
a Introduction

 In the latter part of the seventeenth 

century, Sir Isaac Newton stated the 

fundamental principles of mechanics, 

which are the foundation of much of 

today’s engineering. 
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 1.1 WHAT IS MECHANICS?
Mechanics can be defined as that science which describes and predicts 
the conditions of rest or motion of bodies under the action of forces. It 
is divided into three parts: mechanics of rigid bodies, mechanics of 
deformable bodies, and mechanics of fluids.
 The mechanics of rigid bodies is subdivided into statics and 
dynamics, the former dealing with bodies at rest, the latter with bodies 
in motion. In this part of the study of mechanics, bodies are assumed 
to be perfectly rigid. Actual structures and machines, however, are 
never absolutely rigid and deform under the loads to which they are 
subjected. But these deformations are usually small and do not appre-
ciably affect the conditions of equilibrium or motion of the structure 
under consideration. They are important, though, as far as the resis-
tance of the structure to failure is concerned and are studied in 
mechanics of materials, which is a part of the mechanics of deformable 
bodies. The third division of mechanics, the mechanics of fluids, is 
subdivided into the study of incompressible fluids and of compressible 
fluids. An important subdivision of the study of incompressible fluids 
is hydraulics, which deals with problems involving water.
 Mechanics is a physical science, since it deals with the study of 
physical phenomena. However, some associate mechanics with math-
ematics, while many consider it as an engineering subject. Both these 
views are justified in part. Mechanics is the foundation of most engi-
neering sciences and is an indispensable prerequisite to their study. 
However, it does not have the empiricism found in some engineering 
sciences, i.e., it does not rely on experience or observation alone; by its 
rigor and the emphasis it places on deductive reasoning it resembles 
mathematics. But, again, it is not an abstract or even a pure science; 
mechanics is an applied science. The purpose of mechanics is to 
explain and predict physical phenomena and thus to lay the founda-
tions for engineering applications.

1.2 FUNDAMENTAL CONCEPTS AND PRINCIPLES
Although the study of mechanics goes back to the time of Aristotle 
(384–322 b.c.) and Archimedes (287–212 b.c.), one has to wait until 
Newton (1642–1727) to find a satisfactory formulation of its funda-
mental principles. These principles were later expressed in a modi-
fied form by d’Alembert, Lagrange, and Hamilton. Their validity 
remained unchallenged, however, until Einstein formulated his theory 
of relativity (1905). While its limitations have now been recognized, 
newtonian mechanics still remains the basis of today’s engineering 
sciences.
 The basic concepts used in mechanics are space, time, mass, and 
force. These concepts cannot be truly defined; they should be accepted 
on the basis of our intuition and experience and used as a mental frame 
of reference for our study of mechanics.
 The concept of space is associated with the notion of the position 
of a point P. The position of P can be defined by three lengths mea-
sured from a certain reference point, or origin, in three given direc-
tions. These lengths are known as the coordinates of P.
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3    To define an event, it is not sufficient to indicate its position in 
space. The  time  of the event should also be given. 
    The concept of  mass  is used to characterize and compare bodies 
on the basis of certain fundamental mechanical experiments. Two bod-
ies of the same mass, for example, will be attracted by the earth in the 
same manner; they will also offer the same resistance to a change in 
translational motion. 
    A  force  represents the action of one body on another. It can be 
exerted by actual contact or at a distance, as in the case of gravitational 
forces and magnetic forces. A force is characterized by its  point of 
application , its  magnitude , and its  direction ; a force is represented by 
a  vector  (Sec. 2.3). 
    In newtonian mechanics, space, time, and mass are absolute con-
cepts, independent of each other. (This is not true in  relativistic 
mechanics , where the time of an event depends upon its position, and 
where the mass of a body varies with its velocity.) On the other hand, 
the concept of force is not independent of the other three. Indeed, one 
of the fundamental principles of newtonian mechanics listed below 
indicates that the resultant force acting on a body is related to the mass 
of the body and to the manner in which its velocity varies with time. 
    You will study the conditions of rest or motion of particles and 
rigid bodies in terms of the four basic concepts we have introduced. By 
 particle  we mean a very small amount of matter which may be assumed 
to occupy a single point in space. A  rigid body  is a combination of a 
large number of particles occupying fixed positions with respect to 
each other. The study of the mechanics of particles is obviously a pre-
requisite to that of rigid bodies. Besides, the results obtained for a 
particle can be used directly in a large number of problems dealing 
with the conditions of rest or motion of actual bodies. 
    The study of elementary mechanics rests on six fundamental 
principles based on experimental evidence.  

