
the motion of the space shuttle can 

be described in terms of its position, 

velocity, and acceleration. When landing, 

the pilot of the shuttle needs to consider 

the wind velocity and the relative motion 

of the shuttle with respect to the wind. 

the study of motion is known as 

kinematics and is the subject of 

this chapter.
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11.1 IntroductIon to dynamIcs
Chapters 1 to 10 were devoted to statics, i.e., to the analysis of bodies 
at rest. We now begin the study of dynamics, the part of mechanics 
that deals with the analysis of bodies in motion.
 While the study of statics goes back to the time of the Greek 
philosophers, the first significant contribution to dynamics was made 
by Galileo (1564–1642). Galileo’s experiments on uniformly acceler-
ated bodies led Newton (1642–1727) to formulate his fundamental 
laws of motion.
 Dynamics includes:

 1. Kinematics, which is the study of the geometry of motion. 
Kinematics is used to relate displacement, velocity, acceleration, 
and time, without reference to the cause of the motion.

 2. Kinetics, which is the study of the relation existing between the 
forces acting on a body, the mass of the body, and the motion 
of the body. Kinetics is used to predict the motion caused by 
given forces or to determine the forces required to produce a 
given motion.

 Chapters 11 to 14 are devoted to the dynamics of particles; in 
Chap. 11 the kinematics of particles will be considered. The use of 
the word particles does not mean that our study will be restricted to 
small corpuscles; rather, it indicates that in these first chapters the 
motion of bodies—possibly as large as cars, rockets, or airplanes—
will be considered without regard to their size. By saying that the 
bodies are analyzed as particles, we mean that only their motion as 
an entire unit will be considered; any rotation about their own mass 
center will be neglected. There are cases, however, when such a 
rotation is not negligible; the bodies cannot then be considered as 
particles. Such motions will be analyzed in later chapters, dealing 
with the dynamics of rigid bodies.
 In the first part of Chap. 11, the rectilinear motion of a particle 
will be analyzed; that is, the position, velocity, and acceleration of a 
particle will be determined at every instant as it moves along a 
straight line. First, general methods of analysis will be used to study 
the motion of a particle; then two important particular cases will be 
considered, namely, the uniform motion and the uniformly acceler-
ated motion of a particle (Secs. 11.4 and 11.5). In Sec. 11.6 the 
simultaneous motion of several particles will be considered, and the 
concept of the relative motion of one particle with respect to another 
will be introduced. The first part of this chapter concludes with a 
study of graphical methods of analysis and their application to the 
solution of various problems involving the rectilinear motion of par-
ticles (Secs. 11.7 and 11.8).
 In the second part of this chapter, the motion of a particle as 
it moves along a curved path will be analyzed. Since the position, 
velocity, and acceleration of a particle will be defined as vector 
quantities, the concept of the derivative of a vector function will be 
introduced in Sec. 11.10 and added to our mathematical tools. 
Applications in which the motion of a particle is defined by the 

chapter 11 Kinematics of 
Particles
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Acceleration
 11.3 Determination of the Motion of 

a Particle
 11.4 Uniform Rectilinear Motion
 11.5 Uniformly Accelerated Rectilinear 

Motion
 11.6 Motion of Several Particles
 11.7 Graphical Solution of Rectilinear-

Motion Problems
 11.8 Other Graphical Methods
 11.9 Position Vector, Velocity, and 

Acceleration
 11.10 Derivatives of Vector Functions
 11.11 Rectangular Components of 

Velocity and Acceleration
 11.12 Motion Relative to a Frame in 

Translation
 11.13 Tangential and Normal 

Components
 11.14 Radial and Transverse 

Components

bee02324_ch11.indd   602 22/11/2012   16:56

SAMPLE
 C

HAPTER



603rectangular components of its velocity and acceleration will then be 
considered; at this point, the motion of a projectile will be analyzed 
(Sec. 11.11). In Sec. 11.12, the motion of a particle relative to a 
reference frame in translation will be considered. Finally, the cur-
vilinear motion of a particle will be analyzed in terms of components 
other than rectangular. The tangential and normal components of a 
particular velocity and an acceleration will be introduced in  
Sec. 11.13 and the radial and transverse components of its velocity 
and acceleration in Sec. 11.14.

RectilineaR Motion of PaRticles

11.2 PosItIon, VelocIty, and acceleratIon
A particle moving along a straight line is said to be in rectilinear 
motion. At any given instant t, the particle will occupy a certain posi-
tion on the straight line. To define the position P of the particle, we 
choose a fixed origin O on the straight line and a positive direction 
along the line. We measure the distance x from O to P and record 
it with a plus or minus sign, according to whether P is reached from 
O by moving along the line in the positive or the negative direction. 
The distance x, with the appropriate sign, completely defines the 
position of the particle; it is called the position coordinate of the 
particle considered. For example, the position coordinate corre-
sponding to P in Fig. 11.1a is x 5 15 m; the coordinate correspond-
ing to P9 in Fig. 11.1b is x9 5 22 m.
 When the position coordinate x of a particle is known for every 
value of time t, we say that the motion of the particle is known. The 
“timetable” of the motion can be given in the form of an equation 
in x and t, such as x 5 6t2 2 t3, or in the form of a graph of x versus 
t as shown in Fig. 11.6. The units most often used to measure the 
position coordinate x are the meter (m) in the SI system of units† 
and the foot (ft) in the U.S. customary system of units. Time t is 
usually measured in seconds (s).
 Consider the position P occupied by the particle at time t 
and the corresponding coordinate x (Fig. 11.2). Consider also the 
position P9 occupied by the particle at a later time t 1 ¢t; the 
position coordinate of P9 can be obtained by adding to the coor-
dinate x of P the small displacement ¢x, which will be positive or 
negative according to whether P9 is to the right or to the left of 
P. The average velocity of the particle over the time interval ¢t 
is defined as the quotient of the displacement ¢x and the time 
interval ¢t:

Average velocity 5
¢x
¢t

†Cf. Sec. 1.3.

11.2 Position, Velocity, and Acceleration

fig. 11.1

O

O

P

x

x

(a)

(b)
1 m

P'

x'

x

1 m

fig. 11.2

O

P
x

x(t) (t + ∆t)

P'
∆x

Photo 11.1 The motion of this solar car can be 
described by its position, velocity, and 
acceleration.
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604 Kinematics of Particles If SI units are used, ¢x is expressed in meters and ¢t in seconds; 
the average velocity will thus be expressed in meters per second 
(m/s). If U.S. customary units are used, ¢x is expressed in feet and 
¢t in seconds; the average velocity will then be expressed in feet per 
second (ft/s).
 The instantaneous velocity v of the particle at the instant t is 
obtained from the average velocity by choosing shorter and shorter 
time intervals ¢t and displacements ¢x:

Instantaneous velocity 5 v 5 lim
¢ty0

 
¢x
¢t

The instantaneous velocity will also be expressed in m/s or ft/s. 
Observing that the limit of the quotient is equal, by definition, to 
the derivative of x with respect to t, we write

 
v 5

dx
dt  

(11.1)

The velocity v is represented by an algebraic number which can be 
positive or negative.† A positive value of v indicates that x increases, 
i.e., that the particle moves in the positive direction (Fig. 11.3a); a 
negative value of v indicates that x decreases, i.e., that the particle 
moves in the negative direction (Fig. 11.3b). The magnitude of v is 
known as the speed of the particle.
 Consider the velocity v of the particle at time t and also its 
velocity v 1 ¢v at a later time t 1 ¢t (Fig. 11.4). The average accel-
eration of the particle over the time interval ¢t is defined as the 
quotient of ¢v and ¢t:

Average acceleration 5
¢v
¢t

If SI units are used, ¢v is expressed in m/s and ¢t in seconds; the 
average acceleration will thus be expressed in m/s2. If U.S. customary 
units are used, ¢v is expressed in ft/s and ¢t in seconds; the average 
acceleration will then be expressed in ft/s2.
 The instantaneous acceleration a of the particle at the instant 
t is obtained from the average acceleration by choosing smaller and 
smaller values for ¢t and ¢v:

Instantaneous acceleration 5 a 5 lim
¢ty0

 
¢v
¢t

The instantaneous acceleration will also be expressed in m/s2 or ft/s2. 
The limit of the quotient, which is by definition the derivative of v 

†As you will see in Sec. 11.9, the velocity is actually a vector quantity. However, since 
we are considering here the rectilinear motion of a particle, where the velocity of the 
particle has a known and fixed direction, we need only specify the sense and magnitude 
of the velocity; this can be conveniently done by using a scalar quantity with a plus or 
minus sign. The same is true of the acceleration of a particle in rectilinear motion.

fig. 11.4

(t) (t + ∆t)

v + ∆vP'P

x

v

fig. 11.3

(a)

(b)

P

P

x

x

v > 0

v < 0
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605with respect to t, measures the rate of change of the velocity. We 
write

 a 5
dv
dt

 (11.2)

or, substituting for v from (11.1),

 a 5
d2x
dt2  (11.3)

The acceleration a is represented by an algebraic number which can 
be positive or negative.† A positive value of a indicates that the 
velocity (i.e., the algebraic number v) increases. This may mean that 
the particle is moving faster in the positive direction (Fig. 11.5a) or 
that it is moving more slowly in the negative direction (Fig. 11.5b); 
in both cases, ¢v is positive. A negative value of a indicates that the  
velocity decreases; either the particle is moving more slowly in the 
positive direction (Fig. 11.5c) or it is moving faster in the negative 
direction (Fig. 11.5d).

†See footnote, page 604.

