Example 1 Identify Lines of Symmetry

Determine whether the figure has line symmetry. If so, copy the figure and draw all lines of symmetry.

The figure has one line of symmetry.

Example 2 Identify Lines of Symmetry

Determine whether the figure has line symmetry. If so, copy the figure and draw all lines of symmetry.

The figure has one line of symmetry.

Example 3 Identify Lines of Symmetry
Determine whether the figure has line symmetry. If so, copy the figure and draw all lines of symmetry.

The figure has no line symmetry.

Example 4 Reflect a Figure Over the \boldsymbol{x}-axis

Triangle $X Y Z$ has vertices $X(-2,4), Y(5,1)$, and $Z(6,2)$. Find the coordinates of $X Y Z$ after a reflection over the x-axis. Then graph the figure and its reflected image.

Vertices of $\triangle \boldsymbol{X} \boldsymbol{Y} \mathbf{Z}$	Distance from \boldsymbol{x}-axis	Vertices of $\triangle \boldsymbol{X}^{\prime} \boldsymbol{Y}^{\prime} \mathbf{Z}^{\prime}$
$X(-2,4)$	4	$X^{\prime}(-2,-4)$
$Y(5,1)$	1	$Y^{\prime}(5,-1)$
$Z(6,2)$	2	$Z^{\prime}(6,-2)$

Plot the vertices and connect to form $\triangle X Y Z$. The x axis is the line of symmetry. So, the distance from each point on $\triangle X Y Z$ to the line of symmetry is the same as the distance from the line of symmetry to $\triangle X^{\prime} Y^{\prime} Z^{\prime}$.

Example 5 Reflect a Figure Over the y-axis

Quadrilateral $A B C D$ has vertices $A(2,3), B(3,5), C(7,1)$, and $D(5,-2)$. Find the coordinates of $A B C D$ after a reflection over the y-axis. Then graph the figure and its reflected image.

Vertices of quad $\boldsymbol{A} \boldsymbol{B} \boldsymbol{C} \boldsymbol{D}$	Distance from \boldsymbol{y}-axis	Vertices of quad $\boldsymbol{A}^{\prime} \boldsymbol{B}^{\prime} \boldsymbol{C}^{\prime} \boldsymbol{D}^{\prime}$
$A(2,3)$	2	$A^{\prime}(-2,3)$
$B(3,5)$	3	$B^{\prime}(-3,5)$
$C(7,1)$	7	$C^{\prime}(-7,1)$
$D(5,-2)$	5	$D^{\prime}(-5,-2)$

Plot the vertices and connect to form quadrilateral $A B C D$. The y-axis is the line of symmetry. So, the distance from each point on quadrilateral $A B C D$ to the line of symmetry is the same as the distance from the line of symmetry to quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

