide the type of analysis for you, you can always click on the *Settings* tab, click on *Customize tests* and select *Wilcoxon matched-pair signed-ranks (2 samples)* and run the test that way.

🔢 Nonparametric	Tests: Two or More Related Samples		
Objective Fields	Settings		
Select an item:			
Choose Tests Test Options User-Missing Values	Automatically choose the tests based on the da O Qustomize tests Test for Change in Binary Data	ata Sele	ct test here
	۲ همیا ۲ McNema's test (2 samples) ۲ Define Success ۲ Cochran's Q (k samples) ۲ Define Success Multiple comparisons: ۸ Alt pairwise ▼	Sign test (2 samples) Sign test (2 samples) Sign test (2 samples) Estimate Confidence Interval Hodges-Lehman (2 samples) Quantify Associations Kendall's coefficient of concordance (k samples)	
	Test for Change in Multinomial Data	Multiple comparisons: All pairwise	
	Run Paste Reset Ca	ancel Help	

The output produced by these methods is fairly basic, but it does tell you whether the null hypothesis was supported or not. To get more detail on the test results (e.g. test statistic), double-click on the output; the Model Viewer window will open, which provides a bar chart and further statistics.


To run the Sign Test using this method, follow the same procedure as for the Wilcoxon Signed Ranks Test, but under the *Settings* tab, select *Sign test (2 samples)* before running the test.


(2) Running the Wilcoxon Signed Ranks test using the "Legacy Dialogs" procedure

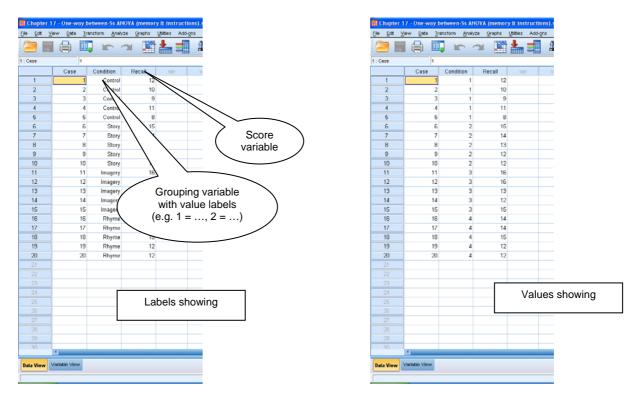
If you are using a version of SPSS earlier than version 18, the "automatic" Wilcoxon signed ranks test procedure will not be available; you will have to use a different method to run the test. You may also want to use this alternative method if you are using SPSS 18 (or newer version) but have had experience with the earlier method of running the test.

To run the Wilcoxon signed ranks test in SPSS 18 (and newer), go to Analyze \rightarrow Nonparametric Tests \rightarrow Legacy Dialogs \rightarrow 2 Related Samples... (In earlier versions of SPSS, go to Analyze \rightarrow Nonparametric Tests \rightarrow 2 Related Samples...)

In the *Two-Related-Samples Test* dialogue box, transfer over your paired variables to the *Test Pairs* box and ensure that *Wilcoxon* is selected under *Test Type*.

By default, SPSS calculates p values for some non-parametric tests using a method that is suitable for larger samples. However, it is not always accurate for smaller samples or very unusual data distributions. You are therefore recommended to change this method of calculation to give you the most accurate p value. Click on *Exact...* and select *Exact.* (Don't worry too much about the time limit per test – if the data set is very large, the exact calculation can take some time, but your data sets are unlikely to be huge.) Click on *Continue. OK* to run the test.

	🔢 Exact Tests 🛛 🔀
Exact	 Asymptotic only Monte Carlo Confidence level: 93 % Number of samples: 10000 Exact Time limit per test: f minutes Exact method will be used instead of Monte Carlo when computational limits allow. For nonasymptotic methods, cell counts are always rounded or truncated in computing the test statistics. Continue Cancel Help


Click on *Exact*... to request that an exact *p* value is calculated. Click on *Continue*. Click on *OK* to run the analysis.

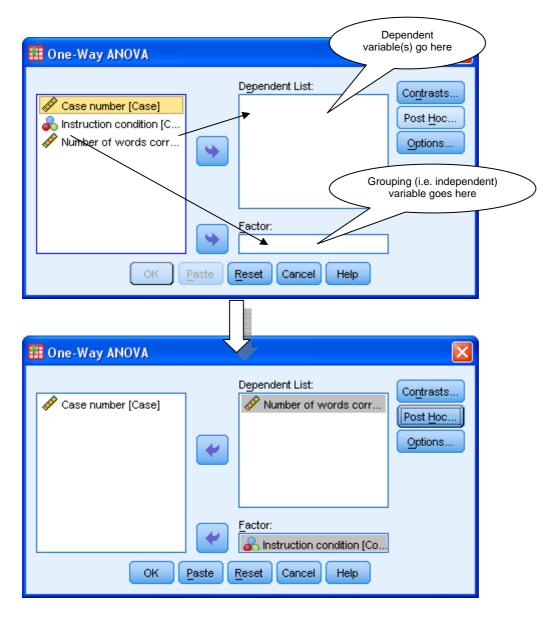
To run the Sign Test using this method, follow the same procedure as for the Wilcoxon Signed-Ranks test, but deselect *Wilcoxon* and select *Sign* under *Test Type* before running the test.

III Two-Related-Samples T	ests			
Case number [Case]	•	Test Pairs: Pair Variable1 Variable2 1 Pair Pariable1 Variable2 1 Pair Pariable3 Pariable3 Pair Pair Pair Pair Pair Pair Pair Pair	 ★ ★ 	Exact Options
	ок	Paste Reset Cancel Help		

SPSS procedure for one-way between-subjects ANOVA

Before any analysis can take place, check that your data are laid out in the appropriate format. In order to run a one-way between-subjects ANOVA in SPSS you need a grouping variable (remember to use value labels, e.g. 1 = control, 2 = imagery and so on) and a variable for each participant's score. (Remember that you can switch between whether you see the values or the value labels by clicking on the solution in the toolbar or by going to the *View* menu and selecting *Value Labels*.)

Next, you should explore your data to determine whether the parametric assumptions of the test have been met. If they have been satisfied, you can proceed with the ANOVA.


There are two different ways to run a one-way between-subjects ANOVA in SPSS: (1) using the One-way ANOVA procedure, which is a simple method and produces simpler output, or (2) using the Univariate procedure, which can be slightly more complicated to run, but provides more control and more detailed output (including effect sizes).

(1) Running the one-way between-subjects ANOVA using the One-way ANOVA procedure

To run the one-way between-subjects ANOVA, go to the *Analyze* menu \rightarrow *Compare means* \rightarrow *One-Way ANOVA*...

аш п	Analyze	<u>G</u> raphs	Utilities	Add-g			10] - P A1	SW Stat	istics Dat
K	Reg Desi Tabl	criptive Stat	istics	* * *	22	*,			<i>₫</i> 2 [
	Com Gen Gen Mote Cor Engl Lool Clas Sog Son Fore Surv Muti Was Mas Mas Com	pare Means eral Linear I crolized Lin di Models elabe ression inear sily mision Redu e parametric 1 casting tival ple Respon ing Value A ple Imputati plex Sample tty Control	Model ear Models action Tests se unalyzeis on	* * * * * * * * * * * * *		Sample 1 ienden(-) d-Sample	Samples T es T Test.		
	4	10							

Transfer over the score variable to the *Dependent List* box, and the grouping variable to the *Factor* box.

To make post hoc comparisons, click on *Post Hoc...*, select the test of choice and click *Continue*. For a one-way between-subjects ANOVA, you are recommended to use Tukey's HSD test, so select *Tukey*.

	III One-Way ANOVA: Post Hoc Multiple Comparisons				
	Equal Variances Assumed Select post hoc test				
	LSD S-N-K Jun antCan				
Contrasts	Bonferroni Tukey Type I/Type II Error Ratio: 100				
Post Hoc	Tukey's-b 🔲 Dunnett				
Options	Scheffe Duncan Control Category : Last				
	R-E-G-WF Education Hochberg's GT2				
	R-E-G-W Q Gabriel O 2-sided Control > Control				
	Equal Variances Not Assumed				
_	🔲 Tamhane's T2 🔲 Dunnett's T3 📄 Games-Howell 📄 Dunnett's C				
io	Significance level: 0.05				
	Continue Cancel Help				

Clicking on *Options...* allows you to select *Descriptive* (for a table of descriptive statistics) and *Homogeneity of variance test* (to check if this assumption has been met). Click on *Continue*.

	🔢 One-Way ANOVA: Options 🛛 🔀
Contrasts Post Hoc	Statistics
:o	Means plot Missing Values Exclude cases analysis by analysis Exclude cases listwise
	Continue Cancel Help

When you are ready to run the ANOVA, click on OK.

Sinstruction condition [Co	
OK Paste Reset Cancel Help	

(2) Running the one-way between-subjects ANOVA using the Univariate procedure

To run this method, go to Analyze \rightarrow General Linear Model \rightarrow Univariate...

een-	Ss ANOV	A (memo	ry & inst	ructio	ns).sav	[DataSe	st5] - PA	SW Statis	lic
rm	Analyze	Graphs	Utilities	Add-g	ns <u>Wi</u> nk	sow b	<u>t</u> elp		
K	Rego Desc	orts criptive Stal	listics) }	83	*	¥		5
	Toble	es		- F					
indit	Com	pare Mean:	5	· >	var		var	var	
_	Gene	eral Linear	Model	*	🔛 Univ	ariate			
	Gene	eralized Lin	ear Models	- F	Mut				
_	Mize	d Models		- Þ	_		asures		
	-	elate		•					
_		ression		- *	⊻ar	iance Co	mponents		
_		near							
	Class	-							
_		insion Redi	uction						
	Scal								
-		parametric '	Tests			-			
		casting		,		-			
	Surv								
		ple Respon				-			
	💯 Miss	ing Value A	Anal <u>y</u> sis						
		ple Imputati				_			
	Com	plex Sample	es	•		-			
	Qual	ity Control		- P-					
	🖉 ROC	-				_			
	4	15		_		_			
	4	47	1						

Transfer over the score variable to the *Dependent Variable* box and the grouping variable to the *Fixed Factor(s)* box.

	Dependent variable goes here
III Univariate	
Case number [Case] Instruction condition [C Instruction condition [C Number of words corr Random Factor(s): Covariate(s): WLS Weight: OK Paste Reset Cancel	Grouping (i.e. independent) variable goes here Post Hoc Save Options

🔢 Univariate			×
✓ Case number [Case]	•	Dependent Variable:	Model Contrasts Plots Post Hoc Save Options
	*	Covariate(s):	
ОК	Paste	Reset Cancel Help	

A line graph of the group means is often quite helpful when trying to interpret an ANOVA result. To obtain one, click on *Plots...*, transfer over the grouping variable to the *Horizontal Axis* box, click *Add* and *Continue*. (You must remember to click on Add, or the plot won't appear in your output.)

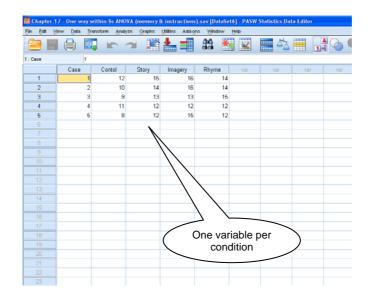
	Univariate: Profile Plots	Transfer over factor (i.e. independent variable)
e Model Contrasts Plots	Eactors: Condition Separate Lines:	
Post <u>H</u> oc Save Options	Plots: Add Change Remove	
	Continue Cancel Help	

	🔠 Univariate: Profile Plots 🛛 🔀
	Eactors: Horizontal Axis:
	Separate Lines:
The plot that will appear in	Separate Plots:
your output will show here	Plots: <u>A</u> dd Change Remove
	Condition
	Continue Cancel Help

To request post hoc tests, click on *Post Hoc...*, transfer over the grouping variable to the *Post Hoc Tests For* box and select the test of choice. You are recommended to use Tukey's HSD test here, so select *Tukey*. Click on *Continue*.

	🔠 Univariate: Post Hoc Multiple Comparisons for Observed 🛛					
e Contrasts Plots Post Hoc Save Options	Factor(s): Condition Equal Variances Assumed LSD S-N-K Bonferroli Tukey Sidak Tukey's-b Gabriel E Equal Variances Not Assumed Tamhane's T2 Tamhane's T2 Dunnett's Tamhane's T2	Post Hoc Tests for: Condition Transfer over the independent variable (factor) Type I/Type I Internet Dunnett Select post hoc test ortrol				

Clicking on the *Options*... button allows you to make some additional requests such as descriptive statistics, estimates of effect size and tests of homogeneity of variance. Click on *Continue* when you have finished with the options.

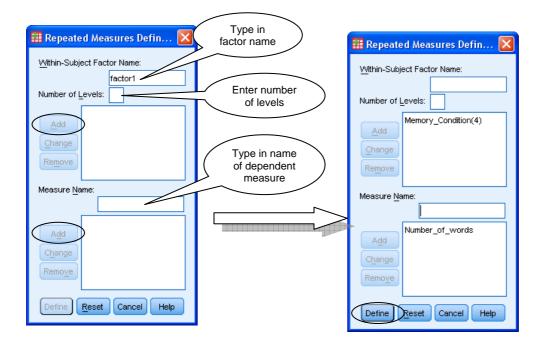

	🏭 Univariate: Options	
e Contrasts Plots Post Hoc Save	Estimated Marginal Means Factor(s) and Factor Interactions: (OVERALL) Condition	Display Means for: Image: Display Compare main effects Compare main effects Confidence interval adjustment: LSD(none)
		Homogeneity tests Spread vs. level plot Residual plot Lack of fit General estimable function intervals are 95.0 % ancel Help

When you are ready to proceed with the ANOVA, click on the *OK* button.