 The term deceleration is sometimes used to refer to a when 
the speed of the particle (i.e., the magnitude of v) decreases; the par-
ticle is then moving more slowly. For example, the particle of Fig. 11.5 
is decelerated in parts b and c; it is truly accelerated (i.e., moves faster) 
in parts a and d.
 Another expression for the acceleration can be obtained by 
eliminating the differential dt in Eqs. (11.1) and (11.2). Solving (11.1) 
for dt, we obtain dt 5 dx/v; substituting into (11.2), we write

 a 5 v 

dv
dx

 (11.4)

11.2 Position, Velocity, and Acceleration

fig. 11.5
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606 Kinematics of Particles ExamplE Consider a particle moving in a straight line, and assume that 
its position is defined by the equation

x 5 6t2 2 t3

where t is expressed in seconds and x in meters. The velocity v at any time 
t is obtained by differentiating x with respect to t:

v 5
dx
dt

5 12 t 2 3t2

The acceleration a is obtained by differentiating again with respect to t:

a 5
dv
dt

5 12 2 6 t

The position coordinate, the velocity, and the acceleration have been plot-
ted against t in Fig. 11.6. The curves obtained are known as motion 
curves. Keep in mind, however, that the particle does not move along any 
of these curves; the particle moves in a straight line. Since the derivative 
of a function measures the slope of the corresponding curve, the slope 
of the x–t curve at any given time is equal to the value of v at that time 
and the slope of the v−t curve is equal to the value of a. Since a 5 0 at 
t 5 2 s, the slope of the v−t curve must be zero at t 5 2 s; the velocity 
reaches a maximum at this instant. Also, since v 5 0 at t 5 0 and at t 5 
4 s, the tangent to the x−t curve must be horizontal for both of these 
values of t.

 A study of the three motion curves of Fig. 11.6 shows that the motion 
of the particle from t 5 0 to t 5 ∞ can be divided into four phases:

 1. The particle starts from the origin, x 5 0, with no velocity but with a 
positive acceleration. Under this acceleration, the particle gains a posi-
tive velocity and moves in the positive direction. From t 5 0 to t 5 
2 s, x, v, and a are all positive.

 2. At t 5 2 s, the acceleration is zero; the velocity has reached its maxi-
mum value. From t 5 2 s to t 5 4 s, v is positive, but a is negative; 
the particle still moves in the positive direction but more and more 
slowly; the particle is decelerating.

 3. At t 5 4 s, the velocity is zero; the position coordinate x has reached 
its maximum value. From then on, both v and a are negative; the 
particle is accelerating and moves in the negative direction with 
increasing speed.

 4. At t 5 6 s, the particle passes through the origin; its coordinate x is 
then zero, while the total distance traveled since the beginning of the 
motion is 64 m. For values of t larger than 6 s, x, v, and a will all be 
negative. The particle keeps moving in the negative direction, away 
from O, faster and faster. ◾

fig. 11.6
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v (m/s)

t (s)

t (s)

t (s)
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0

12

2

2

4
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6

0

–12

a (m/s2)

12

0
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–12
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–36
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60711.3  determInatIon of the motIon 
of a PartIcle

We saw in the preceding section that the motion of a particle is said 
to be known if the position of the particle is known for every value 
of the time t. In practice, however, a motion is seldom defined by a 
relation between x and t. More often, the conditions of the motion 
will be specified by the type of acceleration that the particle pos-
sesses. For example, a freely falling body will have a constant accel-
eration, directed downward and equal to 9.81 m/s2, or 32.2 ft/s2; a 
mass attached to a spring which has been stretched will have an 
acceleration proportional to the instantaneous elongation of the 
spring measured from the equilibrium position, etc. In general, the 
acceleration of the particle can be expressed as a function of one or 
more of the variables x, v, and t. In order to determine the position 
coordinate x in terms of t, it will thus be necessary to perform two 
successive integrations.
 Let us consider three common classes of motion:

 1. a 5 f(t). The Acceleration Is a Given Function of t. Solving 
(11.2) for dv and substituting f(t) for a, we write

 dv 5 a dt
 dv 5 f(t) dt

  Integrating both members, we obtain the equation

e dv 5 e f(t) dt

  which defines v in terms of t. It should be noted, however, that 
an arbitrary constant will be introduced as a result of the inte-
gration. This is due to the fact that there are many motions 
which correspond to the given acceleration a 5 f(t). In order 
to uniquely define the motion of the particle, it is necessary to 
specify the initial conditions of the motion, i.e., the value v0 of 
the velocity and the value x0 of the position coordinate at t 5 0. 
Replacing the indefinite integrals by definite integrals with 
lower limits corresponding to the initial conditions t 5 0 and 
v 5 v0 and upper limits corresponding to t 5 t and v 5 v, we 
write

 #
v

v0

 dv 5#
t

0
 f(t) dt

  v 2 v0 5#
t

0
 
f(t) dt

  which yields v in terms of t.
   Equation (11.1) can now be solved for dx,

dx 5 v dt

  and the expression just obtained substituted for v. Both mem-
bers are then integrated, the left-hand member with respect 
to x from x 5 x0 to x 5 x, and the right-hand member with 

11.3 Determination of the Motion  
of a Particle
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608 Kinematics of Particles respect to t from t 5 0 to t 5 t. The position coordinate x 
is thus obtained in terms of t; the motion is completely 
determined.

   Two important particular cases will be studied in greater 
detail in Secs. 11.4 and 11.5: the case when a 5 0, correspond-
ing to a uniform motion, and the case when a 5 constant, 
 corresponding to a uniformly accelerated motion.

 2. a 5 f(x). The Acceleration Is a Given Function of x. Rearranging 
Eq. (11.4) and substituting f(x) for a, we write

 v dv 5 a dx
 v dv 5 f(x) dx

  Since each member contains only one variable, we can inte-
grate the equation. Denoting again by v0 and x0, respectively, 
the initial values of the velocity and of the position coordinate, 
we obtain

 #
v

v0

 
v dv 5#

x

x0

 
f(x) dx

 12v2 2 1
2 v2

0 5#
x

x0

 
f(x) dx

  which yields v in terms of x. We now solve (11.1) for dt,

dt 5
dx
v

  and substitute for v the expression just obtained. Both mem-
bers can then be integrated to obtain the desired relation 
between x and t. However, in most cases this last integration 
cannot be performed analytically and one must resort to a 
numerical method of integration.

 3. a 5 f(v). The Acceleration Is a Given Function of v. We can 
now substitute f(v) for a in either (11.2) or (11.4) to obtain 
either of the following relations:

  f(v) 5
dv
dt

   f(v) 5 v 

dv
dx

 dt 5
dv

f(v)
   dx 5

v dv
f(v)

  Integration of the first equation will yield a relation between v 
and t; integration of the second equation will yield a relation 
between v and x. Either of these relations can be used in con-
junction with Eq. (11.1) to obtain the relation between x and 
t which characterizes the motion of the particle.
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609

saMPle PRobleM 11.1

The position of a particle which moves along a straight line is defined by the 
relation x 5 t3 2 6t2 2 15t 1 40, where x is expressed in meters and t in 
seconds. Determine (a) the time at which the velocity will be zero, (b) the 
position and distance traveled by the particle at that time, (c) the acceleration 
of the particle at that time, (d) the distance traveled by the particle from 
t 5 4 s to t 5 6 s.

solution

The equations of motion are
 x 5 t3 2 6t2 2 15t 1 40 (1)

  v 5
dx
dt

5 3t2 2 12t 2 15 (2)

  a 5
dv
dt

5 6 t 2 12  (3)

a. time at Which v 5 0. We set v 5 0 in (2):

 3t2 2 12t 2 15 5 0  t 5 21 s  and t 5 15 s ◀

Only the root t 5 15 s corresponds to a time after the motion has begun: 
for t , 5 s, v , 0, the particle moves in the negative direction; for t . 5 s, 
v . 0, the particle moves in the positive direction.

b. Position and distance traveled When v 5 0. Carrying t 5 15 s into 
(1), we have
 x5 5 (5)3 2 6(5)2 2 15(5) 1 40 x5 5 260 m ◀

The initial position at t 5 0 was x0 5 140 m. Since v fi 0 during the interval 
t 5 0 to t 5 5 s, we have

Distance traveled 5 x5 2 x0 5 260 m 2 40 m 5 2100 m

Distance traveled 5 100 m in the negative direction ◀

c. acceleration When v 5 0. We substitute t 5 15 s into (3):

 a5 5 6(5) 2 12 a5 5 118 m/s2
 ◀

d. distance traveled from t 5 4 s to t 5 6 s. The particle moves in the 
negative direction from t 5 4 s to t 5 5 s and in the positive direction from 
t 5 5 s to t 5 6 s; therefore, the distance traveled during each of these 
time intervals will be computed separately.

From t 5 4 s to t 5 5 s:    x5 5 260 m

 x4 5 (4)3 2 6(4)2 2 15(4) 1 40 5 252 m

 Distance traveled 5 x5 2 x4 5 260 m 2 (252 m) 5 28 m 
 5 8 m in the negative direction

From t 5 5 s to t 5 6 s:    x5 5 260 m

 x6 5 (6)3 2 6(6)2 2 15(6) 1 40 5 250 m
 Distance traveled 5 x6 2 x5 5 250 m 2 (260 m) 5 110 m 
 5 10 m in the positive direction

Total distance traveled from t 5 4 s to t 5 6 s is 8 m 1 10 m   5 18 m ◀

x (m)

v (m/s)

t (s)

t (s)

t (s)

18

0

0

0

a (m/s2)

40

60–

+5

+5

+2 +5
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610

saMPle PRobleM 11.2

A ball is tossed with a velocity of 10 m/s directed vertically upward from a 
window located 20 m above the ground. Knowing that the acceleration of 
the ball is constant and equal to 9.81 m/s2 downward, determine (a) the 
velocity v and elevation y of the ball above the ground at any time t, 
(b) the highest elevation reached by the ball and the corresponding value 
of t, (c) the time when the ball will hit the ground and the corresponding 
velocity. Draw the v−t and y−t curves.

solution

a. Velocity and elevation. The y axis measuring the position coordinate (or 
elevation) is chosen with its origin O on the ground and its positive sense 
upward. The value of the acceleration and the initial values of v and y are as 
indicated. Substituting for a in a 5 dv/dt and noting that at t 5 0, v0 5 110 m/s, 
we have

 
dv
dt

5 a 5 29.81 m/s2

 #
v

v0510
 dv 5 2#

t

0
 9.81 dt

 [v]v
10 5 2[9.81t]t

0

 v 2 10 5 29.81t
v 5 10 2 9.81t  (1) ◀

Substituting for v in v 5 dy/dt and noting that at t 5 0, y0 5 20 m, we have

 
dy

dt
5 v 5 10 2 9.81t

 #
y

y0520

dy 5#
t

0
 (10 2 9.81t) dt

 [y]y
20 5 [10t 2 4.905t2]t

0

 y 2 20 5 10t 2 4.905t2

y 5 20 1 10t 2 4.905t2  (2) ◀

b. highest elevation. When the ball reaches its highest elevation, we have 
v 5 0. Substituting into (1), we obtain