 The Parallelogram Law for the Addition of Forces.   This states 
that two forces acting on a particle may be replaced by a single force, 
called their  resultant , obtained by drawing the diagonal of the paral-
lelogram which has sides equal to the given forces (Sec. 2.2).   

 The Principle of Transmissibility.   This states that the conditions 
of equilibrium or of motion of a rigid body will remain unchanged if a 
force acting at a given point of the rigid body is replaced by a force of 
the same magnitude and same direction, but acting at a different point, 
provided that the two forces have the same line of action (Sec. 3.3).   

 Newton’s Three Fundamental Laws.   Formulated by Sir Isaac 
Newton in the latter part of the seventeenth century, these laws can be 
stated as follows:  

 FIRST LAW.   If the resultant force acting on a particle is zero, the 
particle will remain at rest (if originally at rest) or will move with con-
stant speed in a straight line (if originally in motion) (Sec. 2.10).   

1.2 Fundamental Concepts and Principles
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4 Introduction  SECOND LAW.   If the resultant force acting on a particle is not zero, 
the particle will have an acceleration proportional to the magnitude of 
the resultant and in the direction of this resultant force. 
  As you will see in Sec. 12.2, this law can be stated as 

    F 5 ma (1.1)  

 where  F ,  m , and  a  represent, respectively, the resultant force acting on 
the particle, the mass of the particle, and the acceleration of the parti-
cle, expressed in a consistent system of units.   

 THIRD LAW.   The forces of action and reaction between bodies in 
contact have the same magnitude, same line of action, and opposite 
sense (Sec. 6.1).    

 Newton’s Law of Gravitation.   This states that two particles of 
mass  M  and  m  are mutually attracted with equal and opposite forces  F  
and  2F  ( Fig. 1.1 ) of magnitude  F  given by the formula 

   F 5 G 

Mm
r2  (1.2)  

    where  r  5 distance between the two particles 
     G  5 universal constant called the  constant of gravitation  

   Newton’s law of gravitation introduces the idea of an action exerted at 
a distance and extends the range of application of Newton’s third law: 
the action  F  and the reaction  2F  in  Fig. 1.1  are equal and opposite, 
and they have the same line of action. 
    A particular case of great importance is that of the attraction of 
the earth on a particle located on its surface. The force  F  exerted by 
the earth on the particle is then defined as the  weight   W  of the parti-
cle. Taking  M  equal to the mass of the earth,  m  equal to the mass of the 
particle, and  r  equal to the radius  R  of the earth, and introducing the 
constant 

   g 5
GM
R2  (1.3)  

   the magnitude  W  of the weight of a particle of mass  m  may be ex-
pressed as †  

  W 5 mg (1.4) 

  The value of  R  in formula (1.3) depends upon the elevation of the 
point considered; it also depends upon its latitude, since the earth is 
not truly spherical. The value of  g  therefore varies with the position of 
the point considered. As long as the point actually remains on the sur-
face of the earth, it is sufficiently accurate in most engineering compu-
tations to assume that  g  equals 9.81 m/s 2. 

  Fig. 1.1      

M

–F

F

m

r

Photo 1.1 When in earth orbit, people and 
objects are said to be weightless even though the 
gravitational force acting is approximately 90% of 
that experienced on the surface of the earth. This 
apparent contradiction will be resolved in Chapter 
12 when we apply  Newton’s second law to the 
motion of particles.