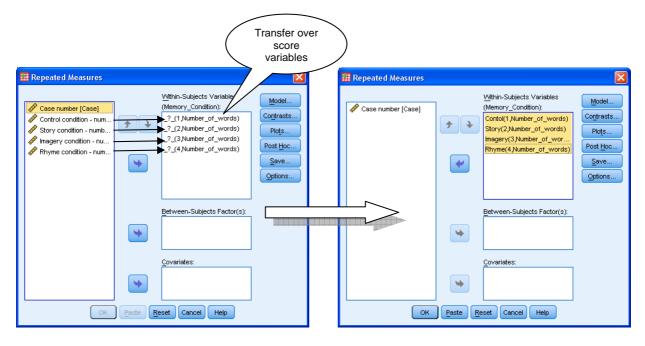
	YLS Weight:
ок І	Paste Reset Cancel Help

SPSS procedure for one-way within-subjects ANOVA

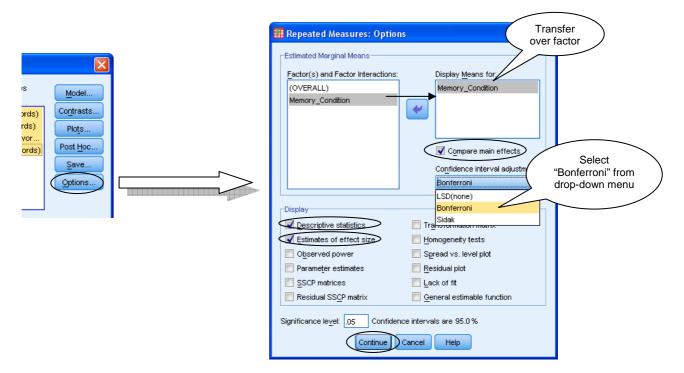
To begin with, ensure that your data are in the correct format, with one variable per condition. For example, if an experiment had four conditions (within-subjects), each participant will need a separate variable for each of their four scores. Note that there is no need for a grouping variable and value labels as there are no separate groups.

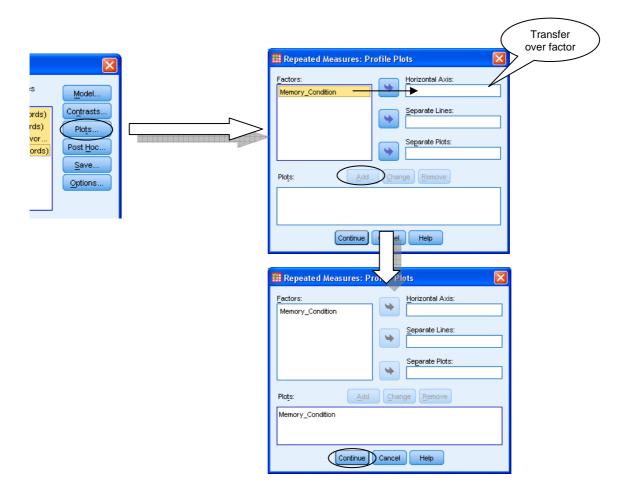


You should then explore your data and check that the assumptions of the test are met.


To run the one-way within-subjects ANOVA, go to Analyze \rightarrow General Linear Model \rightarrow Repeated Measures...

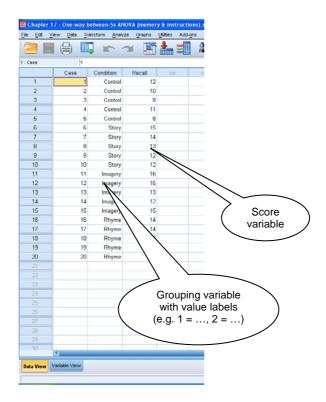
4	nalyze	Graphs	Utilities	Add-g	ns <u>Wi</u> nd	ow H	elp		
	Rep	orts			44	*			
	Desi	criptive Stat	tistics						
	Tabl	85							
	Com	pare Mean:	3	- F	Rhym	e	var	y:	
	Gen	eral Linear	Model	- F.	Univ	ariate			
	Gen	eralized Lin	ear Model:	s 🕨	Muti	variate			
	Mi <u>x</u> e	d Models		- P-	Rep				
	Corr	elate		- P					
		ression		- F	⊻ari	ance Cor	rponents.		
	Logi	near						-	
	Clas								
	Dime	nsion Redu	action			-			
	Scal								
	None	sarametric '	Tests			-			
		casting		. *		-			
	Sun								
	-	ple Respon				_			
	🚰 Miss	ing Value A	Analysis						
	Mulți	ple Imputati	on			_		_	
	Com	pļex Sampli	es						
	Qual	ity Control		•				_	
	ROC	Curve							


In the *Repeated Measures Define Factor(s)* window you need to tell SPSS what your withinsubjects factor (i.e. independent variable) was and how many levels (i.e. conditions) it had. Change "factor1" in the *Within-Subject Factor Name* box to something meaningful (e.g. Memory_Condition) and type in the number of levels. Click *Add*. You can also enter the dependent variable in the *Measure Name* box (e.g. Number_of_words), to remind you what the numbers in the score columns represent, if you want (it's not essential). Click *Add* and then *Define*.


You should now transfer over your score variables for each of the conditions to the *Within-Subjects Variables* box.

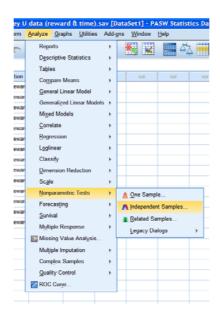
To obtain post hoc tests for the one-way within-subjects ANOVA you <u>don't</u> click on *Post Hoc...* (this is only used for more complex mixed designs), but click on *Options...* instead. Transfer over the factor name to *Display Means* for, click on *Compare main effects* and select a post hoc test from the drop-down menu. You are recommended to use *Bonferroni* as it makes adjustments for the number of comparisons made. You should also select *Descriptive statistics* and *Estimates of effect size*. Click on *Continue*.

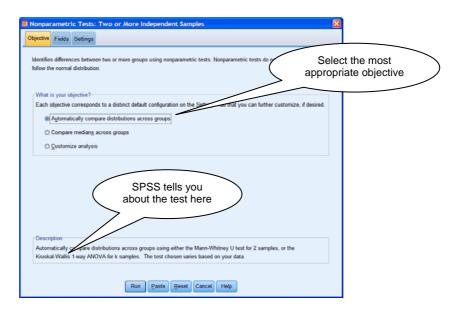
If you would like a line graph of the means, click on *Plots...*, transfer over the factor name to *Horizontal Axis*, click on *Add* and *Continue*.



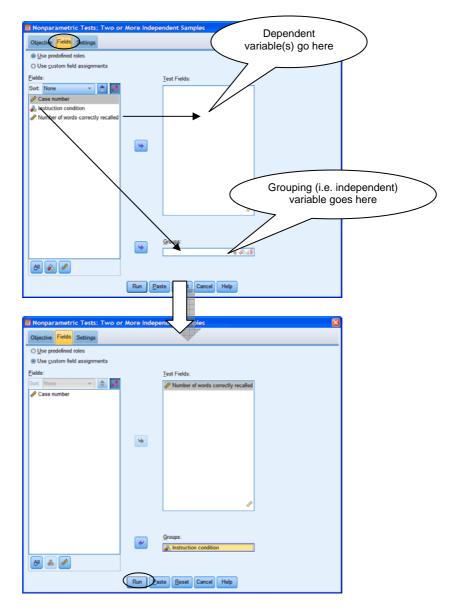
When you are ready to run the analysis, click on *OK*.

SPSS procedure for Kruskal-Wallis test


To run the Kruskal-Wallis test, first check that your data are laid out correctly, with a grouping variable and a score variable.


There are two different ways of running the Kruskal-Wallis test in newer versions of SPSS (version 18 and on): (1) using the automatic "Independent Samples" procedure, or (2) using the "Legacy Dialogs" procedure. The output produced by both methods is quite different. Note that if you are using an earlier version of SPSS, you can only use the second option here.

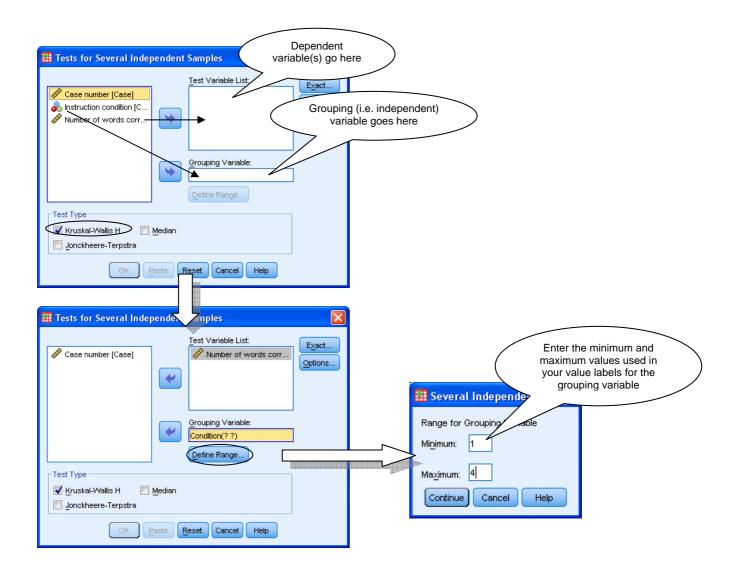
(1) Running the Kruskal-Wallis test using the automatic "Independent Samples" procedure


To run the "automatic" Kruskal-Wallis test in newer versions of SPSS, go to Analyze \rightarrow Nonparametric Tests \rightarrow Independent Samples...

Under *Objective*, check that your objective is to automatically compare distributions across groups. Notice that in *Description* at the bottom of the window SPSS tells you that Kruskal-Wallis has been selected.

Click on the *Fields* tab, and transfer over the variables, with the dependent variable(s) going to the *Test Fields* box, and the grouping (i.e. independent) variable going to the *Groups* box (SPSS will automatically choose Kruskal-Wallis if the grouping variable has three or more groups). When you are ready you can click on *Run* to run the test.

Alternatively, if you don't like the idea of letting SPSS automatically decide the type of analysis for you, you can always click on the *Settings* tab, click on *Customize tests* and select *Kruskal-Wallis 1-way ANOVA (k samples)*. If you would like post hoc multiple comparisons, you can select this from the drop-down. Don't forget to click on *Run*.


(2) Running the Kruskal-Wallis test using the "Legacy Dialogs" procedure

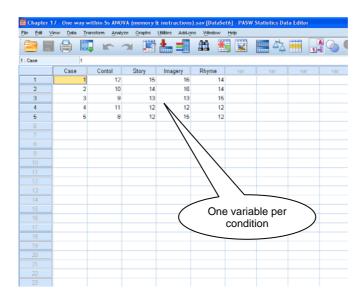
If you are using a version of SPSS earlier than version 18, the "automatic" Kruskal-Wallis test will not be available; you will have to use a different method to run the test. You may also want to use this alternative method if you are using SPSS 18 (or newer version) but have had experience with the earlier method of running the test.

To run the Kruskal-Wallis test in SPSS 18 (and newer), go to Analyze \rightarrow Nonparametric Tests \rightarrow Legacy Dialogs \rightarrow K Independent Samples... (In earlier versions of SPSS, go to Analyze \rightarrow Nonparametric Tests \rightarrow K Independent Samples...)

-Ss ANOV. Analyze	A (memory & insti Graphs Utilities	Add-o			SW Sta	tistic	s Data Edi	itor	
Rep		*				1.84		A	
-	riptive Statistics		22			-44		াৰ 🎱	
Toble									
-	pare Means		var	var	va		var	var	
-	eral Linear Model		9.00	1.01				109	-
-	eralized Linear Models								
Mixe	d Models								-
Corr	elate								
Regr	ession								-
Logi	neor							_	-
Clas	sify								
Dime	nsion Reduction								_
Scal	e								_
None	parametric Tests		A One S	Sample					
Fore	casting	- P-		endent Samples					_
Surv	tvol	- P-							_
Multi	ple Response	- F		ed Samples					_
💋 Miss	ing Value Analysis		Legar	y Dialogs	•	<u>%</u> =	Chi-square		
Mutj	ple Imputation					0/1	Binomial		
Com	plex Samples					1111	Runs		
Qual	ity Control						1-Sample K-	S	
ROC	Curve						2 Independe	nt Samples	
4	15							ent Samples	
4	12					_	2 Related St		
4	12					_			
						44	K Related S	ampies	

Check that *Kruskal-Wallis H* is selected under *Test Type*. You should transfer over your score variable to the *Test Variable List* box, and the grouping variable to the *Grouping Variable box*. Click on *Define Range* and enter the lowest and highest of the numbers in your *Value Labels* coding scheme, and then click *Continue*.

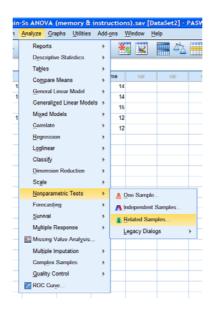
You are also recommended to click on *Exact*.... Select *Exact* and click on *Continue*.


