Study Guide and Intervention

Alg1 15.0

PERIOD

Ratios and Proportions

Ratios and Proportions A **ratio** is a comparison of two numbers by division. The ratio of x to y can be expressed as x to y, x:y or $\frac{x}{y}$. Ratios are usually expressed in simplest form.

An equation stating that two ratios are equal is called a **proportion**. To determine whether two ratios form a proportion, express both ratios in simplest form or check cross products.

Example 1 Determine whether the ratios $\frac{24}{36}$ and $\frac{12}{18}$ form a proportion.	Example 2 Use cross products to determine whether $\frac{10}{18}$ and $\frac{25}{45}$ form a proportion.	
$\frac{24}{36} = \frac{2}{3}$ when expressed in simplest form. 12 2	$\frac{10}{18} \stackrel{?}{=} \frac{25}{45}$ Write the proportion.	
$\frac{12}{18} = \frac{2}{3}$ when expressed in simplest form.	$10(45) \stackrel{?}{=} 18(25)$ Cross products	
The ratios $\frac{24}{36}$ and $\frac{12}{18}$ form a proportion	450 = 450 Simplify.	
because they are equal when expressed in	The cross products are equal, so $\frac{10}{18} = \frac{25}{45}$.	
simplest form.	Since the ratios are equal, they form a proportion.	

Exercises

Use cross products to determine whether each pair of ratios forms a proportion.

1. $\frac{1}{2}, \frac{16}{32}$	2. $\frac{5}{8}, \frac{10}{15}$	3. $\frac{10}{20}, \frac{25}{49}$
4. $\frac{25}{36}, \frac{15}{20}$	5. $\frac{12}{32}, \frac{3}{16}$	6. $\frac{4}{9}, \frac{12}{27}$
7. $\frac{0.1}{2}, \frac{5}{100}$	8. $\frac{15}{20}, \frac{9}{12}$	9. $\frac{14}{21}, \frac{20}{30}$
10. 2:3, 20:30	11. 5 to 9, 25 to 45	12. $\frac{72}{64}, \frac{9}{8}$
13. 5:5, 30:20	14. 18 to 24, 50 to 75	15. 100:75, 44:33
16. $\frac{0.05}{1}, \frac{1}{20}$	17. $\frac{1.5}{2}, \frac{6}{8}$	18. $\frac{0.1}{0.2}, \frac{0.45}{0.9}$

NAME

Study Guide and Intervention

-Ratios and Proportions

Solve Proportions If a proportion involves a variable, you can use cross products to solve the proportion. In the proportion $\frac{x}{5} = \frac{10}{13}$, *x* and 13 are called **extremes.** They are the first and last terms of the proportion. 5 and 10 are called **means**. They are the middle terms of the proportion. In a proportion, the product of the extremes is equal to the product of the means.

Means-Extreme	s Property of Proportions	For any numbers <i>a</i> , <i>b</i> , <i>c</i> , and <i>d</i> , if $\frac{a}{b} = \frac{c}{d}$, then $ad = bc$.		
Example	Solve $\frac{x}{5} = \frac{10}{13}$.			
$\frac{x}{5} = \frac{10}{13}$	Original proportion			
13(x) = 5(10)	Cross products			
13x = 50	Simplify.			
$\frac{13x}{13} = \frac{50}{13}$	Divide each side by 13.			
$x = 3\frac{11}{13}$	Simplify.			
Exercises				
Solve each proportion.				
1. $\frac{-3}{x} = \frac{2}{8}$	2. $\frac{1}{t}$	$=\frac{5}{3}$	3. $\frac{0.1}{2} = \frac{0.5}{x}$	
4. $\frac{x+1}{4} = \frac{3}{4}$	5. $\frac{4}{6}$	$=\frac{8}{x}$	6. $\frac{x}{21} = \frac{3}{63}$	
7. $\frac{9}{y+1} = \frac{18}{54}$	8. $\frac{3}{d}$	$=\frac{18}{3}$	9. $\frac{5}{8} = \frac{p}{24}$	

10.
$$\frac{4}{b-2} = \frac{4}{12}$$
 11. $\frac{1.5}{x} = \frac{12}{x}$ **12.** $\frac{3+y}{4} = \frac{-y}{8}$

13. $\frac{a-8}{12} = \frac{15}{3}$ **14.** $\frac{12}{k} = \frac{24}{k}$ **15.** $\frac{2+w}{6} = \frac{12}{9}$

Use a proportion to solve each problem.

- **16. MODELS** To make a model of the Guadeloupe River bed, Hermie used 1 inch of clay for 5 miles of the river's actual length. His model river was 50 inches long. How long is the Guadeloupe River?
- **17. EDUCATION** Josh finished 24 math problems in one hour. At that rate, how many hours will it take him to complete 72 problems?