Contents

Preface xix
Guided Tour xxiii
What Resources Support This Textbook? xxv
Acknowledgments xxvii
Connect xxviii
List of Symbols xxx
1 Introduction 1
1.1 What Is Mechanics? 2
1.2 Fundamental Concepts and Principles 2
1.3 Systems of Units 5
1.4 Conversion from One System of Units to Another 10
1.5 Method of Problem Solution 11
1.6 Numerical Accuracy 13
2 Statics of Particles 14
2.1 Introduction 16
Forces in a Plane 16
2.2 Force on a Particle. Resultant of Two Forces 16
2.3 Vectors 17
2.4 Addition of Vectors 18
2.5 Resultant of Several Concurrent Forces 20
2.6 Resolution of a Force into Components 21
2.7 Rectangular Components of a Force. Unit Vectors 27
2.8 Addition of Forces by Summing X and Y Components 30
2.9 Equilibrium of a Particle 35
2.10 Newton's First Law of Motion 36
2.11 Problems Involving the Equilibrium of a Particle. 36Free-Body Diagrams
Forces in Space 46
2.12 Rectangular Components of a Force in Space 46
2.13 Force Defined by Its Magnitude and Two Points on Its Line of Action 49
2.14 Addition of Concurrent Forces in Space 50
2.15 Equilibrium of a Particle in Space 58
Review and Summary for Chapter 2 66
Review Problems 69
Computer Problems 72
3 Rigid Bodies: Equivalent Systems of Forces 74
3.1 Introduction 76
3.2 External and Internal Forces 76
3.3 Principle of Transmissibility. Equivalent Forces 77
3.4 Vector Product of Two Vectors 79
3.5 Vector Products Expressed in Terms of Rectangular Components 81
3.6 Moment of a Force about a Point 83
3.7 Varignon's Theorem 85
3.8 Rectangular Components of the Moment of a Force 85
3.9 Scalar Product of Two Vectors 96
3.10 Mixed Triple Product of Three Vectors 98
3.11 Moment of a Force about a Given Axis 99
3.12 Moment of a Couple 110
3.13 Equivalent Couples 111
3.14 Addition of Couples 113
3.15 Couples Can Be Represented by Vectors 113
3.16 Resolution of a Given Force into a Force at O and a Couple 114
3.17 Reduction of a System of Forces to One Force and One Couple 125
3.18 Equivalent Systems of Forces 126
3.19 Equipollent Systems of Vectors 127
3.20 Further Reduction of a System of Forces 128
*3.21 Reduction of a System of Forces to a Wrench 130
Review and Summary for Chapter 3 148
Review Problems 153
Computer Problems 156
4 Equilibrium of Rigid Bodies
4.1 Introduction 160
4.2 Free-Body Diagram 161
Equilibrium in Two Dimensions 162
4.3 Reactions at Supports and Connections for a Two-Dimensional Structure 162
4.4 Equilibrium of a Rigid Body in Two Dimensions 164
4.5 Statically Indeterminate Reactions. Partial Constraints 166
4.6 Equilibrium of a Two-Force Body 183
4.7 Equilibrium of a Three-Force Body 184
Equilibrium in Three Dimensions 191
4.8 Equilibrium of a Rigid Body in Three Dimensions 191
4.9 Reactions at Supports and Connections for a Three-Dimensional Structure 191
Review and Summary for Chapter 4 210
Review Problems 213
Computer Problems 216
5 Distributed Forces: Centroids and Centers of Gravity 218
5.1 Introduction 220
Areas and Lines 220
5.2 Center of Gravity of a Two-Dimensional Body 220
5.3 Centroids of Areas and Lines 222
5.4 First Moments of Areas and Lines 223
5.5 Composite Plates and Wires 226
5.6 Determination of Centroids by Integration 236
5.7 Theorems of Pappus-Guldinus 238
*5.8 Distributed Loads on Beams 248
*5.9 Forces on Submerged Surfaces 249
Volumes 258
5.10 Center of Gravity of a Three-Dimensional Body. Centroid of a Volume 258
5.11 Composite Bodies 261