	🔡 Exact Tests 🛛 🔀
Exact Options	 ▲symptotic only Monte Carlo Confidence level: 99 % Number of samples: 10000 Exact Time limit per test: 5 minutes
	Exact method will be used instead of Monte Carlo when computational limits allow. For nonasymptotic methods, cell counts are always rounded or truncated in computing the test statistics.

When you are ready to run the analysis, click on OK.

📃 Jonckheere-Terpstra					
ОК	Paste	Reset	Cancel	Help	

SPSS procedure for Friedman test


To run the Friedman test, first check that your data are laid out correctly, with a separate score variable for each condition.

There are two different ways of running the Friedman test in newer versions of SPSS (version 18 and on): (1) using the automatic "Related Samples" procedure, or (2) using the "Legacy Dialogs" procedure. The output produced by both methods is quite different. Note that if you are using an earlier version of SPSS, you can only use the second option here.

(1) Running the Friedman test using the automatic "Related Samples" procedure

To run the "automatic" Friedman test in newer versions of SPSS, go to Analyze \rightarrow Nonparametric Tests \rightarrow Related Samples...

Under *Objective*, check that your objective is to automatically compare observed data to hypothesized. Notice that in *Description* at the bottom of the window, SPSS tells you that *Friedman's 2-Way ANOVA by Ranks* is suitable. (Don't worry about the "2-way" bit here – it's the same Friedman test that is used to look at one within-subjects variable.)

Nonparametric Tests: Two or More Related Samples					
Objective Fields Settings					
Identifies differences between two or more related fields using one or more assume your data follow the normal distribution. Select the most appropriate objective	>				
What is your objective?					
Each objective corresponds to a distinct deformanguration on the Settings Tab that you can further customize, if desired.					
Automatically compare observed data to hypothesized					
© <u>C</u> ustomize analysis					
SPSS tells you about the test here					
Automatically compare observer and to hypothesized data using McNema's Test, Cochran's Q, Wilcoxon Matched-Pair Signed Rank, or Friedman's 2-Way ANOVA by Ranks. The test chosen varies based on your data.					
Run Paste Reset Cancel Help					

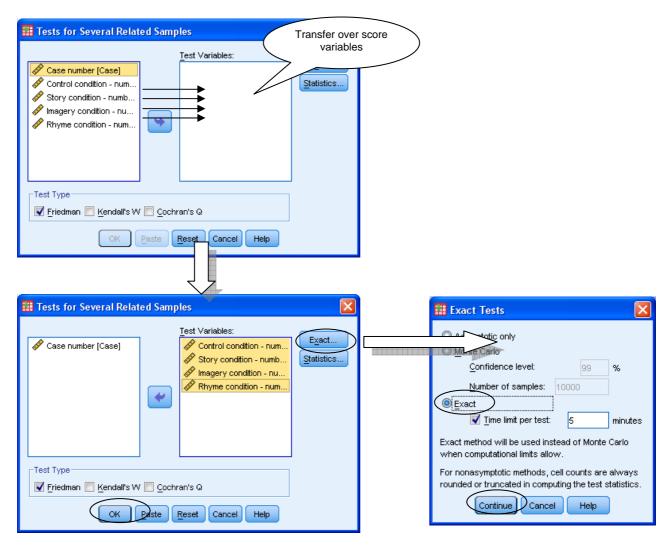
Click on the *Fields* tab, and transfer over the score variables that you want to compare (i.e. the levels of your factor). When you are ready you can click on *Run* to run the test.

Nonparametric Tests; Two or More R Objective Fields Settings	elated Samples	
⊛ <u>U</u> se predefined roles ○ Use <u>c</u> ustom field assignments	i Select only 2 test fields to run 2 related sample ter	Transfer over score variables
Fields: Sort: None Case number Case number Control condition - number of words recalled Control condition - number of words recalled Regression - number of words recalled Regression - number of words recalled	Test Fields:	
AII 🖉		2 a.u.l /
Run	Past Teast Cancel Help	

Nonparametric Tests: Two or More Re Objective Fields Settings	elated Samples		×
O ⊻se predefined roles ® Use <u>c</u> ustom field assignments	elect only	2 test fields to run 2 related sample tests.	
Fields: Sort: None Case number Case number	۲	Test Fields: Control condition - number of words recalled Story condition - number of words recalled Imagery condition - number of words recalled Rhyme condition - number of words recalled	
Al Ø	Paste Reset		8 6.1 10

Alternatively, if you don't like the idea of letting SPSS automatically decide the type of analysis for you, you can always click on the *Settings* tab, click on *Customize tests* and select *Friedman's 2-way ANOVA by ranks (k samples).* If you would like post hoc multiple comparisons, you can select this from the drop-down. Don't forget to click on *Run.*

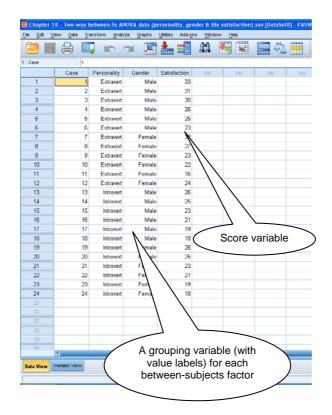
Nonparametric	Tests: Two or More Related Samples	
Objective Fields	ettings	
Select an item:		
Choose Tests	Automatically choose the tests based on the data	
Test Options	<u>Customize tests</u>	
User-Missing Values	Compare Median Difference to Hypothesized McNemar's test (2 samples) Datine Success Multiple comparisons: All pairwise Kendal's coefficient of concordance (k samples)	Select preferred post hoc multiple comparisons from
	Multiple comparisons: All pairwise Compare Distributions Compare Distributions Compare Distributions Compare Distributions Compare Distributions Compare Distributions Campare	drop-down menu


(2) Running the Friedman test using the "Legacy Dialogs" procedure

If you are using a version of SPSS earlier than version 18, the "automatic" Friedman test will not be available; you will have to use a different method to run the test. You may also want to use this alternative method if you are using SPSS 18 (or newer version) but have had experience with the earlier method of running the test.

To run the Friedman test in SPSS 18 (and newer), go to Analyze \rightarrow Nonparametric Tests \rightarrow K Related Samples...

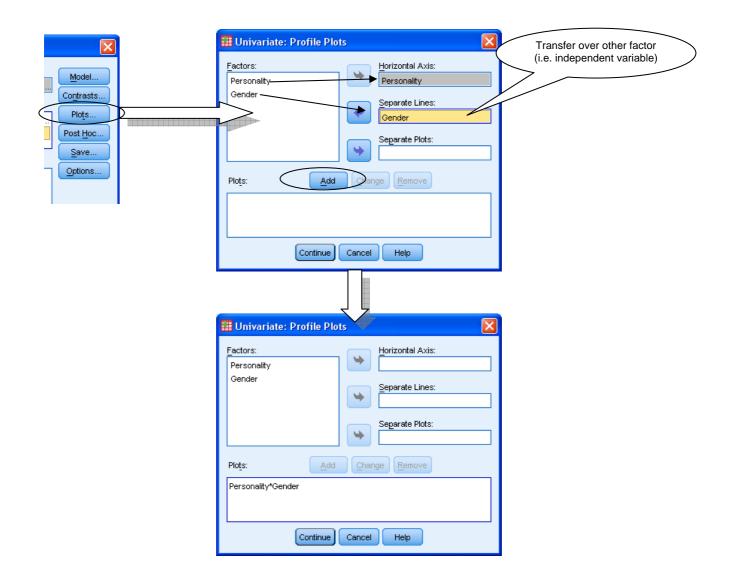
	Analyze Graphs Utilities	Add-o	ns <u>Window</u>	Help					
	Regorts Descriptive Statistics	* *	#1 🕺	¥		4			9
	Tables	- F							
int	Compare Means	•	Rhyme	var		var	var	var	
	General Linear Model		14						
П	Generalized Linear Models		14						
Π	Mixed Models	•	15						
	Correlate	•	12						
	Regression		12						-
	Loginear	•			-				-
	Classity	*							
	Dimension Reduction				-				-
	Scale				-				+
	Nonparametric Tests	•	💧 One Sample	P					
	Forecasting	1	🔥 Independer	t Samples					+
Η	Survival	1	Related Sar	toles					+
	Multiple Response	1	Legacy Dia			100 m	i-square		_
	🕵 Missing Value Analysis		21911) 11				i-square iomial		
-	Multiple Imputation	•			-	_			
-	Complex Samples	1			-	E Ru			
-	Quality Control				-		Sample K-S		
Ч	ROC Curve				-	21	ndependent Sar	nples	
						🚺 K I	ndependent Sa	nples	
						📉 2 F	Related Samples		
					-	III KI	Related Sample:	F	
					-				-


Check that *Friedman* is selected under *Test Type*. Then transfer over all of the score variables to the *Test Variable* box. Click on *Exact*... and select *Exact* to obtain precise probabilities. Click on *Continue* and then *OK* when you are ready to proceed with the analysis.

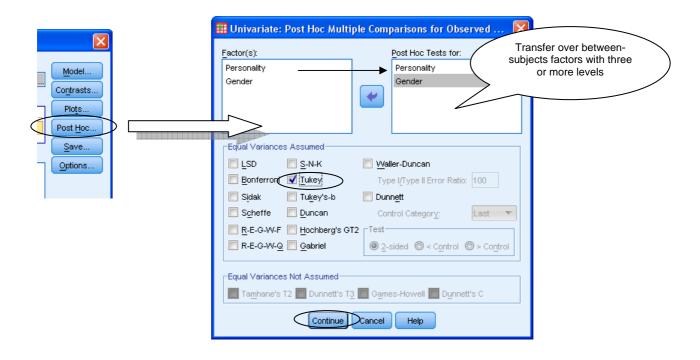
SPSS procedure for between-subjects factorial ANOVA.

The SPSS procedure for a between-subjects factorial ANOVA is very similar to that of a oneway between-subjects ANOVA using the *General Linear Model* procedure.

First of all, you should ensure that your data are laid out correctly. For a between-subjects factorial design you should have a separate grouping variable for each between-subjects factor (i.e. two-factor design \rightarrow two grouping variables, three-factor design \rightarrow three grouping variables). Don't forget to include your score variable either.


As usual, the next stage is some exploratory data analysis to obtain descriptive statistics and inspect data distributions. Once you are satisfied that the assumptions of the test have been met, you can run the ANOVA. Go to Analyze \rightarrow General Linear Model \rightarrow Univariate...

1	Analyze	Graphs	Utilities	Add-g	ns <u>Wi</u> nd	ow H	elp	
	Reg	orts		- Þ.	99			iiiiii
	Des	criptive Stat	istics			0.00		
1	Tab	es						
	Com	pare Means			Three tir	nes	var	- Y
	Gen	eral Linear M	Model	- F.	- Univ	ariate		
	Gen	eralized Lin	ear Models	: F	Mutt			
	Mige	d Models		•	Repo			
	_	elate		- P-				
		ression			⊻ari	ance Cor	rponents.	
		inear				2.00		_
1	Clas	-				2.50		_
	-	ension Redu	ction			3.20		
1	Sca					2.80		_
	_	parametric 1	ests			3.50		
1		scasting		1				
ł	Sun							
		ple Respon		,				
		ing Value A				-		
ł		iple Imputatio				_		_
Ł		plex Sample	15					
I.	Qua	ity Control						


Transfer over the dependent variable to the *Dependent Variable* box, and all of the betweensubjects factors to the *Fixed Factor(s)* box.

		Transfer over dependent variable (i.e. score
🏭 Univariate		variable)
Case number [Case]	Dependent Variable: Fixed Factor(s): Random Factor(s): Covariate(s):	Model Contrasts Plots Transfer over factors (i.e. grouping variables) Options
OK OK	Paste Reset Cancel Help	
🖋 Case number [Case]	Dependent Variable: If Eatisfaction score [] Fixed Factor(s): Cender [Gender] Random Factor(s):	Model Contrasts Plots Post Hoc Save Options
ОК	Covariate(s):	

Click on *Plots...* to obtain a line graph of the means to help you interpret any interactions. Transfer over one of the factors to the *Horizontal Axis* box and one to *Separate Lines* – it doesn't really matter which way round you put then, but it's usually easier to interpret if you put the factor with the most levels on the horizontal axis. If you are analysing data from a three-way between-subjects factorial design, you should put the third factor in the *Separate Plots* box. You can also request plots showing just one factor (to help you interpret main effects) by transferring over the factor name to *Horizontal* Axis. Remember to click *Add* and *Continue*.

For a 2 x 2 design, there is no need for post hoc tests as a significant main effect merely requires looking at the table of means to determine which of the two conditions has the highest mean. In fact, SPSS won't run post hoc tests for factors with two levels even if you tell it to! However, <u>if one factor has three or more levels</u>, you should request post hoc tests by clicking on *Post Hoc*... Transfer over the variable(s) of interest (i.e. between-subjects factors with three or more levels) to the *Post Hoc Tests For* box, select the desired post hoc test (e.g. *Tukey*) and click *Continue*. (Our example has a 2 x 2 design, so there is actually no need to request post hoc tests here, but we've shown you how SPSS would look if you transferred over the factors.)