 10 2 9.81t 5 0 t 5 1.019 s ◀

Carrying t 5 1.019 s into (2), we have

 y 5 20 1 10(1.019) 2 4.905(1.019)2 y 5 25.1 m ◀

c. Ball hits the Ground. When the ball hits the ground, we have y 5 0. 
Substituting into (2), we obtain

20 1 10t 2 4.905t2 5 0    t 5 21.243 s    and    t 5 13.28 s ◀

Only the root t 5 13.28 s corresponds to a time after the motion has begun. 
Carrying this value of t into (1), we have

 v 5 10 2 9.81(3.28) 5 222.2 m/s  v 5 22.2 m/s w ◀

y

O

a = – 9.81 m/s2

v0 = +10 m/s

y0 = +20 m

v (m /s)

t (s)

y (m)

3.28

3.28

–22.2

25.1

1.019

1.019

Velocity-time curve

Position-time
curve

10

20

0

0

t (s)

Slope = a = –9.81 m/s 2

Sl
op

e =
 v 0 

= 
10

 m
 /s

Slope = v = –22.2 m
 /s
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611

saMPle PRobleM 11.3

The brake mechanism used to reduce recoil in certain types of guns consists 
essentially of a piston attached to the barrel and moving in a fixed cylinder 
filled with oil. As the barrel recoils with an initial velocity v0, the piston 
moves and oil is forced through orifices in the piston, causing the piston 
and the barrel to decelerate at a rate proportional to their velocity; that is, 
a 5 2kv. Express (a) v in terms of t, (b) x in terms of t, (c) v in terms of 
x. Draw the corresponding motion curves.

solution

a. v in terms of t. Substituting 2kv for a in the fundamental formula 
defining acceleration, a 5 dv/dt, we write

2kv 5
dv
dt

  dv
v

5 2k dt   #
v

v0

 
dv
v

5 2k#
t

0
 dt

 ln 

v
v0

5 2kt v 5 v0e2kt
 ◀

b. x in terms of t. Substituting the expression just obtained for v into 
v 5 dx/dt, we write

 v0  
e2kt 5

dx
dt

 #
x

0
 dx 5 v0#

t

0
 e

2kt dt

 x 5 2
v0

k
 [e2kt]t

0 5 2
v0

k
 (e2kt 2 1)

x 5
v0

k
 (1 2 e2kt) ◀

c. v in terms of x. Substituting 2kv for a in a 5 v dv/dx, we write

 2kv 5 v
dv
dx

 dv 5 2k dx

 #
v

v0

 dv 5 2k#
x

0
 dx

  v 2 v0 5 2kx  v 5 v0 2 kx ◀

Check. Part c could have been solved by eliminating t from the answers 
obtained for parts a and b. This alternative method can be used as a check. 
From part a we obtain e2kt 5 v/v0; substituting into the answer of part b, 
we obtain

x 5
v0

k
 (1 2 e2kt) 5

v0

k
 a1 2 v

v0
b   v 5 v0 2 kx   (checks)

Piston

Oil

v

O t

x

O t

v0

v0

k

v

O x

v0

v0

k
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612

solvinG PRobleMs
on YouR oWn

In the problems for this lesson, you will be asked to determine the position, the 
velocity, or the acceleration of a particle in rectilinear motion. As you read each 

problem, it is important that you identify both the independent variable (typically 
t or x) and what is required (for example, the need to express v as a function of 
x). You may find it helpful to start each problem by writing down both the given 
information and a simple statement of what is to be determined.

1. determining v(t ) and a(t ) for a given x(t ). As explained in Sec. 11.2, the 
first and the second derivatives of x with respect to t are respectively equal to the 
velocity and the acceleration of the particle [Eqs. (11.1) and (11.2)]. If the velocity 
and the acceleration have opposite signs, the particle can come to rest and then 
move in the opposite direction [Sample Prob. 11.1]. Thus, when computing the 
total distance traveled by a particle, you should first determine if the particle will 
come to rest during the specified interval of time. Constructing a diagram similar 
to that of Sample Prob. 11.1 that shows the position and the velocity of the particle 
at each critical instant (v 5 vmax, v 5 0, etc.) will help you to visualize the 
motion.

2. determining v(t ) and x(t ) for a given a(t ). The solution of problems of this 
type was discussed in the first part of Sec. 11.3. We used the initial conditions, 
t 5 0 and v 5 v0, for the lower limits of the integrals in t and v, but any other 
known state (for example, t 5 t1, v 5 v1) could have been used instead. Also, if 
the given function a(t) contains an unknown constant (for example, the constant 
k if a 5 kt), you will first have to determine that constant by substituting a set of 
known values of t and a in the equation defining a(t).

3. determining v(x) and x(t ) for a given a(x). This is the second case consid-
ered in Sec. 11.3. We again note that the lower limits of integration can be 
any known state (for example, x 5 x1, v 5 v1). In addition, since v 5 vmax when 
a 5 0, the positions where the maximum values of the velocity occur are easily 
determined by writing a(x) 5 0 and solving for x.

4. determining v(x), v (t ), and x(t ) for a given a(v ). This is the last case treated 
in Sec. 11.3; the appropriate solution techniques for problems of this type are 
illustrated in Sample Prob. 11.3. All of the general comments for the preceding 
cases once again apply. Note that Sample Prob. 11.3 provides a summary of how 
and when to use the equations v 5 dx/dt, a 5 dv/dt, and a 5 v dv/dx.
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613

concePt Questions

 11.cQ1 A bus travels the 100 km between A and B at 50 km/h and then 
another 100 km between B and C at 70 km/h. The average speed 
of the bus for the entire 200-km trip is:

 a. More than 60 km/h.
 b. Equal to 60 km/h.
 c. Less than 60 km/h.

PRobleMs†

A
C

B

 fig. P11.cQ1  

t2t1

A

BPosition

time

 fig. P11.cQ2

end-of-section PRobleMs

 11.1 The motion of a particle is defined by the relation x 5 t4 2 10t2 1 
8t 1 12, where x and t are expressed in meters and seconds, 
respectively. Determine the position, the velocity, and the accelera-
tion of the particle when t 5 1 s.

 11.2 The motion of a particle is defined by the relation x 5 2t3 2 9t2 1 
12t 1 10, where x and t are expressed in meters and seconds, 
respectively. Determine the time, the position, and the acceleration 
of the particle when v 5 0.

†Answers to all problems set in straight type (such as 11.1) are given at the end of the 
book. Answers to problems with a number set in italic type (such as 11.7 ) are not given.

 11.cQ2 Two cars A and B race each other down a straight road. The 
position of each car as a function of time is shown. Which of 
the following statements are true (more than one answer can be 
correct)?

 a. At time t2 both cars have traveled the same distance.
 b. At time t1 both cars have the same speed.
 c. Both cars have the same speed at some time t , t1.
 d. Both cars have the same acceleration at some time t , t1.
 e. Both cars have the same acceleration at some time t1 , t , t2.
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614 Kinematics of Particles  11.3 The vertical motion of mass A is defined by the relation x 5 
10 sin 2t 1 15 cos 2t 1 100, where x and t are expressed in mil-
limeters and seconds, respectively. Determine (a) the position, 
velocity, and acceleration of A when t 5 1 s, (b) the maximum 
velocity and acceleration of A.

 11.4 A loaded railroad car is rolling at a constant velocity when it cou-
ples with a spring and dashpot bumper system. After the coupling, 
the motion of the car is defined by the relation x 5 60e24.8t sin 16t, 
where x and t are expressed in millimeters and seconds, respec-
tively. Determine the position, the velocity, and the acceleration of 
the railroad car when (a) t 5 0, (b) t 5 0.3 s.

A

fig. P11.3

v0

k

c

fig. P11.4

 11.5 The motion of a particle is defined by the relation x 5 6t4 2 2t3 2 
12t2 1 3t 1 3, where x and t are expressed in meters and seconds, 
respectively. Determine the time, the position, and the velocity 
when a 5 0.

 11.6 The motion of a particle is defined by the relation x 5 t3 2 9t2 1 
24t 2 8, where x and t are expressed in meters and seconds, 
respectively. Determine (a) when the velocity is zero, (b) the posi-
tion and the total distance traveled when the acceleration is zero.

 11.7 The motion of a particle is defined by the relation x 5 2t3 2 15t2 1 
24t 1 4, where x is expressed in meters and t in seconds. Deter-
mine (a) when the velocity is zero, (b) the position and the total 
distance traveled when the acceleration is zero.

 11.8 The motion of a particle is defined by the relation x 5 t3 2 6t2 2 
36t 2 40, where x and t are expressed in meters and seconds, 
respectively. Determine (a) when the velocity is zero, (b) the veloc-
ity, the acceleration, and the total distance traveled when x 5 0.

 11.9 The brakes of a car are applied, causing it to slow down at a rate 
of 3 m/s2. Knowing that the car stops in 100 m, determine (a) how 
fast the car was traveling immediately before the brakes were 
applied, (b) the time required for the car to stop.

 11.10 The acceleration of a particle is directly proportional to the time t. 
At t 5 0, the velocity of the particle is v 5 400 mm/s. Knowing 
that v 5 375 mm/s and that x 5 500 mm when t 5 1 s, deter-
mine the velocity, the position, and the total distance traveled 
when t 5 7 s.

fig. P11.9

A

x

v = 0

100 m

v0
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615Problems 11.11 The acceleration of a particle is directly proportional to the square of 
the time t. When t 5 0, the particle is at x 5 24 m. Knowing that at 
t 5 6 s, x 5 96 m and v 5 18 m/s, express x and v in terms of t.

 11.12 The acceleration of a particle is defined by the relation a 5 kt2. 
(a) Knowing that v 5 28 m/s when t 5 0 and that v 5 18 m/s 
when t 5 2 s, determine the constant k. (b) Write the equations of 
motion, knowing also that x 5 0 when t 5 2 s.

 11.13 The acceleration of point A is defined by the relation a  1.8 sin 
kt, where a and t are expressed in m/s2 and seconds, respectively, 
and k   3 rad/s. Knowing that x  0 and v  0.6 m/s when t  0, 
determine the velocity and position of point A when t  0.5 s.