  †A more accurate definition of the weight  W  should take into account the rotation of the 
earth.  
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5    The principles we have just listed will be introduced in the course 
of our study of mechanics as they are needed. The study of the statics 
of particles carried out in Chap. 2 will be based on the parallelogram 
law of addition and on Newton’s first law alone. The principle of trans-
missibility will be introduced in Chap. 3 as we begin the study of the 
statics of rigid bodies, and Newton’s third law in Chap. 6 as we analyze 
the forces exerted on each other by the various members forming a 
structure. In the study of dynamics, Newton’s second law and Newton’s 
law of gravitation will be introduced. It will then be shown that Newton’s 
first law is a particular case of Newton’s second law (Sec. 12.2) and that 
the principle of transmissibility could be derived from the other prin-
ciples and thus eliminated (Sec. 16.5). In the meantime, however, 
Newton’s first and third laws, the parallelogram law of addition, and 
the principle of transmissibility will provide us with the necessary and 
sufficient foundation for the entire study of the statics of particles, 
rigid bodies, and systems of rigid bodies. 
    As noted earlier, the six fundamental principles listed above are 
based on experimental evidence. Except for Newton’s first law and the 
principle of transmissibility, they are independent principles which 
cannot be derived mathematically from each other or from any other 
elementary physical principle. On these principles rests most of the 
intricate structure of newtonian mechanics. For more than two centu-
ries a tremendous number of problems dealing with the conditions of 
rest and motion of rigid bodies, deformable bodies, and fluids have 
been solved by applying these fundamental principles. Many of the 
solutions obtained could be checked experimentally, thus providing a 
further verification of the principles from which they were derived. It 
is only in the twentieth century that Newton’s mechanics was found at 
fault, in the study of the motion of atoms and in the study of the motion 
of certain planets, where it must be supplemented by the theory of 
relativity. But on the human or engineering scale, where velocities are 
small compared with the speed of light, Newton’s mechanics has yet to 
be disproved.     

  1.3   SYSTEMS OF UNITS   
 With the four fundamental concepts introduced in the preceding sec-
tion are associated the so-called  kinetic units , i.e., the units of  length, 
time, mass , and  force . These units cannot be chosen independently if 
Eq. (1.1) is to be satisfied. Three of the units may be defined arbi-
trarily; they are then referred to as  basic units . The fourth unit, how-
ever, must be chosen in accordance with Eq. (1.1) and is referred to as 
a  derived unit . Kinetic units selected in this way are said to form a 
 consistent system of units .  

  International System of Units (SI Units †).     In this system, which 
will be in universal use after the United States has completed its con-
version to SI units, the base units are the units of length, mass, and 
time, and they are called, respectively, the  meter  (m), the  kilogram  
(kg), and the  second  (s). All three are arbitrarily defined. The second, 

†SI stands for  Système International d’Unités  (French).  

1.3   Systems of Units
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6 Introduction which was originally chosen to represent 1/86 400 of the mean solar 
day, is now defined as the duration of 9 192 631 770 cycles of the radia-
tion corresponding to the transition between two levels of the funda-
mental state of the cesium-133 atom. The meter, originally defined as 
one ten-millionth of the distance from the equator to either pole, is 
now defined as 1 650 763.73 wavelengths of the orange-red light cor-
responding to a certain transition in an atom of krypton-86. The kilo-
gram, which is approximately equal to the mass of 0.001 m 3  of water, 
is defined as the mass of a platinum-iridium standard kept at the Inter-
national Bureau of Weights and Measures at Sèvres, near Paris, France. 
The unit of force is a derived unit. It is called the  newton  (N) and is 
defined as the force which gives an acceleration of 1 m/s 2  to a mass of 
1 kg ( Fig. 1.2 ). From Eq. (1.1) we write 

  1 N 5 (1 kg)(1 m/s2) 5 1 kg ? m/s2 (1.5) 

  The SI units are said to form an  absolute  system of units. This means 
that the three base units chosen are independent of the location where 
measurements are made. The meter, the kilogram, and the second 
may be used anywhere on the earth; they may even be used on another 
planet. They will always have the same significance. 
    The  weight  of a body, or the  force of gravity  exerted on that body, 
should, like any other force, be expressed in newtons. From Eq. (1.4) 
it follows that the weight of a body of mass 1 kg ( Fig. 1.3 ) is 