Before running the analysis, click on *Options*... Transfer over the names of the factors and interaction to the *Display Means For* box. This will produce tables of means to help you with interpreting your ANOVA results. (Transferring over OVERALL will give you a table with the grand mean, which you won't need when interpreting results.) Although you should already have calculated descriptive statistics, these tables are helpful since they break down the results and make it clear what means you are comparing. In *Options* you should also select *Descriptive Statistics* (if you want yet another table of descriptives!), *Estimates of effect size* and *Homogeneity tests*. Click on *Continue*.

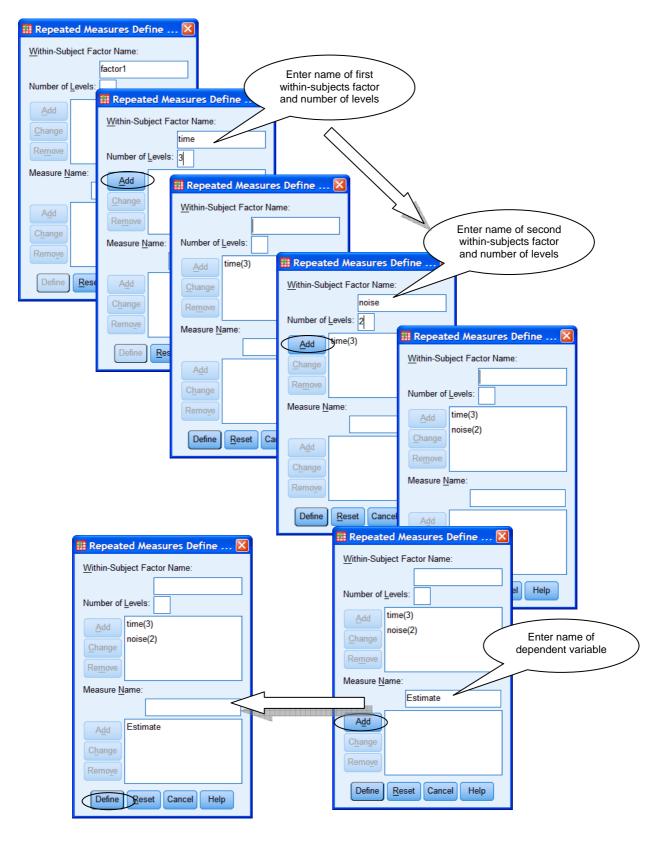
	Univariate: Options		Transfer over between- subjects factors and interaction
Model Plots Post Hoc Save Options	Eactor(s) and Factor Interactions: (OVERALL) Personality Gender Personality*Gender Display Descriptive statistics Estimates of effect size Observed power Parameter estimates Contrast coefficient matrix Significance level: .05 Confiden	Display Means for: Personality Gender Personality*Gender Compare main effects Confidence interval adjustment SD(none) Compare main effects Confidence interval adjustment Compare main effects Confidence interval adjustment Compare main effects Compare main effects Compare main effects Confidence interval adjustment Compare main effects Confidence interval adjustment Compare main effects Compare main effect	

When you have finished, click on OK.

► ►]
OK	Reset	Cancel	Help	

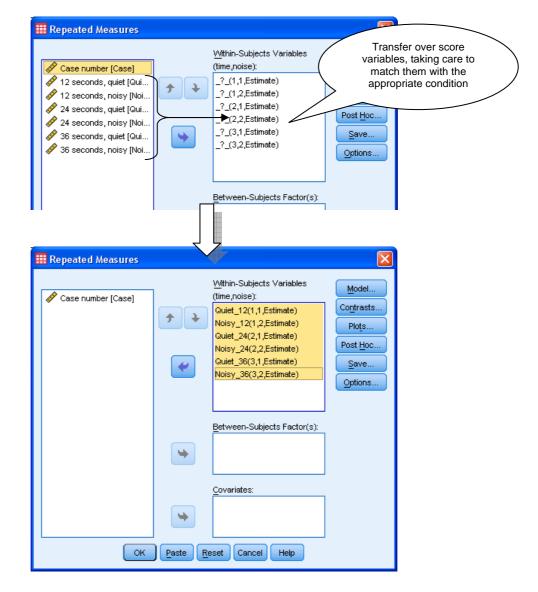
SPSS procedure for within-subjects factorial ANOVA

The SPSS procedure for a within-subjects factorial ANOVA is very similar to that for oneway within-subjects ANOVA. The main difference is that you need to specify more than one within-subjects factor.

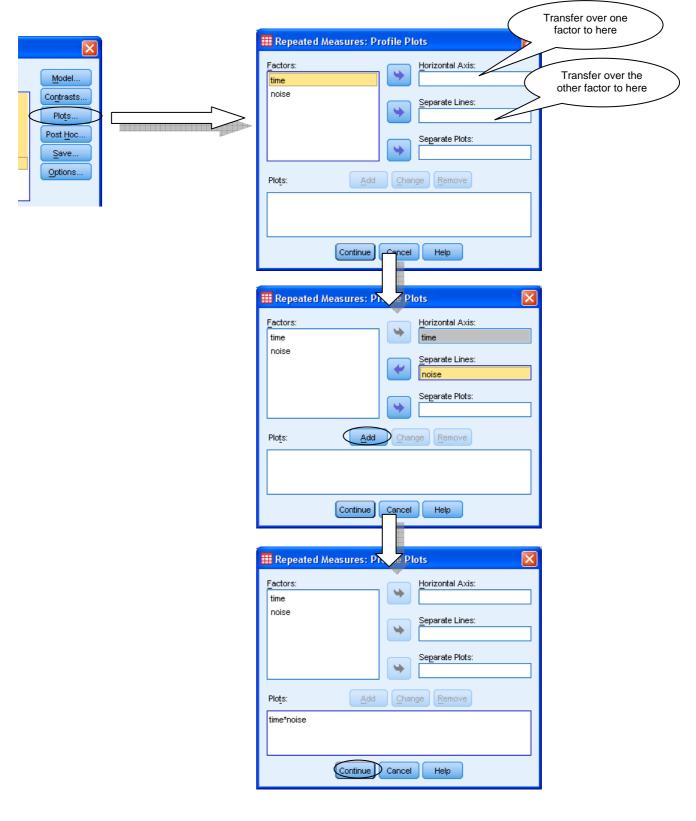

As always, first check that your data are laid out correctly. You should have a separate variable for every condition (i.e. for every possible combination of the levels of the factors). There is no need for a grouping variable as the design is entirely within-subjects. In our example in chapter 18 we had one factor with three levels and one factor with two levels, giving us six conditions and six variables in SPSS. Note that we have used variable names such as "quiet12" and "noisy24", to give an indication of the levels of each factor in each condition. We would strongly advise that you use a similar format – as you will see later, it's very important that you know which variable represents which condition.

ile <u>E</u> dit	⊻iev	∾ <u>D</u> ata	Transform	Analy	ze <u>G</u> raphs	Utilities Add-o	ns <u>W</u> indow	Help			
					- 1	_	ân 🎽	ş 🔛 🛛	- 4 <u>3</u> -	(
: Case		1									
		Case	Quiet	_12	Noisy_12	Quiet_24	Noisy_24	Quiet_36	Noisy_36	var	
1			1	13	14	21	25	30	40		
2			2	10	12	15	20	35	47		
3			3	12	10	23	30	35	39		
4			4	12	11	15	25	29	32		
5			5	16	8	36	40	50	56		
6			6	10	13	25	24	39	37		
7			7	11	16	24	26	30	39		
8			8	12	15	22	21	38	35		
9			9	14	12	30	28	31	41		
10		1	0	15	10	31	34	54	60		
						7					
							\backslash				
							7			\sim	
14							On	e variable	for each	\sim	
							-				
						condition (i.e. for each combination of the factor					
							COIL	levels		" 	
							< l>	ieveis	9		
19							~			_	

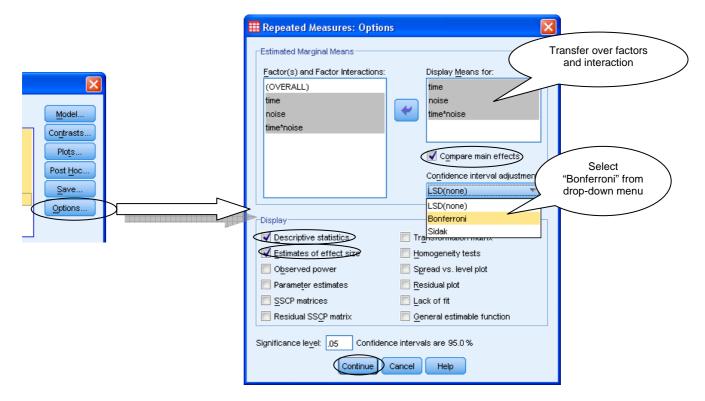
Next, conduct exploratory analysis to "get a feel" for the data, to check for any errors in data entry and to confirm that the data are suitable for ANOVA. Once you are satisfied that the test assumptions have been met go to Analyze \rightarrow General Linear Model \rightarrow Repeated Measures...


sform	Analyze	Graphs	Utilities	Add-or	na <u>Wi</u> ndo	w <u>H</u> ele	p		
1	Rep	orts			83				
	Des	criptive Sta	tistics			000)	X		
	Tobl	es		- F-					
Quiet	Com	pare Mean	\$	- Þ	Noisy 2	4 0	uiet 36	Noi	
	Gen	eral Linear	Model	+	🔛 Univa	riate			
	Generalized Linear Models			- 1-	Muth	oriate			
	Mice	Mixed Models			E Para	and Mass			
	Correlate			- Þ.	Repeated Measures				
	Reg	ression		- 1	⊻aria	nce Comp	onents		
	Logi	inear		- P-		24	39		
	Clas	siţy		- F-		26	30		
	Dine	insion Red	uction			21	38		
	Scal			- P-		28	31		
	None	parametric	Tests	- F		34	54		
		casting				.34	54		
	Shur								
	_	ple Respor				-			
	🕵 Miss	ing Value /	Analysis						
		ple Imputat		- F					
		plex Sampi	es	•		+			
	Qua	ity Control		•					
	ROC ROC	Curye							

We now need to specify our within-subjects factors. Type the name of the first factor in *Within-Subject Factor Name* (e.g. time) and enter the number of levels for that factor (e.g. 3), and press *Add*. Repeat for the other within-subject factor(s) (e.g. noise, 2). Note that number of levels refers to the number of levels for a specific factor and not to the total number of conditions – students often make this mistake and say, for example, that there is one factor with six levels rather than one factor with three levels and another with two. If you want to, you can enter the name of the dependent variable in the *Measure Name* box. When you are ready to proceed, click on *Define*.

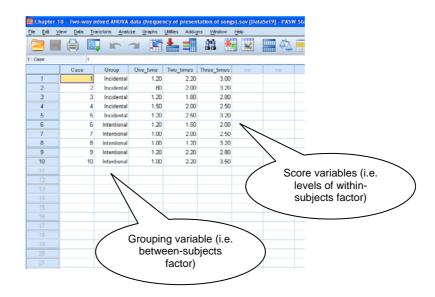


You now have to tell SPSS which variable represents which condition. In the *Within-Subjects Variables* box each condition is specified by two numbers – the first represents the level of factor 1 for that condition and the second represents the level of factor 2. The order in which you entered your factors previously will determine which is factor 1 and factor 2. SPSS also tells you the order of the factors in parenthesis after the *Within-Subjects Variables* heading. Here, time was entered as the first factor and noise as the second. Thus, a condition labelled as 1, 2 means that it is the condition containing the first level of the time factor (i.e. 12 seconds) and the second level of the noise factor (i.e. noisy); a condition labelled as 2, 1 contains the second level of time (i.e. 24 seconds) and the first level of noise (i.e. quiet); and so on.


You should transfer over each of the score variables to the *Within-Subjects Variables* box, ensuring that you have matched correctly the variables and conditions. Don't just assume that the way that the variables appear in the box on the left-hand side is the way that they should be transferred over. This is a very common error, so please be careful when doing this part of the procedure.

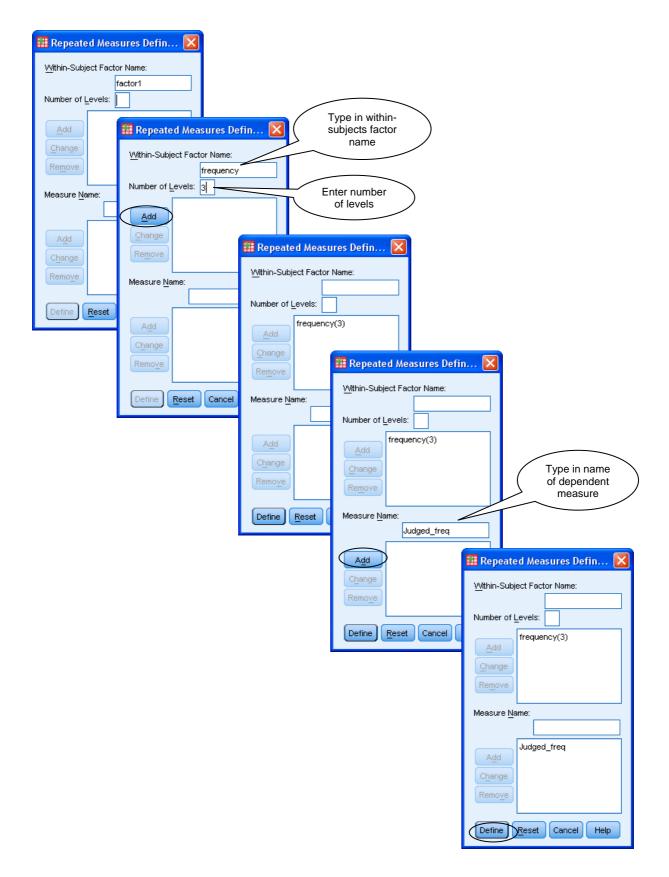
Next, click on *Plots...* and transfer one of the variables to *Horizontal Axis* and one to *Separate Lines*. If you had a three-way design, you would put the third factor in *Separate Plots*. You can also request plots with just one factor, to help you interpret main effects. Click on *Add* and *Continue*.