 11.14 The acceleration of point A is defined by the relation a  1.08 
sin kt  1.44 cos kt, where a and t are expressed in m/s2 and 
seconds, respectively, and k  3 rad/s. Knowing that x  0.16 m 
and v  0.36 m/s when t  0, determine the velocity and position 
of point A when t  0.5 s.

 11.15 A piece of electronic equipment that is surrounded by packing mate-
rial is dropped so that it hits the ground with a speed of 4 m/s. After 
contact the equipment experiences an acceleration of a 5 2kx, 
where k is a constant and x is the compression of the packing mate-
rial. If the packing material experiences a maximum compression of 
20 mm, determine the maximum acceleration of the equipment.

A

C

B

D

x

fig. p11.13 and p11.14

v

fig. P11.15

 11.16 A projectile enters a resisting medium at x 5 0 with an initial velocity 
v0 5 270 m/s and travels 100 mm before coming to rest. Assuming 
that the velocity of the projectile is defined by the relation v 5 v0 2 
kx, where v is expressed in m/s and x is in meters, determine (a) 
the initial acceleration of the projectile, (b) the time required for 
the projectile to penetrate 97.5 mm into the resisting medium.

 11.17 The acceleration of a particle is defined by the relation a 5 2k/x. 
It has been experimentally determined that v 5 5 m/s when 
x 5 0.2 m and that v 5 3 m/s when x 5 0.4 m. Determine 
(a) the velocity of the particle when x 5 0.5 m, (b) the position of 
the particle at which its velocity is zero.

 11.18 A brass (nonmagnetic) block A and a steel magnet B are in equi-
librium in a brass tube under the magnetic repelling force of 
another steel magnet C located at a distance x 5 0.004 m from B. 
The force is inversely proportional to the square of the distance 
between B and C. If block A is suddenly removed, the acceleration 
of block B is a 5 29.81 1 k/x2, where a and x are expressed in 
m/s2 and meters, respectively, and k 5 4 3 1024 m3/s2. Determine 
the maximum velocity and acceleration of B.

x

v

fig. P11.16 

A

B

C

x

fig. P11.18
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616 Kinematics of Particles  11.19 Based on experimental observations, the acceleration of a particle 
is defined by the relation a 5 2(0.1 1 sin x/b), where a and x are 
expressed in m/s2 and meters, respectively. Knowing that 
b 5 0.8 m and that v 5 1 m/s when x 5 0, determine (a) the 
velocity of the particle when x 5 21 m, (b) the position where the 
velocity is maximum, (c) the maximum velocity.

 11.20 A spring AB is attached to a support at A and to a collar. The 
unstretched length of the spring is l. Knowing that the collar is 
released from rest at x 5 x0 and has an acceleration defined by the 
relation a 5 21001x 2 lx/2l2 1 x22, determine the velocity of the 
collar as it passes through point C.

 11.21 The acceleration of a particle is defined by the relation a 5 20.8v, 
where a is expressed in m/s2 and v in m/s. Knowing that at t 5 0 
the velocity is 1 m/s, determine (a) the distance the particle will 
travel before coming to rest, (b) the time required for the particle’s 
velocity to be reduced by 50 percent of its initial value.

 11.22 Starting from x 5 0 with no initial velocity, a particle is given an 
  acceleration a 5 0.82v2 1 49,  where a and v are expressed in 

m/s2 and m/s, respectively. Determine (a) the position of the particle 
when v 5 24 m/s, (b) the speed of the particle when x 5 40 m.

 11.23 A bowling ball is dropped from a boat so that it strikes the surface 
of a lake with a speed of 8 m/s. Assuming the ball experiences a 
downward acceleration of a 5 3 2 0.1v2 (where a and v are 
expressed in m/s2 and m/s, respectively) when in the water, deter-
mine the velocity of the ball when it strikes the bottom of the lake.

 11.24 The acceleration of a particle is defined by the relation a 5 2k1v, 
where k is a constant. Knowing that x 5 0 and v 5 81 m/s at 
t 5 0 and that v 5 36 m/s when x 5 18 m, determine (a) the 
velocity of the particle when x 5 20 m, (b) the time required for 
the particle to come to rest.

 11.25 A particle is projected to the right from the position x 5 0 with 
an initial velocity of 9 m/s. If the acceleration of the particle is 
defined by the relation a 5 20.6v3/2, where a and v are expressed 
in m/s2 and m/s, respectively, determine (a) the distance the par-
ticle will have traveled when its velocity is 4 m/s, (b) the time when 
v 5 1 m/s, (c) the time required for the particle to travel 6 m.

 11.26 The acceleration of a particle is defined by the relation a 5 0.4(1 2 
kv), where k is a constant. Knowing that at t 5 0 the particle starts 
from rest at x 5 4 m and that when t 5 15 s, v 5 4 m/s, determine 
(a) the constant k, (b) the position of the particle when v 5 6 m/s, 
(c) the maximum velocity of the particle.

 11.27 Experimental data indicate that in a region downstream of a given 
louvered supply vent the velocity of the emitted air is defined by  
v 5 0.18v0/x, where v and x are expressed in m/s and meters, respec-
tively, and v0 is the initial discharge velocity of the air. For v0 5 
3.6 m/s, determine (a) the acceleration of the air at x 5 2 m, (b) the 
time required for the air to flow from x 5 1 to x 5 3 m.

616 Kinematics of Particles

A

BC
l

x0

fig. p11.20

10 m

fig. P11.23

v

x

fig. P11.27
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617Problems 11.28 Based on observations, the speed of a jogger can be approximated 
by the relation v 5 12(1 2 0.06x)0.3, where v and x are expressed 
in km/h and km, respectively. Knowing that x 5 0 at t 5 0, deter-
mine (a) the distance the jogger has run when t 5 1 h, (b) the jogger’s 
acceleration in m/s2 at t 5 0, (c) the time required for the jogger 
to run 9 Km.

 11.29 The acceleration due to gravity at an altitude y above the surface 
of the earth can be expressed as

a 5
29.81

1 1

  where a and y are expressed in m/s2 and metre, respectively. Using 
this expression, compute the height reached by a projectile fired 
vertically upward from the surface of the earth if its initial velocity 
is (a) 540 m/s, (b) 900 m/s, (c) 11,180 m/s.

v

fig. P11.28

P

y

fig. p11.29

 11.30 The acceleration due to gravity of a particle falling toward the 
earth is a 5 2gR2/r2, where r is the distance from the center of 
the earth to the particle, R is the radius of the earth, and g is 
the acceleration due to gravity at the surface of the earth. If  
R 5 6370 km,  calculate the escape velocity, that is, the minimum 
velocity with which a particle must be projected vertically upward 
from the surface of the earth if it is not to return to the earth. 
(Hint: v 5 0 for r 5 `.)

 11.31 The velocity of a particle is v 5 v0[1 2 sin(pt/T)]. Knowing that 
the particle starts from the origin with an initial velocity v0, deter-
mine (a) its position and its acceleration at t 5 3T, (b) its average 
velocity during the interval t 5 0 to t 5 T.

 11.32 The velocity of a slider is defined by the relation v 5 v9sin(vnt 1 f). 
Denoting the velocity and the position of the slider at t 5 0 by 
v0 and x0, respectively, and knowing that the maximum displace-
ment of the slider is 2x0, show that (a) v9 5 (v0

2 1 x0
2vn

2)/2x0vn, 
(b) the maximum value of the velocity occurs when x 5 x0[3 2 
(v0 /x0vn)2]/2.

R

P

r

fig. p11.30
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618 Kinematics of Particles 11.4 unIform rectIlInear motIon
Uniform rectilinear motion is a type of straight-line motion which is 
frequently encountered in practical applications. In this motion, the 
acceleration a of the particle is zero for every value of t. The velocity 
v is therefore constant, and Eq. (11.1) becomes

dx
dt

5 v 5 constant

The position coordinate x is obtained by integrating this equation. 
Denoting by x0 the initial value of x, we write

 #
x

x0

 dv 5 v#
t

0
 dt

 x 2 x0 5 vt

  x 5 x0 1 vt (11.5)

This equation can be used only if the velocity of the particle is known 
to be constant.

11.5  unIformly accelerated rectIlInear motIon
Uniformly accelerated rectilinear motion is another common type of 
motion. In this motion, the acceleration a of the particle is constant, 
and Eq. (11.2) becomes

dv
dt

5 a 5 constant

The velocity v of the particle is obtained by integrating this 
equation:

 #
v

v0

 dv 5 a #
t

0
 dt

 v 2 v0 5 at

 v 5 v0 1 at (11.6)

where v0 is the initial velocity. Substituting for v in (11.1), we write

dx
dt

5 v0 1 at

Denoting by x0 the initial value of x and integrating, we have

 #
x

x0

 dx 5 #
t

0
 (v0 1 at) dt

 x 2 x0 5 v0 
t 1 1

2 at2

  x 5 x0 1 v0 
t 1 1

2 at2 (11.7)
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61911.6 Motion of Several ParticlesWe can also use Eq. (11.4) and write

v 

dv
dx

5 a 5 constant

v dv 5 a dx

Integrating both sides, we obtain

  #
v

v0

 v dv 5 a #
x

x0

 dx

  12(v2 2 v2
0) 5 a(x 2 x0)

 v2 5 v2
0 1 2a(x 2 x0) (11.8)

 The three equations we have derived provide useful relations 
among position coordinate, velocity, and time in the case of a uni-
formly accelerated motion, as soon as appropriate values have been 
substituted for a, v0, and x0. The origin O of the x axis should first 
be defined and a positive direction chosen along the axis; this direc-
tion will be used to determine the signs of a, v0, and x0. Equation 
(11.6) relates v and t and should be used when the value of v cor-
responding to a given value of t is desired, or inversely. Equation (11.7) 
relates x and t; Eq. (11.8) relates v and x. An important application 
of uniformly accelerated motion is the motion of a freely falling 
body. The acceleration of a freely falling body (usually denoted by g) 
is equal to 9.81 m/s2 or 32.2 ft/s2.
 It is important to keep in mind that the three equations can be 
used only when the acceleration of the particle is known to be con-
stant. If the acceleration of the particle is variable, its motion should 
be determined from the fundamental equations (11.1) to (11.4) 
according to the methods outlined in Sec. 11.3.