  W 5 mg
  5 (1 kg)(9.81 m/s2) 
  5 9.81 N  

   Multiples and submultiples of the fundamental SI units may be 
obtained through the use of the prefixes defined in  Table 1.1 . The 
multiples and submultiples of the units of length, mass, and force most 
frequently used in engineering are, respectively, the  kilometer  (km) 
and the  millimeter  (mm); the  megagram  †    (Mg) and the  gram  (g); and 
the  kilonewton  (kN). According to  Table 1.1 , we have 

  1 km 5 1000 m       1 mm 5 0.001 m
 1 Mg 5 1000 kg   1 g 5 0.001 kg

 1 kN 5 1000 N

  The conversion of these units into meters, kilograms, and  newtons, 
respectively, can be effected by simply moving the decimal point 
three places to the right or to the left. For example, to convert 
3.82 km into meters, one moves the decimal point three places to the 
right: 

 3.82 km 5 3820 m 

   Similarly, 47.2 mm is converted into meters by moving the decimal 
point three places to the left: 

 47.2 mm 5 0.0472 m

  Fig. 1.2      

a = 1 m/s2

m = 1 kg F = 1 N

  Fig. 1.3 
      

a = 9.81 m/s2

m = 1 kg

W = 9.81 N

† Also known as a  metric ton .
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7

  Using scientific notation, one may also write 

  3.82 km 5 3.82 3 103 m  
  47.2 mm 5 47.2 3 1023 m 

    The multiples of the unit of time are the  minute  (min) and the 
 hour  (h). Since 1 min 5 60 s and 1 h 5 60 min 5 3600 s, these multi-
ples cannot be converted as readily as the others. 
   By using the appropriate multiple or submultiple of a given unit, 
one can avoid writing very large or very small numbers. For example, 
one usually writes 427.2 km rather than 427 200 m, and 2.16 mm 
rather than 0.002 16 m. † 

 Units of Area and Volume.  The unit of area is the  square meter  
(m 2 ), which represents the area of a square of side 1 m; the unit of vol-
ume is the  cubic meter  (m 3 ), equal to the volume of a cube of side 1 m. 
In order to avoid exceedingly small or large numerical values in the 
computation of areas and volumes, one uses systems of subunits 
obtained by respectively squaring and cubing not only the millimeter 
but also two intermediate submultiples of the meter, namely, the 
  decimeter  (dm) and the  centimeter  (cm). Since, by definition, 

   1 dm 5 0.1 m 5 1021 m   
   1 cm 5 0.01 m 5 1022 m
 1 mm 5 0.001 m 5 1023 m

 †It should be noted that when more than four digits are used on either side of the decimal 
point to express a quantity in SI units—as in 427 200 m or 0.002 16 m—spaces, never 
commas, should be used to separate the digits into groups of three. This is to avoid 
confusion with the comma used in place of a decimal point, which is the convention in 
many countries. 

1.3   Systems of Units TABLE 1.1   Sl Prefixes 

 Multiplication Factor   Prefix †   Symbol 

    1 000 000 000 000 5 10 12    tera   T  
   1 000 000 000 5 10 9    giga   G  
   1 000 000 5 10 6    mega   M  
   1 000 5 10 3    kilo   k  
  100 5 10 2    hecto ‡   h
   10 5 10 1    deka ‡    da  
  0.1 5 10 21   deci ‡   d 
  0.01 5 10 22   centi ‡   c 
  0.001 5 10 23   milli   m 
  0.000 001 5 10 26   micro   m 
  0.000 000 001 5 10 29   nano   n 
  0.000 000 000 001 5 10 212   pico   p 
  0.000 000 000 000 001 5 10 215   femto   f 
  0.000 000 000 000 000 001 5 10 218   atto   a 

