Practice Problem Solutions

1) z = 1.28.	Area beyond = .1003
2) z = .47.	Area beyond = .3192
3) <i>z</i> = 1.45.	Area beyond = .0735
4) z =38.	Area beyond = .3520
5) z = - 1.85.	Area beyond = .0322
6) z = 2.04	Area between mean and <i>z</i> = .4793
7) z = 1.66	Area between mean and <i>z</i> = .4515
8) z = 0	Area between mean and $z = 0$
9) z =89	Area between mean and $z = .3133$

10) z = - 1.35 Area between mean and z = **.4115**

11) What proportion of people set the rods *farther* than 125 millimeters apart?Column 3, Area beyond the mean is .1056.

12) What proportion of people set the rods *farther* than 100 millimeters apart?Since 100 is the mean, the answer .50.

13) What proportion of people set the rods between 90 and 100 millimeters apart?

$$z = \frac{90 - 100}{20} = .5$$
 .1915 Columns 2

14) What proportion of people set the rods less than 82 millimeters apart?

$$z = \frac{82 - 100}{20} = .9$$
 .1841 Column 3

15) What is the 90th percentile distance?

Divide 90%/100 = .90 Enter Table P and find the z score. Column 1 is .90 and it corresponds to z = 1.28. $X = \mu + (z \cdot \sigma) = 100 + (1.28 \cdot 20) = 125.6$ millimeters

16) What is the 45th percentile distance?

Divide 45%/100 = .45 Enter Table P and find the z score. Column 3 is .45 and it corresponds o z = .1257. Because it is below the mean it is - .1257. $X = \mu + (z \cdot \sigma) = 100 + (-.1257 \cdot 20) = 97.486$ millimeters.