11.6 motIon of seVeral PartIcles
When several particles move independently along the same line, 
independent equations of motion can be written for each particle. 
Whenever possible, time should be recorded from the same initial 
instant for all particles, and displacements should be measured from 
the same origin and in the same direction. In other words, a single 
clock and a single measuring tape should be used.

relative motion of two Particles. Consider two particles A and 
B moving along the same straight line (Fig. 11.7). If the position 
coordinates xA and xB are measured from the same origin, the dif-
ference xB 2 xA defines the relative position coordinate of B with 
respect to A and is denoted by xB/A. We write

 xB/A 5 xB 2 xA  or   xB 5 xA 1 xB/A (11.9)

Regardless of the positions of A and B with respect to the origin, a 
positive sign for xB/A means that B is to the right of A, and a negative 
sign means that B is to the left of A.

fig. 11.7

x
 xA

AO B

 xB/A

 xB
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620 Kinematics of Particles  The rate of change of xB/A is known as the relative velocity of B 
with respect to A and is denoted by vB/A. Differentiating (11.9), we write

 vB/A 5 vB 2 vA  or   vB 5 vA 1 vB/A (11.10)

A positive sign for vB/A means that B is observed from A to move in 
the positive direction; a negative sign means that it is observed to 
move in the negative direction.
 The rate of change of vB/A is known as the relative acceleration 
of B with respect to A and is denoted by aB/A. Differentiating (11.10), 
we obtain†

 aB/A 5 aB 2 aA  or   aB 5 aA 1 aB/A (11.11)

dependent motions. Sometimes, the position of a particle will 
depend upon the position of another particle or of several other par-
ticles. The motions are then said to be dependent. For example, the 
position of block B in Fig. 11.8 depends upon the position of block A. 
Since the rope ACDEFG is of constant length, and since the lengths 
of the portions of rope CD and EF wrapped around the pulleys remain 
constant, it follows that the sum of the lengths of the segments AC, 
DE, and FG is constant. Observing that the length of the segment AC 
differs from xA only by a constant and that, similarly, the lengths of 
the segments DE and FG differ from xB only by a constant, we write

xA 1 2xB 5 constant

Since only one of the two coordinates xA and xB can be chosen arbi-
trarily, we say that the system shown in Fig. 11.8 has one degree of 
freedom. From the relation between the position coordinates xA and 
xB, it follows that if xA is given an increment ¢xA, that is, if block A 
is lowered by an amount ¢xA, the coordinate xB will receive an incre-
ment ¢xB 5 21

2¢xA. In other words, block B will rise by half the 
same amount; this can easily be checked directly from Fig. 11.8.
 In the case of the three blocks of Fig. 11.9, we can again 
observe that the length of the rope which passes over the pulleys is 
constant, and thus the following relation must be satisfied by the 
position coordinates of the three blocks:

2xA 1 2xB 1 xC 5 constant

Since two of the coordinates can be chosen arbitrarily, we say that 
the system shown in Fig. 11.9 has two degrees of freedom.
 When the relation existing between the position coordinates of 
several particles is linear, a similar relation holds between the veloci-
ties and between the accelerations of the particles. In the case of the 
blocks of Fig. 11.9, for instance, we differentiate twice the equation 
obtained and write

 2 

dxA

dt
1 2 

dxB

dt
1

dxC

dt
5 0    or    2vA 1 2vB 1 vC 5 0

 2 

dvA

dt
1 2 

dvB

dt
1

dvC

dt
5 0    or    2aA 1 2aB 1 aC 5 0

†Note that the product of the subscripts A and B/A used in the right-hand member of 
Eqs. (11.9), (11.10), and (11.11) is equal to the subscript B used in their left-hand member.

fig. 11.8

 xA

 xB

A

B

C D

E F

G

fig. 11.9

A

B

C  xB

 xC xA

Photo 11.2 Multiple cables and pulleys are 
used by this shipyard crane.
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621

saMPle PRobleM 11.4

A ball is thrown vertically upward from the 12-m level in an elevator shaft 
with an initial velocity of 18 m/s. At the same instant an open-platform ele-
vator passes the 5-m level, moving upward with a constant velocity of 2 m/s. 
Determine (a) when and where the ball will hit the elevator, (b) the relative 
velocity of the ball with respect to the elevator when the ball hits the 
elevator.

solution

motion of Ball. Since the ball has a constant acceleration, its motion is 
uniformly accelerated. Placing the origin O of the y axis at ground level and 
choosing its positive direction upward, we find that the initial position is  
y0 5 112 m, the initial velocity is v0 5 118 m/s, and the acceleration is 
a 5 29.81 m/s2. Substituting these values in the equations for uniformly 
accelerated motion, we write

 vB 5 v0 1 at vB 5 18 2 9.81t  (1)
 yB 5 y0 1 v0t 1 1

2 
at2   yB 5 12 1 18t 2 4.905t2 (2)

motion of elevator. Since the elevator has a constant velocity, its motion 
is uniform. Again placing the origin O at the ground level and choosing the 
positive direction upward, we note that y0 5 15 m and write

 vE 5 12 m/s (3)
 yE 5 y0 1 vE t  yE 5 5 1 2t (4)

Ball hits elevator. We first note that the same time t and the same origin 
O were used in writing the equations of motion of both the ball and the 
elevator. We see from the figure that when the ball hits the elevator,

 yE 5 yB (5)

Substituting for yE and yB from (2) and (4) into (5), we have

5 1 2t 5 12 1 18t 2 4.905t2

 t 5 20.39 s  and t 5 3.65 s ◀

Only the root t 5 3.65 s corresponds to a time after the motion has begun. 
Substituting this value into (4), we have

yE 5 5 1 2(3.65) 5 12.30 m
Elevation from ground 5 12.30 m ◀

The relative velocity of the ball with respect to the elevator is

vB/E 5 vB 2 vE 5 (18 2 9.81t) 2 2 5 16 2 9.81t

When the ball hits the elevator at time t 5 3.65 s, we have

vB/E 5 16 2 9.81(3.65)  vB/E 5 219.81 m/s ◀

The negative sign means that the ball is observed from the elevator to be 
moving in the negative sense (downward).

t = t

t = 0

yB
a = –9.81 m/s2

v0 = 18 m/s

vE = 2 m/s

y0 = 12 m

O

t = t

yE

y0 = 5 m
O

yB yE

O

t = 0
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622

saMPle PRobleM 11.5

Collar A and block B are connected by a cable passing over three pulleys C, 
D, and E as shown. Pulleys C and E are fixed, while D is attached to a collar 
which is pulled downward with a constant velocity of 75 mm/s. At t 5 0, collar 
A starts moving downward from position K with a constant acceleration and 
no initial velocity. Knowing that the velocity of collar A is 300 mm/s as it 
passes through point L, determine the change in elevation, the velocity, and 
the acceleration of block B when collar A passes through L.

solution

motion of collar A. We place the origin O at the upper horizontal surface 
and choose the positive direction downward. We observe that when t 5 0, 
collar A is at the position K and (vA)0 5 0. Since vA 5 300 mm/s and
xA 2 (xA)0 5 200 mm when the collar passes through L, we write

 v2
A 5 (vA)2

0 1 2aA[xA 2 (xA)0]    (300)2 5 0 1 2aA(200)
 aA 5 225 mm/s2

The time at which collar A reaches point L is obtained by writing

vA 5 (vA)0 1 aAt  300 5 0 1 225t  t 5 1.333 s

motion of Pulley D. Recalling that the positive direction is downward, 
we write

aD 5 0  vD 5 75 mm/s  xD 5 (xD)0 1 vDt 5 (xD)0 1 75t

When collar A reaches L, at t 5 1.333 s, we have

xD 5 (xD)0 1 75(1.333) 5 (xD)0 1 100

Thus, xD 2 (xD)0 5 100 mm

motion of Block B. We note that the total length of cable ACDEB differs 
from the quantity (xA 1 2xD 1 xB) only by a constant. Since the cable length 
is constant during the motion, this quantity must also remain constant. Thus, 
considering the times t 5 0 and t 5 1.333 s, we write

 xA 1 2xD 1 xB 5 (xA)0 1 2(xD)0 1 (xB)0 (1)
 [xA 2 (xA)0] 1 2[xD 2 (xD)0] 1 [xB 2 (xB)0] 5 0 (2)

But we know that xA 2 (xA)0 5 200 mm and xD 2 (xD)0 5 100 mm; sub-
stituting these values in (2), we find

200 1 2(100) 1 [xB 2 (xB)0] 5 0  xB 2 (xB)0 5 2400 mm

Thus: Change in elevation of B 5 400 mmx ◀

Differentiating (1) twice, we obtain equations relating the velocities and the 
accelerations of A, B, and D. Substituting for the velocities and accelerations 
of A and D at t 5 1.333 s, we have

vA 1 2vD 1 vB 5 0:  300 1 2(75) 1 vB 5 0 
 vB 5 2450 mm/s  vB 5 450 mm/sx ◀

aA 1 2aD 1 aB 5 0:  225 1 2(0) 1 aB 5 0 
 aB 5 2225 mm/s2  aB 5 225 mm/s2x ◀

A

O

L

K

C E

A
B

D

D

200 mm

xA
aA

(xA)0

xA xB

xD

vA = 300 mm/s

O

(xD)0

xD

vD = 75 mm/s

O

C E

K

L

A

B

D
200 mm
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solvinG PRobleMs
on YouR oWn

In this lesson we derived the equations that describe uniform rectilinear motion 
(constant velocity) and uniformly accelerated rectilinear motion (constant accel-

eration). We also introduced the concept of relative motion. The equations for 
relative motion [Eqs. (11.9) to (11.11)] can be applied to the independent or 
dependent motions of any two particles moving along the same straight line.

a. Independent motion of one or more particles. The solution of problems of 
this type should be organized as follows:

1. Begin your solution by listing the given information, sketching the system, and 
selecting the origin and the positive direction of the coordinate axis [Sample 
Prob. 11.4]. It is always advantageous to have a visual representation of problems 
of this type.

2. Write the equations that describe the motions of the various particles as 
well as those that describe how these motions are related [Eq. (5) of Sample 
Prob. 11.4].