 †The first syllable of every prefix is accented so that the prefix will retain its identity. Thus, the 
preferred pronunciation of kilometer places the accent on the first syllable, not the second. 
 ‡The use of these prefixes should be avoided, except for the measurement of areas and volumes 
and for the nontechnical use of centimeter, as for body and clothing measurements.   
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8 Introduction   the submultiples of the unit of area are 

  1 dm2 5 (1 dm)2 5 (1021 m)2 5 1022 m2   
  1 cm2 5 (1 cm)2 5 (1022 m)2 5 1024 m2   
  1 mm2 5 (1 mm)2 5 (1023 m)2 5 1026 m2  

  and the submultiples of the unit of volume are 

   1 dm3 5 (1 dm)3 5 (1021 m)3 5 1023 m3   
   1 cm3 5 (1 cm)3 5 (1022 m)3 5 1026 m3   
   1 mm3 5 (1 mm)3 5 (1023 m)3 5 1029 m3  

  It should be noted that when the volume of a liquid is being measured, 
the cubic decimeter (dm 3 ) is usually referred to as a  liter  (L). 
    Other derived SI units used to measure the moment of a force, 
the work of a force, etc., are shown in  Table 1.2 . While these units will 
be introduced in later chapters as they are needed, we should note an 
important rule at this time: When a derived unit is obtained by divid-
ing a base unit by another base unit, a prefix may be used in the 
numerator of the derived unit but not in its denominator. For example, 
the constant  k  of a spring which stretches 20 mm under a load of 
100 N will be expressed as 

  
k 5

100 N
20 mm

5
100 N

0.020 m
5 5000 N/m

    
or
    

k 5 5 kN/m
   

but never as  k  5 5 N/mm.  

 TABLE 1.2   Principal SI Units Used in Mechanics          

  Quantity   Unit   Symbol   Formula    

  Acceleration   Meter per second squared   . . .   m/s 2   
  Angle   Radian   rad    †  
Angular acceleration   Radian per second squared   . . .   rad/s 2   
 Angular velocity   Radian per second   . . .   rad/s  
  Area   Square meter   . . .   m 2   
  Density   Kilogram per cubic meter   . . .   kg/m 3   
  Energy   Joule   J   N ? m 
  Force   Newton   N   kg ? m/s 2   
 Frequency   Hertz   Hz  s 21 
 Impulse   Newton-second   . . .   kg ? m/s  
  Length   Meter   m    ‡  
Mass   Kilogram   kg    ‡   
  Moment of a force   Newton-meter   . . .   N ? m  
  Power   Watt   W   J/s  
  Pressure   Pascal   Pa   N/m 2   
  Stress   Pascal   Pa   N/m 2   
  Time   Second   s    ‡   
  Velocity   Meter per second   . . .   m/s  
  Volume  
   Solids   Cubic meter   . . .   m 3   
   Liquids   Liter   L   10 23 m 3   
  Work   Joule   J   N ? m 

†Supplementary unit (1 revolution 5 2p rad 5 3608).    
‡Base unit.      
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9 U.S. Customary Units.  Most practicing American engineers still 
commonly use a system in which the base units are the units of length, 
force, and time. These units are, respectively, the  foot  (ft), the  pound  
(lb), and the  second  (s). The second is the same as the corresponding 
SI unit. The foot is defined as 0.3048 m. The pound is defined as the 
 weight  of a platinum standard, called the  standard pound , which is 
kept at the National Institute of Standards and Technology outside 
Washington, the mass of which is 0.453 592 43 kg. Since the weight of 
a body depends upon the earth’s gravitational attraction, which varies 
with location, it is specified that the standard pound should be placed 
at sea level and at a latitude of 458 to properly define a force of 1 lb. 
Clearly the U.S. customary units do not form an absolute system of 
units. Because of their dependence upon the gravitational attraction of 
the earth, they form a  gravitational  system of units. 
   While the standard pound also serves as the unit of mass in com-
mercial transactions in the United States, it cannot be so used in engi-
neering computations, since such a unit would not be consistent with 
the base units defined in the preceding paragraph. Indeed, when acted 
upon by a force of 1 lb, that is, when subjected to the force of gravity, 
the standard pound receives the acceleration of gravity,  g  5 32.2 ft/s 2  
( Fig. 1.4 ), not the unit acceleration required by Eq. (1.1). The unit of 
mass consistent with the foot, the pound, and the second is the mass 
which receives an acceleration of 1 ft/s 2  when a force of 1 lb is applied 
to it ( Fig. 1.5 ). This unit, sometimes called a  slug , can be derived from 
the equation  F 5 ma  after substituting 1 lb and 1 ft/s 2  for  F  and  a , 
respectively. We write 

