Practice Problem Solutions

1) $z=1.28 . \quad$ Area beyond $=.1003$
2) $z=.47 . \quad$ Area beyond $=.3192$
3) $z=1.45 . \quad$ Area beyond $=.0735$
4) $z=-.38 . \quad$ Area beyond $=.3520$
5) $z=-1.85 . \quad$ Area beyond $=.0322$
6) $z=2.04 \quad$ Area between mean and $z=.4793$
7) $z=1.66 \quad$ Area between mean and $z=.4515$
8) $z=0 \quad$ Area between mean and $z=0$
9) $z=-.89 \quad$ Area between mean and $z=.3133$
10) $z=-1.35 \quad$ Area between mean and $z=.4115$
11) What proportion of people set the rods farther than 125 millimeters apart?

Column 3, Area beyond the mean is .1056 .
12) What proportion of people set the rods farther than 100 millimeters apart?

Since 100 is the mean, the answer .50.
13) What proportion of people set the rods between 90 and 100 millimeters apart?

$$
z=\frac{90-100}{20}=.5 .1915 \text { Columns } 2
$$

14) What proportion of people set the rods less than 82 millimeters apart?

$$
z=\frac{82-100}{20}=.9 .1841 \text { Column } 3
$$

15) What is the $90^{\text {th }}$ percentile distance?

Divide $90 \% / 100=.90$ Enter Table P and find the z score. Column 1 is .90 and it corresponds to $\mathrm{z}=1.28$.
$X=\mu+(z \cdot \sigma)=100+(1.28 \cdot 20)=125.6$ millimeters
16) What is the $45^{\text {th }}$ percentile distance?

Divide $45 \% / 100=.45$ Enter Table P and find the z score. Column 3 is .45 and it correspondsto $\mathrm{z}=.1257$. Because it is below the mean it is -.1257 . $X=\mu+(z \cdot \sigma)=100+(-.1257 \cdot 20)=97.486$ millimeters .

