	Welcome to the guided example for the self-study problems from Chapter 8 -Cost Estimation.

The requirements in this self-study problem will be asking you to 
Use the high-low method and regression to estimate the relationship between dependent and independent variables, evaluate the results that are derived from the two approaches to estimation, and finally, to estimate the learning curve effect using some given data.

	The requirements relate to the learning objectives of
Understanding the strategic role of cost estimation, 
Using the high-low and regression analysis cost methods of estimation,
Explaining the data requirements and implementation problems of the cost estimation methods, 
Using learning curves in cost estimation, and 
Using statistical measures to evaluate a regression analysis

With this information in mind, let’s look at the facts in the case.

	The requirements of the first problem relate to Hector’s Delivery Service.  The company uses four small vans and six pickup trucks to deliver small packages in the Charlotte, North Carolina, metropolitan area. Hector spends a considerable amount of money on the gas, oil, and regular maintenance of his vehicles, which is done at a variety of service stations and repair shops. He wants to budget his vehicle expenses for the coming year, so he collected the information on his expenses and number of deliveries for each month of the current year, all of which is shown in this table.

For the first requirement you are to use the high-low estimation method to determine the relationship between the number of deliveries and the cost of maintaining the vehicles.  Understanding this relationship will help Hector budget his future expenses.

Remember that the high low method starts out by identifying the high and low activity levels and then finds the matching cost for each of those activity levels.  The idea being that the cost is dependent upon the activity level.

	But before doing any calculations, a good first step would be to graph the data to determine whether there are any unusual patterns or outliers. 

The graph shows no unusual patterns or outliers, so the high-low estimate can be determined directly from the low activity point, and the high activity point.

	Looking back at the table of data, the low activity point, which is in March, has a cost of $123,245 and the high activity point, which is December, has a cost of $201,783. 

	[bookmark: _GoBack]Returning briefly to the graph, you can use this data to determine the slope of the line, which you can see if you connect the low and high activity points.  The slope, which is said to represent the unit variable cost per delivery, is rise over run,  or change in Y over change in X. 

	Using the values from the table, March has activity of 5,166 and an expense of 123,245 and December has activity of 7,433 and costs of 201,783.

	The change in Y, which is the change in cost, is $201,783 minus $123,245, or 78,538, and the change in X, which is the change in activity, is 7,433 minus 5,166, which equals 2,627, so the result is 34.644 or a cost of just over $34.64 per delivery

To determine the intercept you can work with either the high or low point.  The basic formula is total cost = fixed costs plus variable cost per delivery multiplied by the number of deliveries.  Using the high point information, total cost of 201,783 = fixed cost plus 34.644 X 7,433 deliveries and the fixed cost is equal to negative 55,726.

If you used the low point data you would have ended up with the same estimate of the intercept because the low and high points lie on the same line.

Note that the intercept is a negative number, which simply means that the relevant range of 5,166 to 7,433 deliveries is so far from the zero point, which is the intercept point, that the intercept cannot be properly interpreted as a fixed cost. The estimation equation therefore is useful only within the relevant range of approximately 5,000 to 7,500 deliveries and should not be used to estimate costs outside that range.

	Moving on to the second fact pattern, George Harder is the manager of one of Imperial Foods Company’s processing plants. George is concerned about the increase in plant overhead costs in recent months. He has collected data on overhead costs for the past 24 months and has decided to use regression to study the factors influencing these costs. He has also collected data on materials cost, direct labor-hours, and machine-hours as potential independent variables to use in predicting overhead.

George runs two regression analyses on these data, with the following results:
The requirements of the second problem simple ask you to identify which of the two regressions you think is better and why?