  F 5 ma    1 lb 5 (1 slug)(1 ft/s2)
  and obtain 

   1 slug 5
1 lb

1 ft/s2 5 1 lb ? s2/ft  (1.6)

   Comparing  Figs. 1.4  and  1.5 , we conclude that the slug is a mass 32.2 
times larger than the mass of the standard pound. 
    The fact that in the U.S. customary system of units bodies are 
characterized by their weight in pounds rather than by their mass in 
slugs will be a convenience in the study of statics, where one constantly 
deals with weights and other forces and only seldom with masses. 
However, in the study of dynamics, where forces, masses, and acceler-
ations are involved, the mass  m  of a body will be expressed in slugs 
when its weight  W  is given in pounds. Recalling Eq. (1.4), we write 

   m 5
W
g

 (1.7)  

   where  g  is the acceleration of gravity ( g  5 32.2 ft/s 2 ). 
    Other U.S. customary units frequently encountered in engineer-
ing problems are the  mile  (mi), equal to 5280 ft; the  inch  (in.), equal to 
1

12 ft; and the  kilopound  (kip), equal to a force of 1000 lb. The  ton  is 
often used to represent a mass of 2000 lb but, like the pound, must be 
converted into slugs in engineering computations. 
    The conversion into feet, pounds, and seconds of quantities 
expressed in other U.S. customary units is generally more involved and 

  Fig. 1.4       

a = 32.2 ft /s2

m = 1 lb

F = 1 lb

Fig. 1.5      

a = 1 ft /s2

m = 1 slug
(= 1 lb • s2/ft) 

F = 1 lb

1.3   Systems of Units
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10 Introduction requires greater attention than the corresponding operation in SI 
units. If, for example, the magnitude of a velocity is given as  v  5 
30 mi/h, we convert it to ft/s as follows. First we write 

  v 5 30  

mi
h

  

   Since we want to get rid of the unit miles and introduce instead the 
unit feet, we should multiply the right-hand member of the equation 
by an expression containing miles in the denominator and feet in the 
numerator. But, since we do not want to change the value of the right-
hand member, the expression used should have a value equal to unity. 
The quotient (5280 ft)/(1 mi) is such an expression. Operating in a 
similar way to transform the unit hour into seconds, we write 

  v 5 a30 

mi
h
b a5280 ft

1 mi
b a 1 h

3600 s
b  

   Carrying out the numerical computations and canceling out units which 
appear in both the numerator and the denominator, we obtain 

  v 5 44 
ft
s 5 44 ft/s    

 1.4   CONVERSION FROM ONE SYSTEM OF UNITS 
TO ANOTHER  

 There are many instances when an engineer wishes to convert into SI 
units a numerical result obtained in U.S. customary units or vice versa. 
Because the unit of time is the same in both systems, only two kinetic 
base units need be converted. Thus, since all other kinetic units can be 
derived from these base units, only two conversion factors need be 
remembered.  