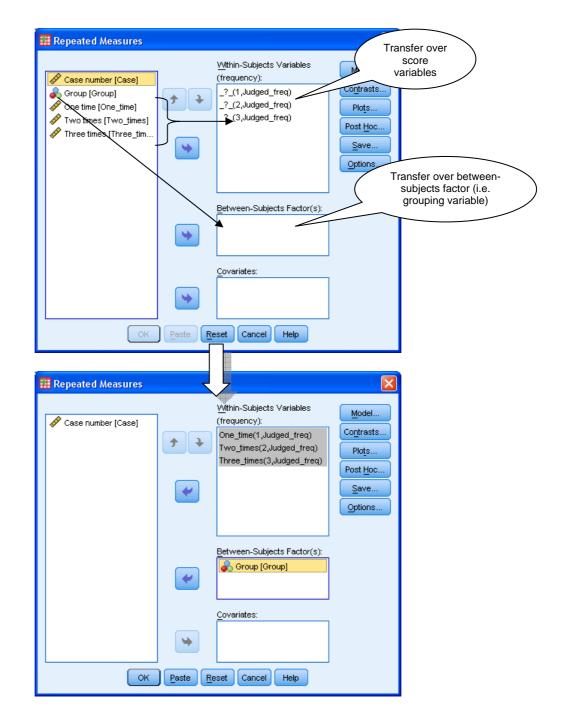
Next, click on *Options*... Transfer over the factor names and interaction to *Display Means For*. Click on *Compare main effects* and select *Bonferroni* from the drop-down list. (Remember that this is the only way to obtain post hoc tests for within-subjects factors.) You should also select *Descriptive Statistics* and *Estimates of effect size*. Click on *Continue*.



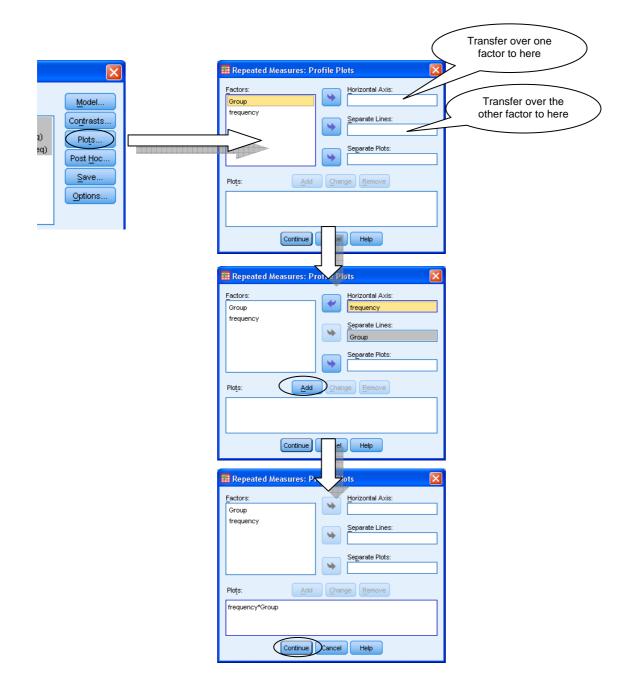
Click on OK to run the test.

SPSS procedure for mixed factorial ANOVA

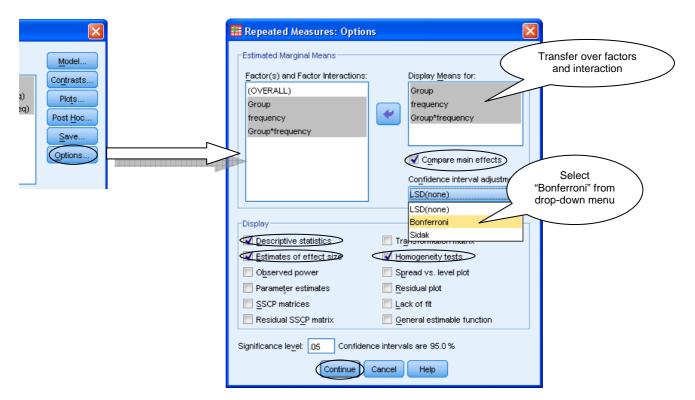

The procedure for a mixed factorial ANOVA is very similar to that for within-subjects ANOVA, except with the addition of transferring over a grouping variable. But first, you need to check that your data are laid out correctly. There should be a grouping variable for the between-subjects factor, and separate variables for each of the levels of the within-subjects factor.


After you have explored the data thoroughly and are confident that the data are ready for analysis, you can begin. Go to Analyze \rightarrow General Linear Model \rightarrow Repeated Measures...

đ	nalyze	Graphs	Utilities	Add-0	ns <u>Wi</u> ndo	w H	slp	
	Rep	orts		- F	<u>00</u>	*		
	Des	criptive Sta	listics			000		
	Tab	63						
	Com	pare Mean	s	- >	Three tim	nes	var	
	Gen	eral Linear	Model	•	🔠 Univa	riate		
	Gen	eralized Lir	near Model	s ⊧	Mutiv	ariate		
	-	d Models			Reper		in the second	
	_	elate		- P				
		ression		- F	Varia	nce Con	ponents.	
	-	inear		- 1	2	.00		
	Clas	-			2	50		
	2	ension Red	uction		3	20		
	Sca			1	2	.80		
	_	parametric	Tests		3	50		
		casting						
	Sun			1				
		iple Respon sing Value .		,				
		-						-
		ple Imputat plex Samp		1		-		
		ity Control	6-3	1				
		ity Control Curve		'				-


As we have a within-subjects factor, we need to define it using the same process as for a within-subjects ANOVA. Enter the within-subjects factor name in the appropriate box and then the number of levels (i.e. frequency, 3); click *Add*. If you want to remind yourself of the dependent variable, enter its name in the *Measure Name* box. Click *Define*.

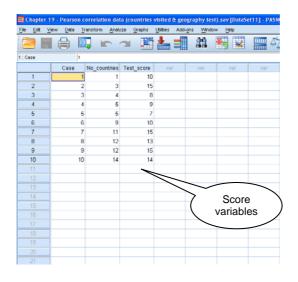
Again, as with a within-subjects ANOVA, we have to tell SPSS which score variables correspond to which conditions. Transfer over the score variables to the *Within-Subjects Variables* box. The grouping variable should be transferred to the *Between-Subjects Factor(s)* box.


Click on *Plots...* and transfer over a variable to *Horizontal Axis* (it makes more sense for this to be the within-subjects factor) and the other variable to *Separate Lines*. Click on *Add*. Remember you can request plots of individual factors if you want. Click on *Continue*.

In our example, there is no need for us to click on *Post Hoc...* as our between-subjects factor only has two levels. However, if your between-subjects factor has three or more levels, you should click on *Post Hoc...*, transfer over the factor to *Post Hoc Tests For* and select the test of choice (e.g. *Tukey*). Click on *Continue*.

×	Transfer over between- subjects factors with three or more levels
Model Contrasts Plots Save	Factor(s): Group
Options	Equal Variances Assumed LSD S.N-K Bonferroni Type I/Type II Error Ratio: 100 Sidak Tukey's-b Dunnett Scheffe Duncan R-E-G-VV-F Hochberg's GT2
	R-E-G-W-Q Gabriel 2-sided < Control Equal Variances Not Assumed Tamhane's T2 Dunnett's T3 Games-Howell Dunnett's C Continue Continue Cancel Help

Next, click on *Options*... Transfer over the factor names and interaction to *Display Means* for, click on *Compare main effects* and select *Bonferroni* from the drop-down menu. You should also select *Descriptive Statistics*, *Estimates of effect size* and *Homogeneity tests*. Click on *Continue*.



Click on *OK* to run the test.

OK Paste Reset Cancel Help	

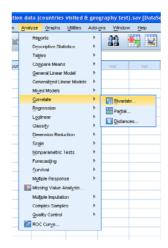
SPSS Procedure for Pearson Correlation

As always, before conducting any analysis in SPSS, you should ensure that the data are entered correctly and that they have been explored. For a correlation, you will need variables containing the scores of the variables that are to be correlated.

It's a good idea to check a scatterplot before running the correlation, to see if there is evidence of a non-linear relationship (in which case, a non-parametric correlation should be used, provided the relationship is also monotonic – in one direction).

To run the Pearson correlation in SPSS, go to Analyze \rightarrow Correlate \rightarrow Bivariate...

١.	Analyze	Graphs	Utilities	Add-on	is <u>Wi</u> nck	w Help
	Rego	orts		- F	99	8
	Desc	riptive Stat	tistics	- 1-		110) IM
	Table	65		- > [
ur	Com	pare Mean:	\$	- × 1	var	var
	Gene	eral Linear	Model	- F		
	Gen	eralized Lin	ear Model:	5 F		
	Mige	d Models		- F		
-	Corr	elate		- P	Bivar	iate
	Regr	ression		- F [Partie	(
-	Logi	inear		- F	5 Dista	
	Clas	sify		- • F	C Porta	
-	Dime	msion Redu	action	- Þ		
-	Segl	e		- F -		
-	None	parametric	Tests	- F		
-	Fore	casting		- P -		
-	Surv	ival		- F .		
-	Muti	ple Respon	ise	- F .		
_	🚮 Miss	ing Value A	Analysis			
_	Muţi	ple Imputati	ion	- P .		
_	Com	pļex Sampi	es	- P -		
_	Qual	ity Control		- F .		
	ROC ROC	Curve				

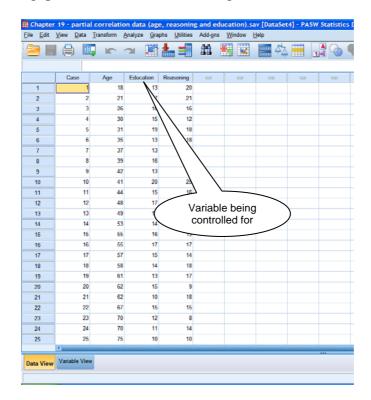

Simply transfer over the variables to be correlated to the *Variables* box (you can transfer over more than two variables if you want to look at several correlations at once). If you haven't already obtained descriptive statistics, you can request them by clicking on *Options*... \rightarrow select *Means and standard deviations* \rightarrow *Continue*. Ensure that is selected under Correlation Coefficients and that *Flag significant correlations* is selected (this will mean that any significant correlations will be highlighted with an asterisk *). Press *OK* to run the correlation.

III Bivariate Correlations	
Number of countries vi (variab	fer over les to be elated
Correlation Coefficients Pearson Kendall's tau-b Spearman Test of Significance © Iwo-tailed O One-tailed	
Image: Second and the control of t	
Bivariate Correlations	
Variables: Case number [Case]	Bivariate Correlations: Options
Correlation Coefficients	Statistics
Pearson Kendall's tau-b Spearman Test of Significance Two-tailed O One-tailed	Missing Values
Flag significant correlations	Continue Cancel Help

SPSS procedure for Spearman's correlation and Kendall's tau

Running non-parametric correlations in SPSS is very similar to running Pearson's correlation, the only difference being that you deselect *Pearson* as your correlation of choice and select another.

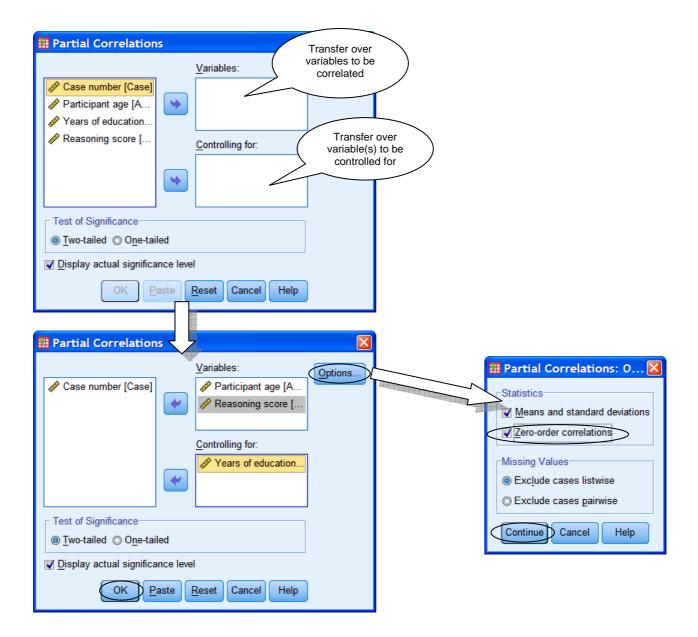
To run a non-parametric correlation in SPSS, go to Analyze \rightarrow Correlate \rightarrow Bivariate...



