Lesson 12-2

Example 1 Find the Length of the Hypotenuse SANDBOX Find the length of the diagonal of a sandbox which is a rectangle having length measuring 8 feet and width measuring 5 feet. Round to the nearest tenth if necessary.



To solve, find the length of the hypotenuse c.

| $c^2 = a^2 + b^2$        | Pythagorean Theorem                          |
|--------------------------|----------------------------------------------|
| $c^2 = 8^2 + 5^2$        | Replace <i>a</i> with 8 and <i>b</i> with 5. |
| $c^2 = 64 + 25$          | Evaluate $8^2$ and $5^2$ .                   |
| $c^2 = 89$               | Add.                                         |
| $\sqrt{c^2} = \sqrt{89}$ | Take the square root of each side.           |
| $c \approx 9.4$          | Simplify.                                    |

The length of the diagonal of the sandbox is about 9.4 feet.

Example 2 Solve a Real-Life Problem CONSTRUCTION A survey of a plot of land is being done in preparation for a new house being built on it. The plot is rectangular in shape with a length of 150 feet and a width of 60 feet. Find the measure of the diagonal of the plot.



The diagonal of the rectangle is the hypotenuse of a right triangle.

| $c^2 = a^2 + b^2$            | Pythagorean Theorem                             |
|------------------------------|-------------------------------------------------|
| $c^2 = 60^2 + 150^2$         | Replace <i>a</i> with 60 and <i>b</i> with 150. |
| $c^2 = 3,600 + 22,500$       | Evaluate $60^2$ and $150^2$ .                   |
| $c^2 = 26,100$               | Simplify.                                       |
| $\sqrt{c^2} = \sqrt{26,100}$ | Take the square root of each side.              |
| $c \approx 161.6$            | Simplify.                                       |

The length of the diagonal of the plot is about 161.6 feet.

**Example 3** Find the Length of a Leg Find the missing measure of the right triangle at the right. Round to the nearest tenth if necessary.



The missing measure is a leg of the triangle.

| $c^2 = a^2 + b^2$             | Pythagorean Theorem                            |
|-------------------------------|------------------------------------------------|
| $15^2 = a^2 + 11^2$           | Replace <i>b</i> with 11 and <i>c</i> with 15. |
| $225 = a^2 + 121$             | Evaluate 15 <sup>2</sup> and 11 <sup>2</sup> . |
| $225 - 121 = a^2 + 121 - 121$ | Subtract 121 from each side.                   |
| $104 = a^2$                   | Simplify.                                      |
| $\sqrt{104} = \sqrt{a^2}$     | Take the square root of each side.             |
| $10.2 \approx a$              | Simplify.                                      |
|                               |                                                |

The length of the leg is about 10.2 centimeters.

## **Example 4 Standardized Test Practice**

QUILTING Mrs. Jones is creating a quilt out of fabric squares that measure 12 inches on a side. Which is the closest to the length of the diagonal of the fabric square?

**A** 12 in. **B** 13 in. **C** 15 in. **D** 17 in.

## **Read the Test Item**

You need to use the Pythagorean Theorem to find the diagonal length.

## Solve the Test Item

| $c^{2} = a^{2} + b^{2}$ $c^{2} = 12^{2} + 12^{2}$ $c^{2} = 144 + 144$ $a^{2} = 288$ | Pythagorean Theorem<br>Replace <i>a</i> with 12 and <i>b</i> with 12.<br>Evaluate $12^2$ . |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| $c = 288$ $\sqrt{c^2} = \sqrt{288}$ $c \approx 16.97$                               | Take the square root of each side.<br>Simplify.                                            |

So, the answer is D.