5.12 Determination of Centroids of Volumes by Integration 261
Review and Summary for Chapter 5 274
Review Problems 278
Computer Problems 280
6 Analysis of Structures 282
6.1 Introduction 284
Trusses 285
6.2 Definition of a Truss 285
6.3 Simple Trusses 287
6.4 Analysis of Trusses by the Method of Joints 288
*6.5 Joints Under Special Loading Conditions 290
*6.6 Space Trusses 292
6.7 Analysis of Trusses by the Method of Sections 302
*6.8 Trusses Made of Several Simple Trusses 303
Frames and Machines 314
6.9 Structures Containing Multiforce Members 314
6.10 Analysis of a Frame 314
6.11 Frames Which Cease to Be Rigid When Detached from Their Supports 315
6.12 Machines 330
Review and Summary for Chapter 6 344
Review Problems 347
Computer Problems 350
7 Forces in Beams and Cables
*7.1 Introduction 354
*7.2 Internal Forces in Members 354
Beams 361
*7.3 Various Types of Loading and Support 361
*7.4 Shear and Bending Moment in a Beam 363
*7.5 Shear and Bending-Moment Diagrams 365
*7.6 Relations Among Load, Shear, and Bending Moment 373
Cables 383
*7.7 Cables with Concentrated Loads 383
*7.8 Cables with Distributed Loads 384
*7.9 Parabolic Cable 385
*7.10 Catenary 395
Review and Summary for Chapter 7 403
Review Problems 406
Computer Problems 408
8 Friction 410
8.1 Introduction 412
8.2 The Laws of Dry Friction. Coefficients of Friction 412
8.3 Angles of Friction 415
8.4 Problems Involving Dry Friction 416
8.5 Wedges 430
8.6 Square-Threaded Screws 431
*8.7 Journal Bearings. Axle Friction 439
*8.8 Thrust Bearings. Disk Friction 441
*8.9 Wheel Friction. Rolling Resistance 442
*8.10 Belt Friction 449
Review and Summary for Chapter 8 460
Review Problems 463
Computer Problems 466
9 Distributed Forces: Moments of Inertia 468
9.1 Introduction 470
Moments of Inertia of Areas 471
9.2 Second Moment, or Moment of Inertia, of an Area 471
9.3 Determination of the Moment of Inertia of an Area by Integration 472
9.4 Polar Moment of Inertia 473
9.5 Radius of Gyration of an Area 474
9.6 Parallel-Axis Theorem 481
9.7 Moments of Inertia of Composite Areas 482
*9.8 Product of Inertia 495
*9.9 Principal Axes and Principal Moments of Inertia 496
*9.10 Mohr's Circle for Moments and Products of Inertia 504
Moments of Inertia of a Mass 510
9.11 Moment of Inertia of a Mass 510
9.12 Parallel-Axis Theorem 511
9.13 Moments of Inertia of Thin Plates 513
9.14 Determination of the Moment of Inertia of a Three-Dimensional Body by Integration 514
9.15 Moments of Inertia of Composite Bodies 514
*9.16 Moment of Inertia of a Body with Respect to an Arbitrary Axis Through O. Mass Products of Inertia 530
*9.17 Ellipsoid of Inertia. Principal Axes of Inertia 531
*9.18 Determination of the Principal Axes and Principal Moments of Inertia of a Body of Arbitrary Shape 533
Review and Summary for Chapter 9 545
Review Problems 551
Computer Problems 554
10 Method of Virtual Work 556
*10.1 Introduction 558
*10.2 Work of a Force 558
*10.3 Principle of Virtual Work 561
*10.4 Applications of the Principle of Virtual Work 562
*10.5 Real Machines. Mechanical Efficiency 564
*10.6 Work of a Force During a Finite Displacement 578
*10.7 Potential Energy 580
*10.8 Potential Energy and Equilibrium 581
*10.9 Stability of Equilibrium 582
Review and Summary for Chapter 10 592
Review Problems 595
Computer Problems 598
Appendix Fundamentals of Engineering Examination Al
Photo Credits Cl
Index I1
Answers to Problems AN1
Contents

