Lesson 2-1

Example 1

Graph the set of numbers $\left\{0.5,-2,-2 \frac{1}{2},-1.5\right\}$ on a number line.

Solution
Draw a number line. Use a solid dot to graph each number.

Example 2

Use a number line to compare numbers. Replace each \square with <, >, or =.
a. $-3 \square 2$
b. $1 ■ 0$
c. $\frac{1}{3} \llbracket-\frac{2}{3}$

Solution
Draw a number line and graph each number.

a. -3 is to the left of 2 , so $-3<2$.
b. 1 is to the right of 0 , so $1>0$.
c. $\frac{1}{3}$ is to the right of $-\frac{2}{3}$, so $\frac{1}{3}>-\frac{2}{3}$.

Example 3

Graph each set of numbers on a number line.

a. the integers from -1 through 4
c. all real numbers less than or equal to 3

Solution

a. The set consists of $-1,0,1,2,3$, and 4 . Put a solid dot at each of these points on the number line.

c. The set consists of 3 and all real numbers less than 3 . Graph the set by drawing an arrow beginning at 3 and pointing to the left. To indicate that 3 is part of the set, draw a solid dot at 3 .

b. The set consists of -1 and 4 and all real numbers between. Graph the set by drawing solid dots at -1 and 4 and connecting the two points.
d. The set consists of -2 and all real numbers greater than -2 . Graph the set by drawing an arrow beginning at -2 and pointing to the right. To indicate that -2 is not part of the set, draw an open circle at -2 .

Example 4

b. the real numbers from -1 through 4
d. all real numbers greater than -2

Evaluate each expression.

a. $-p$, when $p=4.3$
b. $-(-m)$, when $m=-\frac{3}{4}$
c. $|x|$, when $x=-9.9$
d. $-|-d|$, when $d=15$

Solution

a. Since $p=4.3,-p=-4.3$.
b. Since $m=-\frac{3}{4}$,

$$
-(-m)=-\left[-\left(-\frac{3}{4}\right)\right]=-\frac{3}{4} \text {, when } m=-\frac{3}{4} \text {. }
$$

c. Since $x=-9.9,|x|=|-9.9|=9.9$.
d. Since $d=15,-|-d|=-|-15|=-15$.