3. define the initial conditions, i.e., specify the state of the system corresponding 
to t 5 0. This is especially important if the motions of the particles begin at dif-
ferent times. In such cases, either of two approaches can be used.
 a. Let t 5 0 be the time when the last particle begins to move. You must then 
determine the initial position x0 and the initial velocity v0 of each of the other 
particles.
 b. Let t 5 0 be the time when the first particle begins to move. You must 
then, in each of the equations describing the motion of another particle, replace 
t with t 2 t0, where t0 is the time at which that specific particle begins to move. 
It is important to recognize that the equations obtained in this way are valid only 
for t $ t0.
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B. dependent motion of two or more particles. In problems of this type the 
particles of the system are connected to each other, typically by ropes or by cables. 
The method of solution of these problems is similar to that of the preceding group 
of problems, except that it will now be necessary to describe the physical connec-
tions between the particles. In the following problems, the connection is provided 
by one or more cables. For each cable, you will have to write equations similar to 
the last three equations of Sec. 11.6. We suggest that you use the following 
procedure:

1. draw a sketch of the system and select a coordinate system, indicating 
clearly a positive sense for each of the coordinate axes. For example, in Sample 
Prob. 11.5 lengths are measured downward from the upper horizontal support. It 
thus follows that those displacements, velocities, and accelerations which have 
positive values are directed downward.

2. Write the equation describing the constraint imposed by each cable on the 
motion of the particles involved. Differentiating this equation twice, you will obtain 
the corresponding relations among velocities and accelerations.

3. If several directions of motion are involved, you must select a coordinate 
axis and a positive sense for each of these directions. You should also try to locate 
the origins of your coordinate axes so that the equations of constraints will be as 
simple as possible. For example, in Sample Prob. 11.5 it is easier to define the 
various coordinates by measuring them downward from the upper support than 
by measuring them upward from the bottom support.

finally, keep in mind that the method of analysis described in this lesson and 
the corresponding equations can be used only for particles moving with uniform 
or uniformly accelerated rectilinear motion.
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 11.33 A stone is thrown vertically upward from a point on a bridge 
located 40 m above the water. Knowing that it strikes the water 
4 s after release, determine (a) the speed with which the stone 
was thrown upward, (b) the speed with which the stone strikes 
the water.

 11.34 A motorist is traveling at 54 km/h when she observes that a traffic 
light 240 m ahead of her turns red. The traffic light is timed to 
stay red for 24 s. If the motorist wishes to pass the light without 
stopping just as it turns green again, determine (a) the required 
uniform deceleration of the car, (b) the speed of the car as it passes 
the light.

54 km/h

240 m

 fig. P11.34  

 11.35 A motorist enters a freeway at 45 km/h and accelerates uniformly 
to 99 km/h. From the odometer in the car, the motorist knows 
that she traveled 0.2 km while accelerating. Determine (a) the 
acceleration of the car, (b) the time required to reach 99 km/h.

 11.36 A group of students launches a model rocket in the vertical direc-
tion. Based on tracking data, they determine that the altitude of 
the rocket was 27 m at the end of the powered portion of the 
flight and that the rocket landed 16 s later. Knowing that the 
descent parachute failed to deploy so that the rocket fell freely 
to the ground after reaching its maximum altitude and assuming 
that g 5 9.81 m/s2, determine (a) the speed v1 of the rocket at 
the end of powered flight, (b) the maximum altitude reached by 
the rocket.

v0 = 45 km/h

 fig. P11.35  

v1

27 m

 fig. P11.36  
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626 Kinematics of Particles  11.37 A small package is released from rest at A and moves along the 
skate wheel conveyor ABCD. The package has a uniform accelera-
tion of 4.8 m/s2 as it moves down sections AB and CD, and its 
velocity is constant between B and C. If the velocity of the package 
at D is 7.2 m/s, determine (a) the distance d between C and D, 
(b) the time required for the package to reach D.

 11.38 A sprinter in a 100-m race accelerates uniformly for the first 35 m 
and then runs with constant velocity. If the sprinter’s time for the 
first 35 m is 5.4 s, determine (a) his acceleration, (b) his final 
velocity, (c) his time for the race.

 11.39 As relay runner A enters the 20-m-long exchange zone with a 
speed of 12.9 m/s, he begins to slow down. He hands the baton to 
runner B 1.82 s later as they leave the exchange zone with the 
same velocity. Determine (a) the uniform acceleration of each of 
the runners, (b) when runner B should begin to run.

 11.40 In a boat race, boat A is leading boat B by 50 m and both boats 
are traveling at a constant speed of 180 km/h. At t 5 0, the boats 
accelerate at constant rates. Knowing that when B passes A, t 5 8 s 
and vA 5 225 km/h, determine (a) the acceleration of A, (b) the 
acceleration of B.

v

fig. p11.38

B

A

C

D

3 m

3 m
d

fig. p11.37

A B

(vA)0 = 12.9 m/s

(vB)0 = 0

20 m

fig. P11.39

A

B

50 m

vB

vA

fig. P11.40
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627Problems 11.41 A police officer in a patrol car parked in a 70 km/h speed zone 
observes a passing automobile traveling at a slow, constant speed. 
Believing that the driver of the automobile might be intoxicated, 
the officer starts his car, accelerates uniformly to 90 km/h in 8 s, 
and, maintaining a constant velocity of 90 km/h, overtakes the 
motorist 42 s after the automobile passed him. Knowing that 18 s 
elapsed before the officer began pursuing the motorist, determine 
(a) the distance the officer traveled before overtaking the motorist, 
(b) the motorist’s speed.

 11.42 Automobiles A and B are traveling in adjacent highway lanes and 
at t 5 0 have the positions and speeds shown. Knowing that 
automobile A has a constant acceleration of 0.54 m/s2 and that 
B has a constant deceleration of 0.36 m/s2, determine (a) when 
and where A will overtake B, (b) the speed of each automobile 
at that time.

 11.43 Two automobiles A and B are approaching each other in adjacent 
highway lanes. At t 5 0, A and B are 1 km apart, their speeds are 
vA 5 108 km/h and vB 5 63 km/h, and they are at points P and 
Q, respectively. Knowing that A passes point Q 40 s after B was 
there and that B passes point P 42 s after A was there, determine 
(a) the uniform accelerations of A and B, (b) when the vehicles 
pass each other, (c) the speed of B at that time.

 11.44 An elevator is moving upward at a constant speed of 4 m/s. A man 
standing 10 m above the top of the elevator throws a ball upward 
with a speed of 3 m/s. Determine (a) when the ball will hit the 
elevator, (b) where the ball will hit the elevator with respect to the 
location of the man.

10 m

fig. P11.44

A B

x

(vA)0 = 36 km/h (vB)0 = 54 km/h

22.5 m

fig. P11.42

A B

P Q

vB = 63 km/hvA = 108 km/h

1 km

fig. P11.43
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628 Kinematics of Particles  11.45 Two rockets are launched at a fireworks display. Rocket A is 
launched with an initial velocity v0 5 100 m/s and rocket B is 
launched t1 s later with the same initial velocity. The two rockets 
are timed to explode simultaneously at a height of 300 m as A 
is falling and B is rising. Assuming a constant acceleration g 5 
9.81 m/s2, determine (a) the time t1, (b) the velocity of B relative to 
A at the time of the explosion.

 11.46 Car A is parked along the northbound lane of a highway, and car B 
is traveling in the southbound lane at a constant speed of 90 km/h. 
At t 5 0, A starts and accelerates at a constant rate aA, while at 
t 5 5 s, B begins to slow down with a constant deceleration of 
magnitude aA/6. Knowing that when the cars pass each other x 5 
90 m and vA 5 vB, determine (a) the acceleration aA, (b) when the 
vehicles pass each other, (c) the distance d between the vehicles at 
t 5 0.

 11.47 The elevator shown in the figure moves downward with a constant 
velocity of 4 m/s. Determine (a) the velocity of the cable C, (b) the 
velocity of the counterweight W, (c) the relative velocity of the cable 
C with respect to the elevator, (d) the relative velocity of the coun-
terweight W with respect to the elevator.

A B 300 m

v0 v0

fig. p11.45

W

EC

M

fig. P11.47 and P11.48

 11.48 The elevator shown starts from rest and moves upward with a con-
stant acceleration. If the counterweight W moves through 10 m in 
5 s, determine (a) the acceleration of the elevator and the cable 
C, (b) the velocity of the elevator after 5 s.

A B

(vB)0 = 90 km/h(vA)0 = 0

x

d

fig. p11.46
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629Problems

 11.52 At the instant shown, slider block B is moving with a constant 
acceleration, and its speed is 150 mm/s. Knowing that after slider 
block A has moved 240 mm to the right its velocity is 60 mm/s, 
determine (a) the accelerations of A and B, (b) the acceleration of 
portion D of the cable, (c) the velocity and the change in position 
of slider block B after 4 s.

 11.53 Collar A starts from rest and moves upward with a constant accelera-
tion. Knowing that after 8 s the relative velocity of collar B with 
respect to collar A is 0.6 m/s, determine (a) the accelerations of A 
and B, (b) the velocity and the change in position of B after 6 s.

 11.49 Slider block A moves to the left with a constant velocity of 6 m/s. 
Determine (a) the velocity of block B, (b) the velocity of portion 
D of the cable, (c) the relative velocity of portion C of the cable 
with respect to portion D.

B

A

C
D

fig. P11.49 and P11.50

BC

DA

fig. P11.51 and P11.52

A

B

C

fig. p11.53

 11.50 Block B starts from rest and moves downward with a constant 
acceleration. Knowing that after slider block A has moved 
400 mm its velocity is 4 m/s, determine (a) the accelerations 
of A and B, (b) the velocity and the change in position of B 
after 2 s.

 11.51 Slider block B moves to the right with a constant velocity of 
300 mm/s. Determine (a) the velocity of slider block A, (b) the 
velocity of portion C of the cable, (c) the velocity of portion D 
of the cable, (d) the relative velocity of portion C of the cable with 
respect to slider block A.
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630 Kinematics of Particles  11.54 The motor M reels in the cable at a constant rate of 100 mm/s. 
Determine (a) the velocity of load L, (b) the velocity of pulley B 
with respect to load L.

L

100 mm/s

M

B

fig. p11.54

D

A  

B  

C  

fig. P11.55

 11.55 Block C starts from rest at t 5 0 and moves downward with a 
constant acceleration of 100 mm/s2. Knowing that block B has a 
constant velocity of 75 mm/s upward, determine (a) the time when 
the velocity of block A is zero, (b) the time when the velocity of 
block A is equal to the velocity of block D, (c) the change in posi-
tion of block A after 5 s.