All relevant criteria favor the first regression based on higher R - squared and t - values and a lower standard error value. Moreover, the sign on the materials cost variable in regression 2 is negative, which is difficult to explain. This variable should have a direct relationship with overhead; thus, the sign of the variable should be positive. The reason for the improvement of regression 1 over regression 2 might be that machine-hours are highly correlated with either materials costs, labor-hours, or both, thus causing multicollinearity. By excluding machine-hours as an independent variable, George reduced or removed the multicollinearity, and the regression improved as a result. He should, therefore, use regression 1.

	The third fact pattern relates to John Meeks Company, a medium-size manufacturing company with plants in three small mid-Atlantic towns. The company makes plastic parts for automobiles and trucks, primarily door panels, exterior trim and related items. The parts have an average cost of $5 to $20. The company has a steady demand for its products from both domestic and foreign automakers and has experienced growth in sales averaging between 10 and 20 percent over the last 8 to 10 years.

Currently, management is reviewing the incidence of scrap and waste in the manufacturing process at one of its plants. Meeks defines scrap and waste as any defective unit that is rejected for lack of functionality or any other aspect of quality. The plants have a number of different inspection points, and failure or rejection can occur at any of these points.

	You have obtained recent data on the units produced, the units shipped, and the cost of sales, since these numbers are easily available and relatively reliable on a monthly basis.  The number of defective units is also listed in this table.  Management estimates the cost of waste in labor and materials is approximately $10 per unit.

An unfavorable trend appears to exist with regard to defects, and management has asked you to investigate and estimate the defective units in the coming months. A first step in your investigation is to identify the cost drivers of defective parts, to understand what causes them, and then to provide a basis for estimating future defects. 

In this situation you are asked to use the high-low method and regression analysis to estimate the defective units in the coming months and to determine which method provides the best fit for this purpose.

	As before, begin by graphing the data to identify any unusual patterns that must be considered in developing an estimate.  Looking at the graph for the number of defective units you see considerable variation from month to month and that there has been an upward trend over the past two years. 

	Knowing that the production level has also been increasing, as measured either by cost of sales, units produced, or units shipped, you might want to determine whether the relationship between defects and production level has changed. The relationship is shown here in this graph.

The graph makes it clear that a relationship exists between units produced and the number of defects. Since it should have the most direct relationship with defects, let’s start with units produced as the independent variable for analysis, the other independent variables can be tried later. The goal is to quantify this relationship with the high-low method and then regression analysis. 

Beginning with the high-low analysis.  Looking at the graph, the first point, which is the low production activity point, might be considered an outlier.  Drawing a line through this point and the high production activity point, which is last point in the graph, you see that all the remaining points lie above the line, so perhaps the line is not representative of the data.  Moving in one activity data point, the line now looks more representative.  Of course, this is a matter of judgment and if you deemed the first point to not be an outlier, your resulting computations would be different.   

	Using the data from the table, the lowest non-outlier point has 1,335 defect and 58,000 units produced.  The high point, which is in November, has 2,310 defect and 105,000 units produced.    You can now calculate the high-low estimate as follows 

	First the slope, which is 2,311 minus 1,335 divided by 88 minus 58, which is 976 over 30, yielding an estimate of 32.533 defects per 1,000 units produced.

Like in the first fact pattern, you can use either the high or low point to estimate the intercept.  Using the low point, the estimate of the intercept is 

1,355 equals the intercept + 32.533 defect per thousand units times the 58 thousand units, and so the intercept is estimated to be 552. 
And the resulting estimate of the equation is 

Number of defects = 552 + 32.533 times the Production level in thousands of units.
Of course, the high-low estimate is subject to the limitations of subjectivity in the choice of high and low points and because it uses only those two data points to develop the estimate. 

Regression is thus performed to provide a more precise estimate. So, the next step is to obtain a regression analysis from the previous data and to assess the precision and reliability of the regression estimate. 

	The regression can be completed with a spreadsheet program or any of a number of available software systems. The results for three regression analyses are presented this table. The dependent variable in each case is the number of defective units.

