MathMatters 2

Lesson 2-1

Example 1

Graph the set of numbers
$$\left\{0.5, -2, -2\frac{1}{2}, -1.5\right\}$$
 on a number line.

Solution

Draw a number line. Use a solid dot to graph each number.

Example 2

Use a number line to compare numbers. Replace each ■ with <, >, or =.										
a.	-3 ■ 2	b.	1 ■ 0	c. $\frac{1}{3}$ - $\frac{2}{3}$						

Solution

Draw a number line and graph each number.

- **a.** -3 is to the left of 2, so -3 < 2.
- **b.** 1 is to the right of 0, so 1 > 0. **c.** $\frac{1}{3}$ is to the right of $-\frac{2}{3}$, so $\frac{1}{3} > -\frac{2}{3}$.

Example 3

Graph each set of numbers on a number line.

- **a.** the integers from -1 through 4
- **c.** all real numbers less than or equal to 3

Solution

a. The set consists of -1, 0, 1, 2, 3, and 4. Put a solid dot at each of these points on the number line.

c. The set consists of 3 and all real numbers less than 3. Graph the set by drawing an arrow beginning at 3 and pointing to the left. To indicate that 3 is part of the set, draw a solid dot at 3.

				1	1	1.		-	1	1	_
	1	1	1	1	1	1	1				
-5	-4	-3	-2	-1	Q	1	Z	3	4	5	

- **b.** the real numbers from -1 through 4
- **d.** all real numbers greater than -2
- **b.** The set consists of -1 and 4 and all real numbers between. Graph the set by drawing solid dots at -1 and 4 and connecting the two points.

d. The set consists of -2 and all real numbers greater than -2. Graph the set by drawing an arrow beginning at -2 and pointing to the right. To indicate that -2 is not part of the set, draw an open circle at -2.

Example 4

Evaluate each expression.

- **a.** -p, when p = 4.3**b.** -(-m), when $m = -\frac{3}{4}$
- c. |x|, when x = -9.9

d. -|-d|, when d = 15

Solution

a. Since p = 4.3, -p = -4.3.

b. Since
$$m = -\frac{3}{4}$$
,
 $-(-m) = -\left[-\left(-\frac{3}{4}\right)\right] = -\frac{3}{4}$, when $m = -\frac{3}{4}$

- **c.** Since x = -9.9, |x| = |-9.9| = 9.9.
- **d.** Since d = 15, -|-d| = -|-15| = -15.