 11.56 Block A starts from rest at t 5 0 and moves downward with a 
constant acceleration of 150 mm/s2. Knowing that block B moves 
up with a constant velocity of 75 mm/s, determine (a) the time 
when the velocity of block C is zero, (b) the corresponding posi-
tion of block C.

C

A

B

fig. P11.56
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631Problems 11.57 Block B starts from rest, block A moves with a constant accelera-
tion, and slider block C moves to the right with a constant accelera-
tion of 75 mm/s2. Knowing that at t 5 2 s the velocities of B and 
C are 480 mm/s downward and 280 mm/s to the right, respectively, 
determine (a) the accelerations of A and B, (b) the initial velocities 
of A and C, (c) the change in position of slider block C after 3 s.

 11.58 Block B moves downward with a constant velocity of 20 mm/s. At 
t 5 0, block A is moving upward with a constant acceleration, and 
its velocity is 30 mm/s. Knowing that at t 5 3 s slider block C has 
moved 57 mm to the right, determine (a) the velocity of slider 
block C at t 5 0, (b) the accelerations of A and C, (c) the change 
in position of block A after 5 s.

 11.59 The system shown starts from rest, and each component moves with 
a constant acceleration. If the relative acceleration of block C with 
respect to collar B is 60 mm/s2 upward and the relative acceleration 
of block D with respect to block A is 110 mm/s2 downward, deter-
mine (a) the velocity of block C after 3 s, (b) the change in position 
of block D after 5 s.

BA  

C

fig. P11.57 and P11.58

C

A

D

B

fig. p11.59 and p11.60

 *11.60 The system shown starts from rest, and the length of the upper 
cord is adjusted so that A, B, and C are initially at the same level. 
Each component moves with a constant acceleration, and after 2 s 
the relative change in position of block C with respect to block A 
is 280 mm upward. Knowing that when the relative velocity of 
collar B with respect to block A is 80 mm/s downward, the dis-
placements of A and B are 160 mm downward and 320 mm down-
ward, respectively, determine (a) the accelerations of A and B if 
aB . 10 mm/s2, (b) the change in position of block D when the 
velocity of block C is 600 mm/s upward.
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632 Kinematics of Particles *11.7  GraPhIcal solutIon of rectIlInear-
motIon ProBlems

It was observed in Sec. 11.2 that the fundamental formulas

v 5
dx
dt

  and   a 5
dv
dt

have a geometrical significance. The first formula expresses that the 
velocity at any instant is equal to the slope of the x–t curve at the 
same instant (Fig. 11.10). The second formula expresses that the accel-

t2t1

x1

x2

t

t2t1 t

t2t1 t

x

v2

v1

v

a

Area

Area

v2 − v1 =       �
t1

t2

x2 − x1 =        �
t1

t2

      a dt 

       v dt 

fig. 11.11

eration is equal to the slope of the v–t curve. These two properties 
can be used to determine graphically the v–t and a–t curves of a 
motion when the x–t curve is known.
 Integrating the two fundamental formulas from a time t1 to a 
time t2, we write

 x2 2 x1 5#
t2

t1

 v dt   and   v2 2 v1 5#
t2

t1

 a dt (11.12)

The first formula expresses that the area measured under the v−t 
curve from t1 to t2 is equal to the change in x during that time inter-
val (Fig. 11.11). Similarly, the second formula expresses that the area 
measured under the a–t curve from t1 to t2 is equal to the change 
in v during that time interval. These two properties can be used to 
determine graphically the x–t curve of a motion when its v−t curve 
or its a–t curve is known (see Sample Prob. 11.6).
 Graphical solutions are particularly useful when the motion con-
sidered is defined from experimental data and when x, v, and a are 
not analytical functions of t. They can also be used to advantage when 
the motion consists of distinct parts and when its analysis requires 
writing a different equation for each of its parts. When using a graphi-
cal solution, however, one should be careful to note that (1) the area 
under the v–t curve measures the change in x, not x itself, and simi-
larly, that the area under the a–t curve measures the change in v; 
(2) an area above the t axis corresponds to an increase in x or v, while 
an area located below the t axis measures a decrease in x or v.
 It will be useful to remember in drawing motion curves that if 
the velocity is constant, it will be represented by a horizontal straight 
line; the position coordinate x will then be a linear function of t and 
will be represented by an oblique straight line. If the acceleration is 

Slop
e

Slop
e

dx
dt

 = v

v a

dv
dt

 = a

x v a

ttt t1t1t1

x

fig. 11.10
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633constant and different from zero, it will be represented by a hori-
zontal straight line; v will then be a linear function of t, represented 
by an oblique straight line, and x will be expressed as a second-degree 
polynomial in t, represented by a parabola. If the acceleration is a 
linear function of t, the velocity and the position coordinate will be 
equal, respectively, to second-degree and third-degree polynomials; 
a will then be represented by an oblique straight line, v by a parab-
ola, and x by a cubic. In general, if the acceleration is a polynomial 
of degree n in t, the velocity will be a polynomial of degree n 1 1 and 
the position coordinate a polynomial of degree n 1 2; these polyno-
mials are represented by motion curves of a corresponding degree.

*11.8 other GraPhIcal methods
An alternative graphical solution can be used to determine the posi-
tion of a particle at a given instant directly from the a–t curve. 
Denoting the values of x and v at t 5 0 as x0 and v0 and their values 
at t 5 t1 as x1 and v1, and observing that the area under the v–t 
curve can be divided into a rectangle of area v0 t1 and horizontal dif-
ferential elements of area (t1 2 t) dv (Fig. 11.12a), we write

x1 2 x0 5 area under v – t curve 5 v0 
t1 1#

v1

v0

 (t1 2 t) dv

Substituting dv 5 a dt in the integral, we obtain

x1 2 x0 5 v0 
t1 1#

t1

0
 (t1 2 t) a dt

Referring to Fig. 11.12b, we note that the integral represents the 
first moment of the area under the a–t curve with respect to the line 
t 5 t1 bounding the area on the right. This method of solution is 
known, therefore, as the moment-area method. If the abscissa t of 
the centroid C of the area is known, the position coordinate x1 can 
be obtained by writing

 x1 5 x0 1 v0 t1 1 (area under a–t curve)(t1 2 t) (11.13)

If the area under the a–t curve is a composite area, the last term 
in (11.13) can be obtained by multiplying each component area by 
the distance from its centroid to the line t 5 t1. Areas above the t 
axis should be considered as positive and areas below the t axis as 
negative.
 Another type of motion curve, the v−x curve, is sometimes used. 
If such a curve has been plotted (Fig. 11.13), the acceleration a can 
be obtained at any time by drawing the normal AC to the curve and 
measuring the subnormal BC. Indeed, observing that the angle 
between AC and AB is equal to the angle u between the horizontal 
and the tangent at A (the slope of which is tan u 5 dv/dx), we write

BC 5 AB tan u 5 v 

dv
dx

and thus, recalling formula (11.4),

BC 5 a fig. 11.13

v

x
B C

A

θ

Slope =
 ta

n q 
=
dv

dx

v

a

θ

fig. 11.12

v

v

v1

t1

t1 – t

v0

O tt

a

tt t1

dv

(a)

(b)

dt
Ca

t1 – t

t1 –t t

11.8 Other Graphical Methods
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saMPle PRobleM 11.6

A particle moves in a straight line with the acceleration shown in the figure. 
Knowing that it starts from the origin with v0 5 26 m/s, (a) plot the v – t 
and x – t curves for 0 , t , 20 s, (b) determine its velocity, its position, and 
the total distance traveled when t 5 12 s.

solution

a acceleration-time curve. 

Initial conditions: t 5 0, v0 5 26 m/s, x0 5 0

Change in v 5 area under a−t curve:

v0 = −6 m / s

0 < t < 4s : v4 − v0 = (1 m /s 2 ) (4s) = + 4 m/s v4 = −2 m / s

4s < t < 10s : v10 − v4 = (2 m /s 2) (6s) = + 12 m/s v10= +10 m / s

10s < t < 12s : v12 − v10 = (− 2m / s 2 )(2s) = − 4 m/s v12 = + 6m / s

12s < t < 20s : v20 − v12 = (−2 m / s 2 )(8s) = −16 m/s v20 = −10 m / s  ◀

Change in x 5 area under v − t curve: x0 = 0

0 < t < 4s : x 4 − x 0 =
1
2

(−6 − 2)(4) = −16 m x 4 = −16m

4s < t < 5s : x 5 − x 4 =
1
2

(−2)(1) = −1 m x 5 = −17m

5s < t < 10s : x 10 − x 5 =
1
2

(+10)(5) = + 25 m x 10 = 8m

10s < t < 12s : x 12 − x 10 =
1
2

(+10 + 6)(2) = +16 m x 12 = + 24m

12s < t < 15s x 15 − x 12 =
1
2

(+ 6 )(3) = + 9 m x 16 = + 33m

15s < t < 20s x 20 − x 15 =
1
2

(−10)(5) = − 25 m x 20 = + 8 m

b from above curves, we read

For t512 s: v12 5 + 6 m/s, x12 = + 24 m
Distance traveled t 5 0 to t 5 12 s

From t 5 0 s to t 5 5 s: Distance traveled 5 17 m

From t 5 5 s to t 5 12 s: Distance traveled 5 (17 + 24) = 41 m
Total distance traveled 5 58 m ◀

2
1
0

10
4 t(s)

–2

a(m/s2)

a(m/s2)

2

1210 20
0 4

1

22

t(s)

0

21026
22

110

16

105
4

12
15 20

v(m/s)

t(s)

x(m)

216

4 5

217
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124
133

18

10
0

12 15 20
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635

solvinG PRobleMs
on YouR oWn

In this lesson (Secs. 11.7 and 11.8), we reviewed and developed several graphical 
techniques for the solution of problems involving rectilinear motion. These tech-

niques can be used to solve problems directly or to complement analytical methods 
of solution by providing a visual description, and thus a better understanding, of 
the motion of a given body. We suggest that you sketch one or more motion curves 
for several of the problems in this lesson, even if these problems are not part of 
your homework assignment.