Regression 1 has the following independent variables: cost of sales, units shipped, and units produced. R - squared and standard error  are OK, but we observe that all three t - values are less than 2.0, indicating unreliable independent variables. Because one should expect correlation among these variables and because of the low t - values, it is possible there is multicollinearity among these variables. To reduce the effect of multicollinearity, move to regression 2, which removes the variable units shipped, since that variable is likely to be least associated with defective units and has among the lowest of the t - values. R- squared for regression 2 is essentially the same as for regression 1, although standard error improves very slightly, and the t - value for cost of sales is now OK. The results of regression 3, with the cost of sales variable only, show that standard error and the t - value improve again while R - squared is unchanged. Because it has the best standard error and t - values, and a very good R - squared, the third regression is the best choice.

	And now for the final self-study requirements, which illustrate how nonlinear regression can be used to estimate the learning curve rate, given information on output levels and average processing times. To illustrate, the cumulative output, X, and the average time per unit, Y, for the SofTech Inc. illustration in Exhibit 8A.2 is reproduce here.

Using regression analysis, it is possible to show that this learning curve data is consistent with the general learning model.  This is a bit complex, but take the time to review the results.

The general form of the learning model is Y = aX b where a = the time required for the first unit and b = the learning index. Using a log transform for Y, the general learning model can be shown in the equivalent log-linear form, which you can see by looking back at footnote 13 in Appendix A, meaning that the log( Y ) = log( a ) + b times the log( X ). The log transform is available in Excel in “Insert Function” under the Formulas tab.

The right two columns of the exhibit show the X and Y values after they have been transformed (using log, base 10), and the results of a regression on log X and log Y are provided. Note that the regression R - squared is 1.0 because the data fit perfectly an 80 percent learning curve; the values for Y were calculated using the 80 percent rate. Also, note that the learning index is b = -.321928 which is the learning index for a model with an 80 percent learning rate, as shown in footnote 13 of chapter 8

	The value of Y can now be determined for any value of X using the general model. First, determine the value of the intercept, a. Since log ( a ) = 2.8688743, a is determined as follows: a = 10 2.8688743  which equals 739.39. The value for 10 2.8688743 is determined using the Power function in Excel which is located in “Insert Function” under the Formulas tab. Thus, for this example, the value of Y when X = 1,500 is determined as follows:
Y = 739.39 X 1,500 -.321928  which equals 70.2.  Note that, as expected, this value falls between the value of 80 when X equals 1,000 and 64 when X equals 2,000.

	Okay, this was a lot to digest, but now the requirements
Suppose that Virilli, Inc., a manufacturer of high-end furniture, has the following data for one of
its products, where X is cumulative output, and Y is average unit time.

1. Using log-linear regression, determine the general linear model for Virilli. Specifically, determine the values of a and b in the model Y = aX b  and then 
2. Using the model you developed in part 1, project the value of Y if output ( X ) is increased to 133.

	First you compute the log of the X and Y values, which are shown here.  Then a regression can be done.

	The regression solution for the Virilli case is presented here. The value of b equals -0.3394, and the value of a = 10 2.02881 , which equals 106.86. The regression measures look good, as the adjusted R - squared is relatively high at .938 and the t - statistic for the coefficient, b, is 10.35. Overall these measures indicate that the regression has a good fit.

	Using the value for a, which is 106.86, the value for Y when X equals 133 is determined as follows.
Y equals  106.86  times 133 raised to negative .3394 and that results in a value of 20.33

And wow, that completes the requirements.

	Through the completion of these four self-study requirements you have 

Used the high-low estimation method to determine the relationship between the number of deliveries and the cost of maintaining the vehicles.

Used statistical values to help determine which of two regressions is better and why, 

Used the high-low method and regression analysis to estimate the defective units in the coming months and to determine which method provides the best fit for this purpose, and 

Used log-linear regression to determine the values of a and b in the general learning curve model of model Y = aX b  and used those results to project the value of Y if output ( X ) is increased to a specified level.