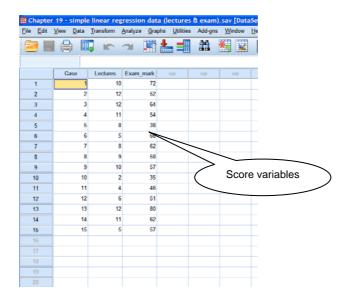
Transfer over the variables to be correlated to the *Variables* box. If you haven't already obtained descriptive statistics, you can request them by clicking on *Options*... \rightarrow select *Means and standard deviations* \rightarrow *Continue*. Select your chosen correlation coefficient under Correlation Coefficients and check that *Flag significant correlations* is selected. Press *OK* to run the correlation.

Bivariate Correlations	Variables:	varia	nsfer over ables to be prrelated
Case number [Case]	Coography test score	Select correlation coefficient	

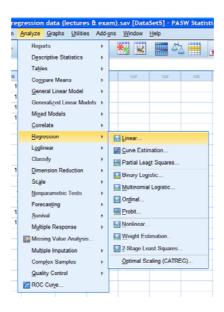
SPSS Procedure for Partial Correlation


To run a partial correlation, you will need several score variables: the variables that you are interested in correlating, plus the variable that is being controlled for.

To run a partial correlation in SPSS go to Analyze \rightarrow Correlate \rightarrow Partial...


ati	on data	(age, re	easoning	g and	edu	cat	ion).:	sav [C	ata
n	<u>A</u> nalyze	Graphs	Utilities	Add	ons	Wir	ndow	Help	
~	Repo	irts				6	2		
-	D <u>e</u> sc	riptive Sta	tistics		-	1.00			Ш.
	Table	s				_			
_	Com	pare Mear	19				var		var
1	Gene	aral Linear	Model						
2	Gene	eralized Lin	near Mode	ls ≯					
3	Mi <u>x</u> e	d Models			-				
3	Corre	elate		- 1	12	Biva	riate		
3	Regn	ession		•	1.0	Part	ial		
3	Loglin	near			5	Dist	ances.		
3	Clase	sify			-	_			
4	Dime	nsion Rec	luction						
4	Scale	e							
4	Nonp	arametric	Tests	•					
4	Forec	casting						_	
4	Survi	val							
э 5	Multi	ple Respo	nse						
5	🔣 Missi	ing Value	Analysis		-				
5	Mul <u>t</u> i	ple Imputa	tion					-	
5	Com	plex Samp	oles	•					
6	Quali	ity Control						-	
6	🖉 ROC	Curve							
6	2	10	18						

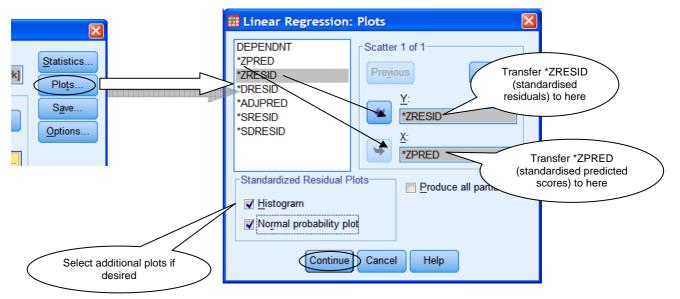
Transfer over the variables of interest to the *Variables* box, and transfer the variable that you want to control for to the *Controlling For* box. Click on *Options...* and select *Zero-order correlations*; this will give you the original correlations without any variables being controlled for. Click on *Continue* and *OK*.


SPSS procedure for simple linear regression

In SPSS Data View, data for regression should be laid out and explored in a similar way to correlations.

You are strongly advised to produce a scatterplot to explore the data (see Producing graphs in SPSS). To obtain the best-fitting line in an SPSS scatterplot, double-click on the scatterplot in the Output windown; the Chart Editor window should open up. Click on the $\boxed{\mathbb{K}}$ icon, or go to *Elements* \rightarrow *Fit Line at Total*, ensuring that *Linear* has been selected.

Having explored the data, you can move on to the regression analysis. Go to Analyze \rightarrow Regression \rightarrow Linear... In the Linear Regression box, transfer over the variable you want to predict to the Dependent box and your predictor variable to the Independent(s) box.

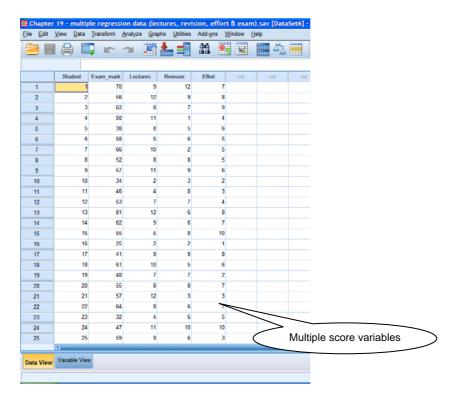


		Transfer over
Linear Regression		variable to be predicted
Case number [Case]	Dependent:	Plots Save
	Independent(s):	Transfer over predictor variable
	Method: Enter 👻	
	Selection Variable: Selection Variable: Rule Case Labels: WLS Weight:	
OK	Paste Reset Cancel Help	
Linear Regression		
 ✓ Case number [Case] ✓ Number of lecture 	Dependent:	Statistics Plots Save
	Independent(s):	Options
	Independent(s):	Options

Click on *Statistics...* and select *Descriptives* and *Casewise Diagnostics.* (*Estimates* and *Model Fit* should already be selected by default.) *Descriptives* produces a table of means and standard deviations, and *Casewise Diagnostics* can help to identify any outliers. Click on *Continue*.

X	🖩 Linear Regression: Statistics 🛛 🔀
K Statistics Plots Save Options	Linear Regression: Statistics Regression Coefficients Setimates Confidence intervals Level(%): 95 Covariance matrix Residuals Countinue Casewise diagnostics Outliers outside: 3 standard deviations Continue Cancel Help
	Connect Contest

Click on *Plots...* and transfer **ZRESID* to the *Y* box and **ZPRED* to the *X* box. **ZPRED* is the scores predicted by the regression equation, but in a standardised format – z-scores. **ZRESID* is the standardised residuals (i.e. the differences between actual y scores in the data set and predicted scores based on the regression equation, expressed as z-scores). The resulting plot will allow you to check for heteroscedasticity. You can also select *Histogram* and *Normal probability plot* under *Standardized Residual Plots* to help you check the residuals. Click on *Continue*.



When you are ready to proceed, click on OK.

	*				
OF	Paste	Reset	Cancel	Help	

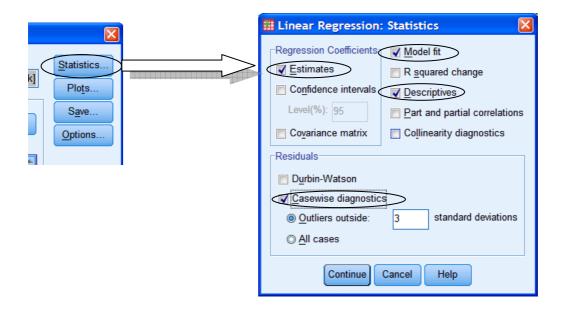
SPSS Procedure for Multiple Regression

Before you proceed with any multiple regression, you should always check that your data are laid out correctly – you should have multiple score variables (you can also use dichotomous variables in multiple regression).

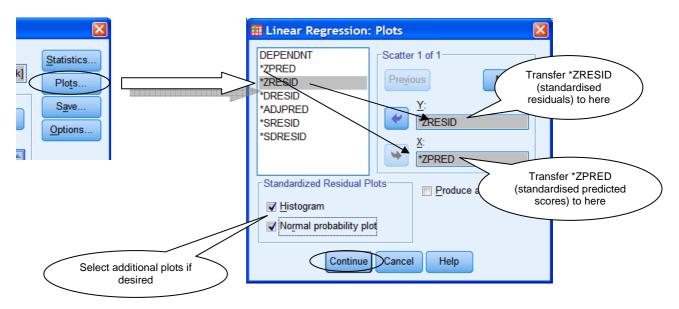
You should explore your data carefully as multiple regression makes a number of assumptions about the data. For example, you should look at correlations between your variables to check for multicollinearity (i.e. high correlations between predictor variables).

To run the multiple regression analysis go to Analyze \rightarrow Regression \rightarrow Linear...

ess	ion data	(lectur	es, revi	sion,	effo	rt 8	t exa	m).sav	[Data	Set6]	PA
m	<u>A</u> nalyze	Graphs	Utilities	Add-	ons	Wir	ndow	Help			
7	Repo	irts		•	-		2		42		
-	Desc	riptive Sta	tistics						-		
_	Table	15				-					_
nark 7	Compare Means			•	ert i		Var	_	var	var	
5	Gene	eral Linear	Model					_			
6	Gene	erali <u>z</u> ed Lir	near Mode	ls ⊧							
5		d Models		•							
3	Corre	elate			(-			
5	Regr	ession		- >		<u>L</u> ine	ar				
6	L <u>og</u> linear Classify <u>D</u> imension Reduction Sc <u>a</u> le <u>N</u> onparametric Tests			Curve Estimation							
5				Partial Leagt Squares Binary Logistic Multinomial Logistic Ordinal							
5			•								
3			- F								
4			- F								
5		casting		•	_						
8	Survi	val		- F	_	Prof					
6	Multi	Multiple Response		- F	Nonlinear						⊢
2	Missing Value Analysis		Analysis								H
4				2-Stage Least Squares							
6	Com	plex Samp	les			Opti	mal Se	aling (C	ATREG)	-
4	Qual	ity Control		+	1	2					
5	ROC	Curye			;	1		-			
5	7	12	3		:	3					


Transfer over the criterion variable (the variable you want to predict) to the *Dependent* box, and the predictor variables to the *Independent(s)* box.

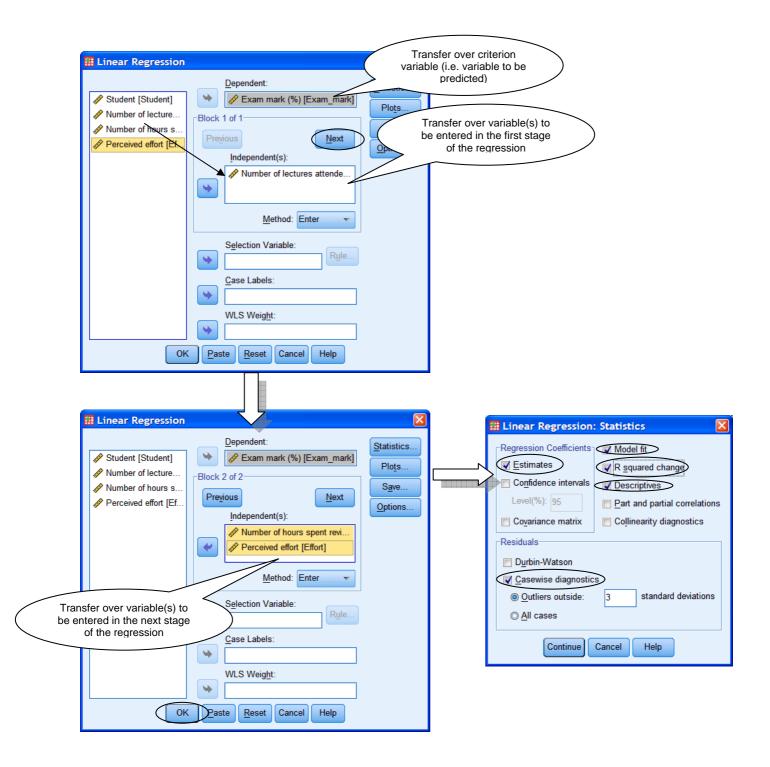
Linear Regression			Transfer over the criterion ariable (i.e. the variable you want to predict)	\supset
	Dependent:			
Student [Student]				
🔗 Exam mark (%) [E	Block 1 of 1	Plo <u>t</u> s		
Number of lecture		S TI	ransfer over the predictor	
Number of hours s	Previous Next		ables (i.e. the variable you)
Perceived effort [Ef	Independent(s):		want to predict)	
	Method: Enter 💌			
	Selection Variable:			
	Rule			
	Case Labels:			
	WLS Weight:			
OK	Paste Reset Cancel Help			
Linear Regression				
	Dependent:	Statistics		
Student [Student]	Exam mark (%) [Exam_mark]			
Number of lecture	Block 1 of 1	Plo <u>t</u> s		
Number of hours s		S <u>a</u> ve		
Perceived effort [Ef	Previous <u>N</u> ext	Options		
	Independent(s):			
	Number of lectures atten			
	Vumber of hours spent r			
	Method: Enter 👻			
	Selection Variable:			
	Rule			
	Case Labels:			
	WLS Weight:			
ОК	<u>Paste</u> <u>R</u> eset Cancel Help			


Next, select your preferred method of regression from the drop-down menu. Select Enter if you want to run a simultaneous multiple regression, or one of the other options if you want to use a form of stepwise multiple regression. (If you want to run a hierarchical regression, this is a little bit more complicated – see below.)