 Units of Length.   By definition the U.S. customary unit of length is 

   1 ft 5 0.3048 m (1.8)  

   It follows that 

  1 mi 5 5280 ft 5 5280(0.3048 m) 5 1609 m  
   or 
 1 mi 5 1.609 km (1.9)  
   Also

 1 in. 5
1

12 ft 5
1

12 (0.3048 m) 5 0.0254 m  
   or 
 1 in. 5 25.4 mm     (1.10)

 Units of Force.   Recalling that the U.S. customary unit of force 
(pound) is defined as the weight of the standard pound (of mass 
0.4536 kg) at sea level and at a latitude of 458 (where  g  5 9.807 m/s 2 ) 
and using Eq. (1.4), we write 
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11   W 5 mg   
   1 lb 5 (0.4536 kg)(9.807 m/s2) 5 4.448 kg ? m/s2  

   or, recalling Eq. (1.5), 

   1 lb 5 4.448 N (1.11)    

 Units of Mass.  The U.S. customary unit of mass (slug) is a derived 
unit. Thus, using Eqs. (1.6), (1.8), and (1.11), we write 

  1 slug 5 1 lb ? s2/ft 5
1 lb

1 ft/s2 5
4.448 N

0.3048 m/s2 5 14.59 N ? s2/m  

   and, recalling Eq. (1.5), 

   1 slug 5 1 lb ? s2/ft 5 14.59 kg (1.12)  

   Although it cannot be used as a consistent unit of mass, we recall that 
the mass of the standard pound is, by definition, 

   1 pound mass 5 0.4536 kg (1.13)  

   This constant may be used to determine the  mass  in SI units (kilo-
grams) of a body which has been characterized by its  weight  in U.S. 
customary units (pounds). 
    To convert a derived U.S. customary unit into SI units, one sim-
ply multiplies or divides by the appropriate conversion factors. For 
example, to convert the moment of a force which was found to be  
M  5 47 lb ? in. into SI units, we use formulas (1.10) and (1.11) and 
write 

   M 5 47 lb ? in. 5 47(4.448 N)(25.4 mm)   
   5 5310 N ? mm 5 5.31 N ? m  

    The conversion factors given in this section may also be used to 
convert a numerical result obtained in SI units into U.S. customary 
units. For example, if the moment of a force was found to be  M  5 
40 N ? m, we write, following the procedure used in the last paragraph 
of Sec. 1.3, 

  M 5 40 N ? m 5 (40 N ? m) a 1 lb
4.448 N

b a 1 ft
0.3048 m

b  
   Carrying out the numerical computations and canceling out units 
which appear in both the numerator and the denominator, we obtain 

  M 5 29.5 lb ? ft  

    The U.S. customary units most frequently used in mechanics are 
listed in  Table 1.3  with their SI equivalents.  

       1.5  METHOD OF PROBLEM SOLUTION  
 You should approach a problem in mechanics as you would approach 
an actual engineering situation. By drawing on your own experience 
and intuition, you will find it easier to understand and formulate the 
problem. Once the problem has been clearly stated, however, there is 

1.5  Method of Problem Solution
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12 Introduction

no place in its solution for your particular fancy.  The solution must be 
based on the six fundamental principles stated in Sec. 1.2 or on theo-
rems derived from them.  Every step taken must be justified on that 
basis. Strict rules must be followed, which lead to the solution in an 
almost automatic fashion, leaving no room for your intuition or “feel-
ing.” After an answer has been obtained, it should be checked. Here 
again, you may call upon your common sense and personal experience. 
If not completely satisfied with the result obtained, you should carefully 
check your formulation of the problem, the validity of the methods 
used for its solution, and the accuracy of your computations. 
    The  statement  of a problem should be clear and precise. It should 
contain the given data and indicate what information is required. A 
neat drawing showing all quantities involved should be included. Sepa-
rate diagrams should be drawn for all bodies involved, indicating 
clearly the forces acting on each body. These diagrams are known as 
 free-body diagrams  and are described in detail in Secs. 2.11 and 4.2. 

