Study Guide and Intervention

Alg1 9.0

PERIOD _

Graphing Systems of Equations

Number of Solutions Two or more linear equations involving the same variables form a **system of equations**. A solution of the system of equations is an ordered pair of numbers that satisfies both equations. The table below summarizes information about systems of linear equations.

Graph of a System	intersecting lines	same line	parallel lines	
Number of Solutions	exactly one solution	infinitely many solutions	no solution	
Terminology	consistent and independent	consistent and dependent	inconsistent	

Example Use the graph at the right to determine whether the system has *no* solution, *one* solution, or *infinitely many* solutions.

a.
$$y = -x + 2$$

y = x + 1

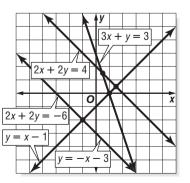
Since the graphs of y = -x + 2 and y = x + 1 intersect, there is one solution.

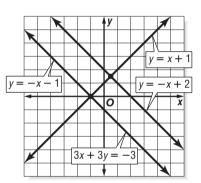
b. y = -x + 23x + 3y = -3

Since the graphs of y = -x + 2 and 3x + 3y = -3 are parallel, there are no solutions.

c. 3x + 3y = -3

y = -x - 1


Since the graphs of 3x + 3y = -3 and y = -x - 1 coincide, there are infinitely many solutions.


Exercises

Use the graph at the right to determine whether each system has *no* solution, *one* solution, or *infinitely many* solutions.

1. $y = -x - 3$	2. $2x + 2y = -6$
y = x - 1	y = -x - 3

3. y = -x - 3 2x + 2y = 4 **4.** 2x + 2y = -63x + y = 3

Study Guide and Intervention (continued)

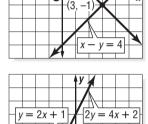
Graphing Systems of Equations

Solve by Graphing One method of solving a system of equations is to graph the equations on the same coordinate plane.

Example Graph each system of equations. Then determine whether the system has no solution, one solution, or *infinitely many* solutions. If the system has one solution, name it.

a.
$$x + y = 2$$

x - y = 4


The graphs intersect. Therefore, there is one solution. The point (3, -1) seems to lie on both lines. Check this estimate by replacing x with 3 and y with -1 in each equation.

$$x + y = 2$$

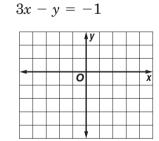
3 + (-1) = 2
$$x - y = 4$$

3 - (-1) = 3 + 1 or 4

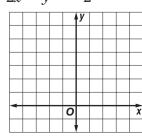
The solution is (3, -1).

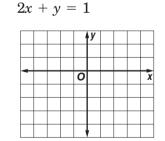
b. y = 2x + 12v = 4x + 2

> The graphs coincide. Therefore there are infinitely many solutions.


0

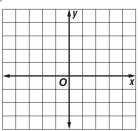
x + y = 2


Exercises


-2

Graph each system of equations. Then determine whether the system has no solution, one solution, or infinitely many solutions. If the system has one solution, name it.

4. 2x + y = 62x - y = -2


5. 3x + 2y = 63x + 2v = -4

2. x = 2

		1	y		
_					
		0			x
		,	1		

$3. y = \frac{1}{2}x$ $x + y = 3$										
	v	' ·	y		0					
						y				
									_	
	-				0					¥
	\vdash				U					^
	L									

6. 2y = -4x + 4y = -2x + 2