Pependent: Statistics Number of lecture Mumber of lectures Number of hours s Block 1 of 1 Previous Next Previous Next Options Options Mumber of lectures atten Number of lectures atten Number of lectures atten Select regression Method: Enter Selection Variable: Stepwise Remove Backward Subscience Backward WLS Weight: WLS Weight:
OK Paste Reset Cancel Help

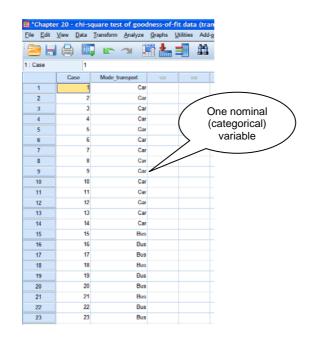
Next, click on *Statistics* and select the same options as for the simple linear regression (i.e. *Estimates, Model fit, Descriptives* and *Casewise diagnostics*); click on *Continue*.

You also need to produce a plot of **ZPRED* x **ZRESID*. Click on *Plots...* and transfer **ZRESID* to the *Y* box and **ZPRED* to the *X* box, and select *Histogram* and *Normal probability plot* if desired. *Continue*.

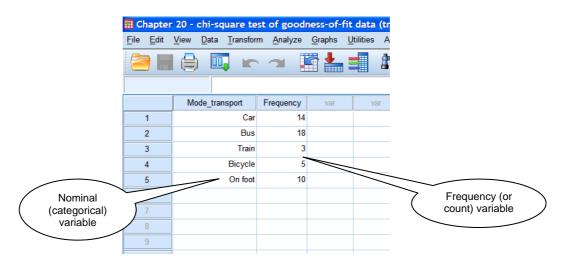


When you are ready, click on OK.

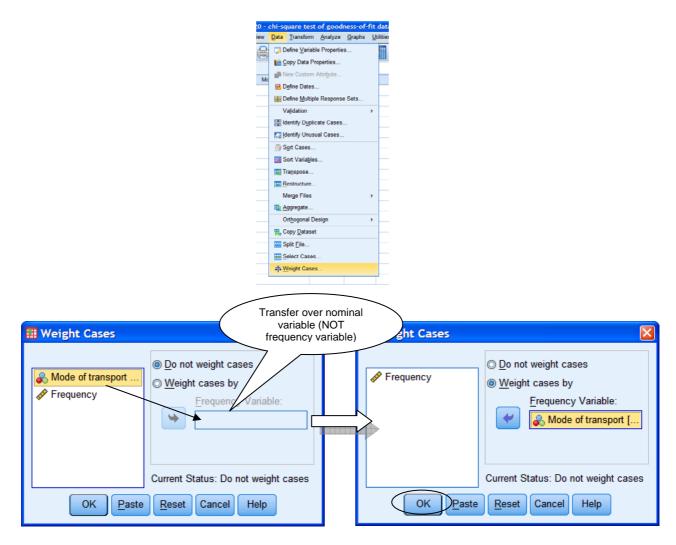
★	
OK Paste Reset Cancel Help	


SPSS Procedure for Hierarchical Regression

To run a hierarchical multiple regression, you specify the order in which the predictor variables are entered into the model. Follow the same procedure as before, but when transferring over predictor variables, do it in stages, in the order you want the variables to be entered into the model. Transfer over the first predictor variable(s) to the *Independent(s)* box and click on *Next*, and transfer over the predictor(s) you want entered into the next stage of the regression and so on. You should ensure that *Enter* is selected as the method of regression. All other options are the same as for the other multiple regressions, although it is quite helpful to also have *R Squared Change* selected under *Statistics*.



SPSS Procedure for Chi-square test of goodness-of-fit


To run the chi-square test of goodness-of-fit in SPSS, you should first ensure that you have set up your variable of interest as a nominal variable, with appropriate value labels (e.g. 1 = car, 2 = bus, etc.). You can enter your data in two ways if you are dealing with nominal data. The first option is what you will be most familiar with: one row per participant. Thus, for each participant, you would enter the appropriate category and would have as many rows of data as you have participants. Remember to select *Value Labels* under the *View* menu to see the labels instead of values.

The second option can be used if you are dealing *only* with nominal data. You create a nominal variable as usual, but also create a frequency or count variable which will contain the number of cases belonging to each category. This means that each row will *not* represent a different participant, but instead a different category.

If you use this method, you *must* tell SPSS that the numbers in the frequency variable are not scores for individual participants, but overall counts. To do this, go to the *Data* menu \rightarrow *Weight Cases...*, and transfer across the variable that contains the frequencies or counts to the *Frequency Variable* box. Click on *OK*.

This method of entering nominal data can be very convenient, but a word of warning: it is very easy to forget to weight cases and you end up with very strange results. You also have to count up the frequencies yourself before entering any data, and the method isn't suitable when you have other non-nominal variables. For these reasons, it's probably safest to stick to the one row equals one participant method of entering frequency data.

Once the data have been entered, you can run the analysis. There are two different ways of running the chi-square test of goodness-of-fit in newer versions of SPSS (version 18 and on): (1) using the automatic "One Sample" procedure, or (2) using the "Legacy Dialogs" procedure. The output produced by both methods is quite different. Note that if you are using an earlier version of SPSS, you can only use the second option here.

(1) Running the chi-square test of goodness-of-fit using the automatic "One Sample" procedure

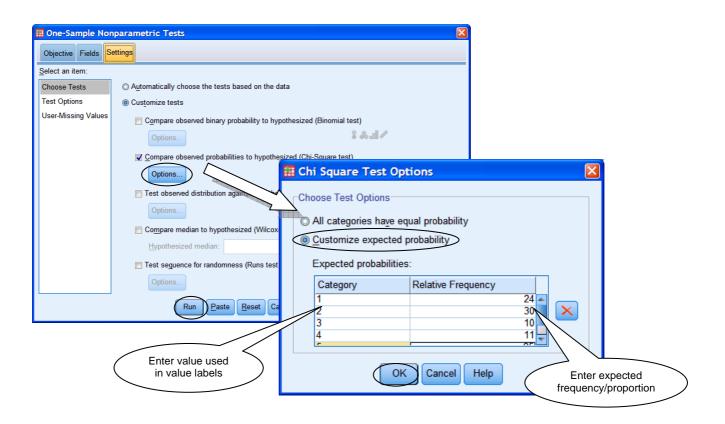
To run the "automatic" chi-square test of goodness-of-fit in newer versions of SPSS, go to Analyze \rightarrow Nonparametric Tests \rightarrow One Sample...

st	of good	Iness-of	-fit data	(tra	nspor	t).sav	[DataSe	t7] -	PASV
1	Analyze	Graphs	Utilities	Add-	ons 1	<u>//indow</u>	Help		
	Repo	irts		•	*			47	
-	Desc	riptive Sta	tistics					- 9	
_	Ta <u>b</u> le	96		٠				_	
tra	Com	pare Mear	IS	•	va	r	var	``	ar
-	Gene	eral Linear	Model			_			
-	Gene	eralized Lir	near Model	s ⊧					
-	Mixe	d Models		•					
	Corre	elate							
	Regr	ession							
	Logli			•					
	Class	sify							
_	Dime	insion Red	luction	•					
_	Scale			•					_
_		arametric	Tests		▲ 9	ne Sar	nple		
-		casting		,	A	idepend	dent Sampl	es	
-	Sunt				A E	elated	Samples		
-	_	ple Respo			Ŀ	egacy (Dialogs		•
			Analysis						
-		ple Imputa		•					
	Com	plex Samp	oles						
	_	ity Control							
	Z ROC	Curve							

Under *Objective*, check that your objective is to automatically compare observed data to hypothesized (it should be the default). Notice that in *Description* at the bottom of the window SPSS tells you that chi-square is suitable.

Identifies differences in single fields using one or more nonparametric to follow the normal distribution.	Select the most appropriate objective
What is your objective? Each objective corresponds to a distinct default configuration on the \$	Settipoer and you can further customize, if desired.
Automatically compare observed data to hypothesized	mat you can rurrier custoffilze, il desired.
\bigcirc Test sequence for randomness	
© <u>C</u> ustomize analysis	SPSS tells you about the test here
Description Automatically compares observed data to hypothesized using the Bir	amial test. Chi Suura test. ar Kalmagaray Smirnay
The test chosen varies based on your data.	ionnai test, on-oquare test, or tornogorov-oninnov.

Click on the *Fields* tab, and transfer over the nominal variable to the *Test Fields* box. (If the case number variable is already there, transfer it back to the *Fields* box.) When you are ready you can click on *Run* to run the test.


One-Sample Nonparametric T	ests				
© <u>U</u> se predefined roles				Transfer ov nominal vari	
Ose custom field assignments				\sim	
<u>F</u> ields:		Test Fields:			
Sort: None 🔻 🌩 🖪		♣ Mode of transport			
🔗 Case number					
	_				
	+				
			8 🚓 💷 🛷		
	Run Pas	ste <u>R</u> eset Cancel	Help		

If your predicted frequencies are not equal (e.g. if based on a comparison population), you should not run the chi-square test in this way as it assumes equal predicted proportions. Instead, you should customise the analysis. Click on the *Settings* tab, click on *Customize tests* and select *Compare observed probabilities to hypothesized (Chi-Square test)*.

III One-Sample Nor	nparametric Tests	
Objective Fields	Settings	
Select an item:		
Choose Tests	○ A <u>u</u> tomatically choose the tests based on the data	
Test Options	Customize tests	
User-Missing Values	Compare observed binary probability to hypothesized (Binomial test)	
	Options	
	Compare observed probabilities to hypothesized (Chi-Square test)	
	Options	6.4
	Test observed distribution against hypothesized (Kolmogorov-Smirnov test	st)
	Options	1
	Compare median to hypothesized (Wilcoxon signed-rank test)	
	Hypothesized median:	1
	Test seguence for randomness (Runs test)	
	Options	1/
	Run Paste Reset Cancel Help	

If you want to specify the predicted frequencies, click on *Options*, then *Customize expected probability* and enter the value for each category and its expected frequency¹ (this can be an actual count or a percentage, as long as all the expected frequencies are expressed on the same scale). Click on *OK*. Don't forget to click on *Run* once you're done.

¹ If your predicted frequency ends in a zero (e.g. 20, 100), you may find that SPSS drops the zero (it does on my computer!). To avoid this, enter the predicted frequency with a decimal point (e.g. 20.0, 100.0).

(2) Running the chi-square test of goodness-of-fit using the "Legacy Dialogs" procedure

If you are using a version of SPSS earlier than version 18, the "automatic" chi-square test will not be available; you will have to use a different method to run the test. You may also want to use this alternative method if you are using SPSS 18 (or newer version) but have had experience with the earlier method of running the test.

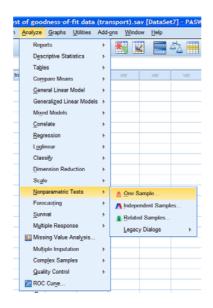
To run the chi-square test of goodness-of-fit in SPSS 18 (and newer), go to Analyze \rightarrow Nonparametric Tests \rightarrow Legacy Dialogs \rightarrow Chi-Square... (In earlier versions of SPSS, go to Analyze \rightarrow Nonparametric Tests \rightarrow Chi-Square...)

Anal	yze	Graphs	Utilities	Add-	ons j	Windo	w <u>H</u> elp						
	Repor	ts			*	1	č 💻	42		୍କ 1 କୀ	Q	-	ABC
	Descr	iptive Sta	tistics										-
	Table	3				_							
	Comp	are Mean	19	+	va	T	Var	va	ar -	var		Var	v
	Gener	ral Linear	Model										
	Gener	alized Lir	near Model	s >							-		
	Mixed	Models											-
	<u>C</u> orrel	ate		÷									
	Regre	ssion						-		-	-		-
	Loglin	ear			-			-			+		-
	Class	ify											
	Dimer	nsion Red	luction										-
	Scale												
	Nonpa	arametric	Tests)ne S	ample						
	Forec	asting				ndepe	ndent Samp	les			_		_
	Surviv	al					d Samples				_		
	Multip	le Respo	nse		_	-	/ Dialogs		,	Chi-s			-
53	Missi	ng Value	Analysis		-			-	-				
	Multip	le Imputa	tion		-				_	071 Bino			
	Comp	lex Samp	des						_	Runs			
	Qualit	ty Control						-	_	1-Sa	mple H	(-S	
1	ROC	Curve						-		2 Ind	lepend	ent Samp	les
	Bus	-			1					K Inc	lepend	lent Samp	ples
	Bus									📉 2 Re	lated S	Samples	
	Bus									K Re	lated §	Samples.	
	Bus										_		_

Transfer across the nominal variable to the *Test Variable List* box. Next, click on *Exact*... and select *Exact* to obtain precise *p* values, and then *Continue*.

E Chi-square Test		×	Exact Tests	
	Test Variable List:	Exact Options	Asymptotic only Monte Carlo Confidence level: 99 % Number of samples: 10000 Exact ✓ Time limit per test: 5 mi Exact method will be used instead of Monte Carlo computational limits allow.	inutes
Expected Range © Get from data © Use specified range Lower: Upper:	Expected Values All categories equal Values: Add Change Remove		For nonasymptotic methods, cell counts are alw or truncated in computing the test statistics. Continue Cancel Help	rays rounded
OK Paste	Reset Cancel Help			

The *Expected Values* section is where you effectively tell SPSS what your null hypothesis is. If your null hypothesis states no preference, then just leave the default selection, *All categories equal*. However, if your null hypothesis states no difference from a comparison population, you should click on *Values* and then enter, one at a time, the expected frequencies or percentages for each category. You should do this in the order that the categories were defined originally, and make sure you click on *Add* each time. Once you're done, click *OK*.