 TABLE 1.3  U.S. Customary Units and Their SI Equivalents 

          Quantity U.S. Customary Unit   SI Equivalent 

    Acceleration  ft/s 2    0.3048 m/s2  
     in./s2  0.0254 m/s2  
  Area  ft2   0.0929 m2 
     in 2  645.2 mm2 
  Energy ft ? lb   1.356 J  
 Force   kip  4.448 kN  
   lb   4.448 N 
    oz   0.2780 N 
 Impulse  lb ? s   4.448 N ? s  
 Length   ft  0.3048 m 
   in.   25.40 mm  
   mi   1.609 km 
 Mass   oz mass   28.35 g  
    lb mass 0.4536 kg  
  slug   14.59 kg  
   ton   907.2 kg  
 Moment of a force   lb ? ft   1.356 N ? m  
    lb ? in.  0.1130 N ? m 
 Moment of inertia      
   Of an area in 4    0.4162 3 106 mm 4   
   Of a mass  lb ? ft ? s 2    1.356 kg ? m2  
  Momentum lb ? s   4.448 kg ? m/s 
  Power   ft ? lb/s   1.356 W  
    hp   745.7 W 
  Pressure or stress   lb/ft 2    47.88 Pa 
   lb/in 2 (psi)   6.895 kPa  
 Velocity  ft/s   0.3048 m/s 
    in./s  0.0254 m/s 
    mi/h (mph)  0.4470 m/s 
    mi/h (mph)  1.609 km/h 
 Volume   ft 3   0.02832 m 3 
     in 3  16.39 cm3 
   Liquids  gal  3.785 L 
    qt   0.9464 L 
 Work   ft ? lb  1.356 J  
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13    The  fundamental principles  of mechanics listed in Sec. 1.2  will 
be used to write equations  expressing the conditions of rest or motion 
of the bodies considered. Each equation should be clearly related to 
one of the free-body diagrams. You will then proceed to solve the 
problem, observing strictly the usual rules of algebra and recording 
neatly the various steps taken. 
    After the answer has been obtained, it should be  carefully checked.  
Mistakes in  reasoning  can often be detected by checking the units. For 
example, to determine the moment of a force of 50 N about a point 
0.60 m from its line of action, we would have written (Sec. 3.12) 

  M 5 Fd 5 (50 N)(0.60 m) 5 30 N ? m 

   The unit N ? m obtained by multiplying newtons by meters is the cor-
rect unit for the moment of a force; if another unit had been obtained, 
we would have known that some mistake had been made. 
    Errors in computation  will usually be found by substituting the 
numerical values obtained into an equation which has not yet been 
used and verifying that the equation is satisfied. The importance of 
correct computations in engineering cannot be overemphasized.    

 1.6   NUMERICAL ACCURACY  
 The accuracy of the solution of a problem depends upon two items: 
(1) the accuracy of the given data and (2) the accuracy of the computa-
tions performed. 
    The solution cannot be more accurate than the less accurate of 
these two items. For example, if the loading of a bridge is known to be 
75,000 N with a possible error of 100 N either way, the relative error 
which measures the degree of accuracy of the data is 

  
100 N

75,000 N
5 0.0013 5 0.13 percent  

   In computing the reaction at one of the bridge supports, it would then 
be meaningless to record it as 14,322 N. The accuracy of the solution 
cannot be greater than 0.13 percent, no matter how accurate the com-
putations are, and the possible error in the answer may be as large as 
(0.13/100)(14,322 N) < 20 N. The answer should be properly recorded 
as 14,320 6 20 N. 
    In engineering problems, the data are seldom known with an 
accuracy greater than 0.2 percent. It is therefore seldom justified to 
write the answers to such problems with an accuracy greater than 0.2 
percent. A practical rule is to use 4 figures to record numbers begin-
ning with a “1” and 3 figures in all other cases. Unless otherwise indi-
cated, the data given in a problem should be assumed known with a 
comparable degree of accuracy. A force of 40 N, for example, should 
be read 40.0 N, and a force of 15 N should be read 15.00 N. 
    Pocket electronic calculators are widely used by practicing engi-
neers and engineering students. The speed and accuracy of these cal-
culators facilitate the numerical computations in the solution of many 
problems. However, students should not record more significant fig-
ures than can be justified merely because they are easily obtained. As 
noted above, an accuracy greater than 0.2 percent is seldom necessary 
or meaningful in the solution of practical engineering problems.                 

1.6   Numerical Accuracy
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