\qquad

Study Guide and Intervention

Solving Inequalities Involving Absolute Value

Absolute Value Inequalities When solving inequalities that involve absolute value, there are two cases to consider for inequalities involving $<($ or \leq) and

If $|x|<n$, then $x>-n$ and $x<n$. If $|x|>n$, then $x>n$ or $x<-n$. two cases to consider for inequalities involving $>$ (or \geq).
Remember that inequalities with and are related to intersections, while inequalities with or are related to unions.

Example Solve $|3 a+4|<10$. Then graph the solution set.
Write $|3 a+4|<10$ as $3 a+4<10$ and $3 a+4>-10$. Now graph the solution set.

$$
3 a+4<10 \quad \text { and } \quad 3 a+4>-10
$$

$3 a+4-4<10-4 \quad 3 a+4-4>-10-4$

$$
\begin{array}{rlrl}
3 a & <6 & 3 a & >-14 \\
\frac{3 a}{3} & <\frac{6}{3} & \frac{3 a}{3} & >\frac{-14}{3} \\
a & <2 & a & >-4 \frac{2}{3}
\end{array}
$$

The solution set is $\left\{a \left\lvert\,-4 \frac{2}{3}<a<2\right.\right\}$.

Exercises

Solve each open sentence. Then graph the solution set.

1. $|c-2|>6$
2. $|x-3|<0$
3. $|3 f+10| \leq 4$

4. $|x| \leq 2$

5. $|x| \geq 3$
6. $|2 x+1| \geq-2$

7. $|2 d-1| \leq 4$

8. $|3-(x-1)| \leq 8$
9. $|3 r+2|<-5$

For each graph, write an open sentence involving absolute value.
10.

11.

12.

\qquad
\qquad

Study Guide and Intervention (continued)

Solving Inequalities Involving Absolute Value

Absolute Value Inequalities When solving inequalities that involve absolute value, there are two cases to consider for inequalities involving $<($ or $\leq)$ and two cases to consider for inequalities involving $>($ or $\geq)$.

Remember that inequalities with and are related to intersections, while inequalities with or are related to unions.

Example 1 Solve $|2 x+3|>5$. Then graph the solution set.

$$
\begin{aligned}
& \text { Write }|2 x+3|>5 \text { as } 2 x+3>5 \text { and } \\
& 2 x+3<-5
\end{aligned}
$$

The solution set is $x<-4$ or $x>1$.
Now graph the solution set.

Example 2 Write an inequality

 involving absolute value from the graph.

Find the point that is the same distance form -4 as it is from 2 .
The distance from -4 to -1 is 3 units.
The distance from 2 to -1 is 3 units.
The solution set is $\{x \mid-4<x<2\}$.

Exeraises

Solve each open sentence. Then graph the solution set.

1. $|b-6|>3$
2. $|f-4|<1$
3. $|2 m+5| \geq 7$

For each graph, write an open sentence involving absolute value.
4.

5.

6.

8.

9.