Chi-square Test			
	Test Variable List:	E <u>x</u> act Options	
	*	Sele	ect if your null hypothesis is equal proportions
Expected Range © <u>G</u> et from data © U <u>s</u> e specified range	Expected Values © All categories equal © Values: 25		
Lower: Select if your null hypothesis is not equal proportions	Add 24 Change 10 Remove 11		Enter predicted values in order
OKP	aste Reset Cancel Help		

SPSS Procedure for Binomial Test

Like the chi-square test of goodness-of-fit, there are two different ways of running the binomial test in newer versions of SPSS (version 18 and on): (1) using the automatic "One Sample" procedure, or (2) using the "Legacy Dialogs" procedure. The output produced by both methods is quite different. Note that if you are using an earlier version of SPSS, you can only use the second option here.

(1) Running the binomial test using the automatic "One Sample" procedure

To run the binomial test, you can just follow the same procedure as for the "automatic" chisquare – SPSS will recognise that the nominal variable has only two categories and so will run the binomial test accordingly. Go to Analyze \rightarrow Nonparametric Tests \rightarrow One Sample...

Under *Objective*, check that your objective is to automatically compare observed data to hypothesized (it should be the default). Notice that in *Description* at the bottom of the window SPSS tells you that the binomial test is suitable.

entifies differences in single fields (using one or more nonparametric t	ests. Nonparametric tests	do not assure	
low the normal distribution.			Select the m appropriate ob	
What is your objective?	stinct default configuration on the	Settinger The Vou can	further customize, if desired.	
Automatically compare observed	, ,	,		
 ○ Test sequence for randomne ○ Customize analysis 	ISS		PSS tells you ut the test here	
Description				1
utomatically compares observed on he test chosen varies based on yo	data to hypothesized using the Bir	nomial test, Chi-Square te	st, or Kolmogorov-Smirnov.	

Click on the *Fields* tab, and transfer over the nominal variable to the *Test Fields* box. (If the case number variable is already there, transfer it back to the *Fields* box.) When you are ready you can click on *Run* to run the test. SPSS will automatically recognise the fact that there are only two categories in your nominal variable and will select the binomial test.

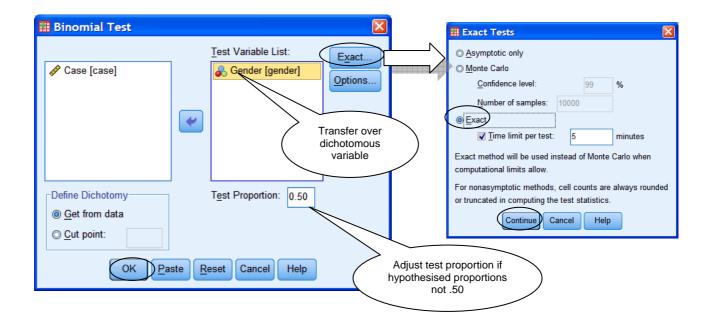
Objective Fields Settings Use predefined roles Use custom field assignments	5	Transfer over nominal variable
Fields: Sort: None Case	Test Fields: Gender	
Run	Paste Reset Cancel Help	

If your hypothesised proportions are not equal (e.g. if based on a comparison population), you should not run the binomial test in this way as it assumes equal hypothesised proportions. Instead, you should customise the analysis. Click on the *Settings* tab, click on *Customize tests* and select *Compare observed binary probability to hypothesized (Binomial test)*.

III One-Sample Nor	nparametric Tests	X
Objective Fields	ettings	
<u>S</u> elect an item:		
Choose Tests	\bigcirc Automatically choose the tests based on the data	
Test Options	Oustomize tests	
User-Missing Values	Compare observed binary probability to hypothes	ized (Binomial test)
	Options	S al 1
	<u>Compare observed probabilities to hypothesized</u>	(Chi-Square test)
	Options	A.J
	Test observed distribution against hypothesized (Kolmogorov-Smirnov test)
	Options	1
	Compare median to hypothesized (Wilcoxon sign	ed-rank test)
	Hypothesized median:	
	Test seguence for randomness (Runs test)	
	Options	>6.8 1
	Run Paste Reset Cancel	Help

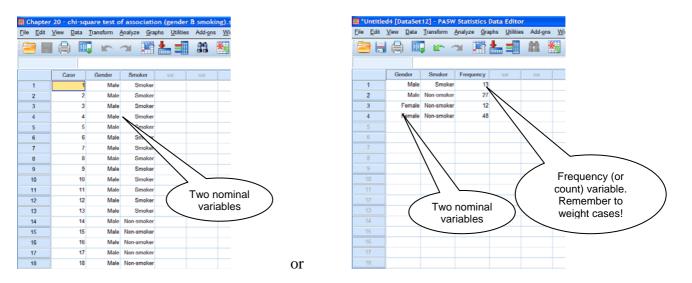
III One-Sample Nor	parametric Tests	
Objective Fields S	ettings	
<u>S</u> elect an item:		
Choose Tests	\bigcirc Automatically choose the tests ba	sed on the data
Test Options	Oustomize tests	
User-Missing Values	Compare observed binary pro	ability to hypothesized (Binomial test)
	Options	\$ 8. ∎ &
	Compare observ	s to hypothesized (Chi-Square test) Change proportion for
	Options	first category
	Test observed distribution aga	iii Binomiac options
	Options	
	Compare median to hypothes	Hypothesized proportion: 0.5
	Hypothesized median:	Confidence Interval
	Test sequence for randomnes	Clopper-Pearson (exact)
	Options	I Jeffreys
	Run Paste	Likelihood ratio
		Define Success for Categorical Fields
		Specify success values Success is equal to or less than
		Sample midpoint
		Value
		<u>Cut point:</u>
		OK Cancel Help

If you want to specify the predicted proportions, click on *Options*, then change the value showing in *Hypothesized proportion*. This should be the proportion corresponding to the first category (i.e. whichever category has the lowest value). Click on *OK*. Don't forget to click on *Run* once you're done.


(2) Running the binomial test using the "Legacy Dialogs" procedure

If you are using a version of SPSS earlier than version 18, the "automatic" binomial test will not be available; you will have to use a different method to run the test. You may also want to use this alternative method if you are using SPSS 18 (or newer version) but have had experience with the earlier method of running the test.

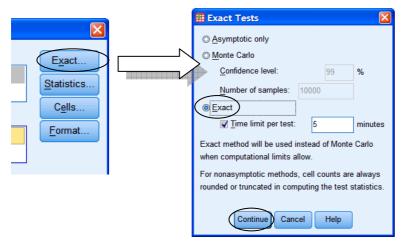
To run the binomial test in SPSS 18 (and newer), go to Analyze \rightarrow Nonparametric Tests \rightarrow Legacy Dialogs \rightarrow Binomial... (In earlier versions of SPSS, go to Analyze \rightarrow Nonparametric Tests \rightarrow Binomial ...)


	Analyze	Graphs	Utilities	Add-	ons	W	indow	Help								
I	Rep	orts		+	-				47			A	Ø	•	ARG	I
	Desc	criptive Sta	tistics		-	- A		للللل				1.4				
	Table	95		÷	_			Y	_					r		
	Com	pare Mear	19	+		١	rar	var		Va			var	va	r	
ł	Gene	eral Linear	Model													
1	Gen	eralized Li	near Model	5.≯	-				_							
1	Mi <u>x</u> e	d Models			\vdash				_							
ł	Corre	elate		+												
1	Regr	ession		•												
1	Logli	near														
1	Clas	sify		+												
1	Dime	ension Rec	duction	+												
1	Scal	e														
	Nong	parametric	Tests		4	On	e Sam	ple								
Į	Fore	casting				Ind	lepende	ent Samp	oles							
	Survi	ival		+		Re	lated S	amples.								
	Multi	iple Respo	inse	•			gacy D				1971	Child	quare		_	
	🚮 Miss	ing Value	Analysis			-	,,									
1	Multi	iple Imputa	ation	+	\vdash				_		_	-	mial			
1	Com	plex Sam	ples	•						_	_	Runs				
1	Qual	ity Control			\vdash					_	_	-	mple K-			
1	ROC	Curve										2 Ind	epende	nt Samp	iles	
1	1				1						14	K Ind	lepende	nt Samp	ples	
1											m	2 Re	lated Sa	mples		
2										_				amples.		

Transfer across the nominal variable to the *Test Variable List* box. To obtain precise p values, click on *Exact...*, select *Exact* and *OK*. The *Test Proportion* box shows you the proportion stated in the null hypothesis. If the proportion corresponding to the first category in the test variables for your particular null hypothesis is not .50 (50%), then change it accordingly. In the current example, however, our null hypothesis would assume 50%. When you are ready to proceed, click on *OK*.

SPSS procedure for chi-square test of association

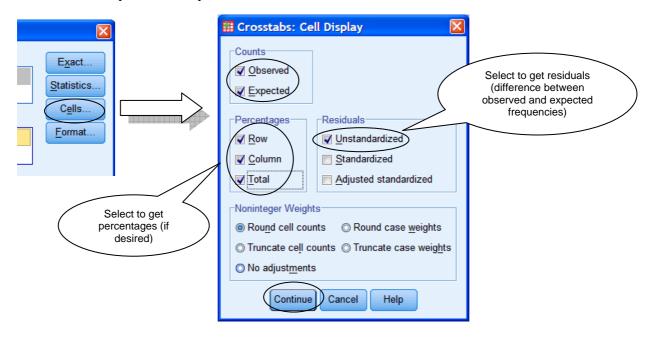
Before running the chi-square test of association, you should ensure that you have two nominal variables. For our example in chapter 20, you would therefore need a gender variable and a smoking variable. Remember that you can enter nominal data in two different ways (see SPSS Procedure for Chi-square test of goodness-of-fit for further details), so you may also need a frequency variable if you intend to weight cases.


To run the chi-square test of association, go to *Analyze* \rightarrow *Descriptives* \rightarrow *Crosstabs...* (Note that the chi-square procedure under the *Nonparametric Tests* menu is NOT suitable for this type of chi-square – you would end up with two separate chi-square tests of goodness-of-fit.)

n	Analyze	Graphs	Utilities	Add-	ons	Window	Help
	Repo	nts		+	-	K. 2	
-	Descriptive Statistics				10	Frequenci	es
_	General Linear Model Generalized Linear Models Mixed Models			- F	R.	Descriptiv	es
r Ial				- F	A Explore		
lai				- >			
al				ls ⊧			
al				- F	_	P-P Plots	
al							
lai					1	Q-Q Plots	l
al	Logli	near					
lal	Dimension Reduction						
lal							
al							
lai							
al	Fore	casting		•			
lal	Surve	val					
lai	Multi	ple Respo	nse		_		
lal Ial	KE Mice	ing Value	Analysis		_		
al	1.4.10	ple Imputa	ation	+	-		
al	0	plex Samp	des				
lal	Quali	ity Control					
al	ROC	Curve					-

Transfer one of the nominal variables to the Row(s) box and the other nominal variable to the Column(s) box. It doesn't really matter which way round you put them – it's all a matter of what you think will look best in the contingency table that will be produced.

III Crosstabs		Transfer over one nominal variable to
	R <u>o</u> w(s):	here
Case number [Case]		Statistics
Smoker [Smoker]	<u>C</u> olumn(s):	Transfer over other nominal variable to here
	Layer 1 of 1 Previous Next	
Display clustered <u>b</u> ar charts	5	
Suppress tables		
ОК	aste <u>R</u> eset Cancel Help	
Crosstabs		
	Row(s):	Event
🛷 Case number [Case]	Gender [Gender]	Exact Statistics
		Cells
	<u>C</u> olumn(s):	Earmat
	Smoker [Smoker]	<u>F</u> ormat
	Layer 1 of 1	
	Previous <u>N</u> ext	
Display clustered <u>b</u> ar charts	3	
Suppress tables		
ОК	aste Reset Cancel Help	


Next, click on *Exact*..., select *Exact* and *Continue*, to obtain precise *p* values.

Then click on *Statistics*... It's important that you don't miss out this bit or you won't have a chi-square. Select *Chi-square* and *Phi and Cramer's V* (effect sizes). Click on *Continue*.

×		Crosstabs: Statistics	
Exact	(Chi-square	Correlations
Statistics		Nominal	Ordinal
Cells		Contingency coefficient	🛅 <u>G</u> amma
Cens		Phi and Cramer's V	Somers' d
<u>F</u> ormat		🔄 Lambda	📄 Kendall's tau- <u>b</u>
		<u>Uncertainty coefficient</u>	📄 Kendall's tau- <u>c</u>
		Nominal by Interval	<u> </u>
		🛅 <u>E</u> ta	🔲 R <u>i</u> sk
			<u> </u>
		Cochr <u>a</u> n's and Mantel-Hae	enszel statistics
		Test common odds ratio equals: 1	
		Continue Cancel	Help

Now click on *Cells*... This is where you can specify what information you want included in your contingency table. *Observed Counts* is selected by default, but you are also recommended to select *Expected Counts*. It's sometimes useful to include percentages in your contingency table, to aid with comparison, so select *Row*, *Column* and *Total Percentages* if you want them. You may also want to select *Unstandardized Residuals*, which will tell you the difference between the observed and expected counts. Click on *Continue* when you are ready.

The last thing for you to do is to select *Display clustered bar charts* if you would like a bar chart of your data. This can be helpful in identifying associations. Finally, click on *OK*.

¢	Display clustered bar charts
	Suppress tables
	OK Paste Reset Cancel Help