1. drawing x−t, v−t, and a−t curves and applying graphical methods. The 
following properties were indicated in Sec. 11.7 and should be kept in mind as 
you use a graphical method of solution.
 a. the slopes of the x−t and v−t curves at a time t1 are respectively equal 
to the velocity and the acceleration at time t1.
 b. the areas under the a−t and v−t curves between the times t1 and t2 are 
respectively equal to the change ¢v in the velocity and to the change ¢x in the 
position coordinate during that time interval.
 c. If one of the motion curves is known, the fundamental properties we have 
summarized in paragraphs a and b will enable you to construct the other two 
curves. However, when using the properties of paragraph b, the velocity and the 
position coordinate at time t1 must be known in order to determine the velocity 
and the position coordinate at time t2. Thus, in Sample Prob. 11.6, knowing that 
the initial value of the velocity was zero allowed us to find the velocity at t 5 6 s: 
v6 5 v0 1 ¢v 5 0 1 24 ft/s 5 24 ft/s.

If you have previously studied the shear and bending-moment diagrams for a 
beam, you should recognize the analogy that exists between the three motion 
curves and the three diagrams representing respectively the distributed load, the 
shear, and the bending moment in the beam. Thus, any techniques that you learned 
regarding the construction of these diagrams can be applied when drawing the 
motion curves.

2. using approximate methods. When the a–t and v–t curves are not repre-
sented by analytical functions or when they are based on experimental data, it is 
often necessary to use approximate methods to calculate the areas under these 
curves. In those cases, the given area is approximated by a series of rectangles of 
width ¢t. The smaller the value of ¢t, the smaller the error introduced by the 
approximation. The velocity and the position coordinate are obtained by writing

v 5 v0 1 oaave ¢t  x 5 x0 1 ovave ¢t

where aave and vave are the heights of an acceleration rectangle and a velocity 
rectangle, respectively.

(continued)
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636

3. applying the moment-area method. This graphical technique is used when 
the a−t curve is given and the change in the position coordinate is to be determined. 
We found in Sec. 11.8 that the position coordinate x1 can be expressed as

 x1 5 x0 1 v0t1 1 (area under a – t curve)(t1 2 t) (11.13)

Keep in mind that when the area under the a−t curve is a composite area, the 
same value of t1 should be used for computing the contribution of each of the 
component areas.

4. determining the acceleration from a v–x curve. You saw in Sec. 11.8 that 
it is possible to determine the acceleration from a v–x curve by direct measure-
ment. It is important to note, however, that this method is applicable only if the 
same linear scale is used for the v and x axes (for example, 1 in. 5 10 ft and 1 in. 5 
10 ft/s). When this condition is not satisfied, the acceleration can still be deter-
mined from the equation

a 5 v 

dv
dx

where the slope dv/dx is obtained as follows: First, draw the tangent to the curve at 
the point of interest. Next, using appropriate scales, measure along that tangent cor-
responding increments ¢x and ¢v. The desired slope is equal to the ratio ¢v/¢x.
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 11.61 A subway car leaves station A; it gains speed at the rate of 4 m/s2 
for 6 s and then at the rate of 6 m/s2 until it has reached the speed 
of 36 m/s. The car maintains the same speed until it approaches 
station B; brakes are then applied, giving the car a constant decel-
eration and bringing it to a stop in 6 s. The total running time 
from A to B is 40 s. Draw the a−t, v−t, and x−t curves, and deter-
mine the distance between stations A and B.

 11.62 For the particle and motion of Sample Problem 11.6, plot the v–t 
and x–t curves for 0 , t , 20 s and determine (a) the maximum 
value of the velocity of the particle, (b) the maximum value of its 
position coordinate.

 11.63 A particle moves in a straight line with the velocity shown in the 
figure. Knowing that x 5 2540 m at t 5 0, (a) construct the a–t 
and x–t curves for 0 , t , 50 s, and determine (b) the total dis-
tance traveled by the particle when t 5 50 s, (c) the two times at 
which x 5 0.

60

–20
–5

t (s)

v (m/s)

26 41 46
10

 fig. P11.63   and P11.64

v

 fig. P11.66

 11.64 A particle moves in a straight line with the velocity shown in the 
figure. Knowing that x 5 2540 m at t 5 0, (a) construct the a–t 
and x–t curves for 0 , t , 50 s, and determine (b) the maximum 
value of the position coordinate of the particle, (c) the values of t 
for which the particle is at x 5 100 m.

 11.65 During a finishing operation the bed of an industrial planer 
moves alternately 750 mm to the right and 750 mm to the left. 
The velocity of the bed is limited to a maximum value of 150 mm/s 
to the right and 300 mm/s to the left; the acceleration is succes-
sively equal to 150 mm/s2 to the right, zero, 150 mm/s2 to the left, 
zero, etc. Determine the time required for the bed to complete a 
full cycle, and draw the v–t and x–t curves.

 11.66 A parachutist is in free fall at a rate of 200 km/h when he opens 
his parachute at an altitude of 600 m. Following a rapid and con-
stant deceleration, he then descends at a constant rate of 50 km/h 
from 586 m to 30 m, where he maneuvers the parachute into the 
wind to further slow his descent. Knowing that the parachutist 
lands with a negligible downward velocity, determine (a) the time 
required for the parachutist to land after opening his parachute, 
(b) the initial deceleration.

A B

x
d

 fig. P11.61  
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638 Kinematics of Particles  11.67 A commuter train traveling at 60 km/h is 4.5 km from a station. 
The train then decelerates so that its speed is 30 km/h when it is 
0.75 km from the station. Knowing that the train arrives at the 
station 7.5 min after beginning to decelerate and assuming con-
stant decelerations, determine (a) the time required for the train 
to travel the first 3.75 km, (b) the speed of the train as it arrives 
at the station, (c) the final constant deceleration of the train.

 11.68 A temperature sensor is attached to slider AB which moves back 
and forth through 1500 mm. The maximum velocities of the slider 
are 300 mm/s to the right and 750 mm/s to the left. When the 
slider is moving to the right, it accelerates and decelerates at a 
constant rate of 150 mm/s2; when moving to the left, the slider 
accelerates and decelerates at a constant rate of 500 mm/s2. Deter-
mine the time required for the slider to complete a full cycle, and 
construct the v–t and x–t curves of its motion.

 11.69 In a water-tank test involving the launching of a small model boat, 
the model’s initial horizontal velocity is 6 m/s and its horizontal 
acceleration varies linearly from 212 m/s2 at t 5 0 to 22 m/s2 at 
t 5 t1 and then remains equal to 22 m/s2 until t 5 1.4 s. Know-
ing that v 5 1.8 m/s when t 5 t1, determine (a) the value of t1, 
(b) the velocity and the position of the model at t 5 1.4 s.

 11.70 The acceleration record shown was obtained for a small airplane 
traveling along a straight course. Knowing that x 5 0 and v 5 
60 m/s when t 5 0, determine (a) the velocity and position of 
the plane at t 5 20 s, (b) its average velocity during the interval 
6 s , t , 14 s.

 11.71 In a 400-m race, runner A reaches her maximum velocity vA in 
4 s with constant acceleration and maintains that velocity until she 
reaches the halfway point with a split time of 25 s. Runner B 
reaches her maximum velocity vB in 5 s with constant acceleration 
and maintains that velocity until she reaches the halfway point 
with a split time of 25.2 s. Both runners then run the second  
half of the race with the same constant deceleration of 0.1 m/s2. 
Determine (a) the race times for both runners, (b) the position 
of the winner relative to the loser when the winner reaches the 
finish line.

x

v0 = 6 m/s

fig. P11.69
0.75

6 8
0

10

12 14 20 t(s)
–0.75

a (m/s2)

fig. P11.70

B

200 m 200 m

A

fig. P11.71

60 km/h
4.5 km

fig. p11.67

x

A B

1500 mm

fig. p11.68
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639Problems 11.72 A car and a truck are both traveling at the constant speed of 50 km/h; 
the car is 12 m behind the truck. The driver of the car wants to 
pass the truck, i.e., he wishes to place his car at B, 12 m in front 
of the truck, and then resume the speed of 50 km/h. The maximum 
acceleration of the car is 1.5 m/s2 and the maximum deceleration 
obtained by applying the brakes is 6 m/s2. What is the shortest 
time in which the driver of the car can complete the passing opera-
tion if he does not at any time exceed a speed of 75 km/h? Draw 
the v–t curve.

12 m

fig. P11.75

 11.73 Solve Prob. 11.72, assuming that the driver of the car does not pay 
any attention to the speed limit while passing and concentrates on 
reaching position B and resuming a speed of 50 km/h in the short-
est possible time. What is the maximum speed reached? Draw the 
v–t curve.

 11.74 Car A is traveling on a highway at a constant speed (vA)05 90 km/h 
and is 120 m from the entrance of an access ramp when car B 
enters the acceleration lane at that point at a speed (vB)0 5 25 km/h.
Car B accelerates uniformly and enters the main traffic lane after 
traveling 60 m in 5 s. It then continues to accelerate at the same rate 
until it reaches a speed of 90 km/h, which it then maintains. Deter-
mine the final distance between the two cars.

 11.75  An elevator starts from rest and moves upward, accelerating at a 
rate of 1.2 m/s2 until it reaches a speed of 7.8 m/s, which it then 
maintains. Two seconds after the elevator begins to move, a man 
standing 12 m above the initial position of the top of the elevator 
throws a ball upward with an initial velocity of 20 m/s. Determine 
when the ball will hit the elevator.

A B

4.8 m
12 m 15 m 12 m

fig. P11.72

A (vA)0

(vB)0

(vA)0

120 m

B
(vB)0

fig. p11.74
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640 Kinematics of Particles  11.76 Car A is traveling at 60 km/h when it enters a 40 km/h speed zone. 
The driver of car A decelerates at a rate of 5 m/s2 until reaching a 
speed of 40 km/h, which she then maintains. When car B, which was 
initially 20 m behind car A and traveling at a constant speed of 
70 km/h, enters the speed zone, its driver decelerates at a rate of 
6 m/s2 until reaching a speed of 35 km/h. Knowing that the driver 
of car B maintains a speed of 35 km/h, determine (a) the closest 
that car B comes to car A, (b) the time at which car A is 25 m in 
front of car B.

2

0
21

4.5 t(s)t1

–6

a (m/s2)

fig. P11.78

 11.77 An accelerometer record for the motion of a given part of a mecha-
nism is approximated by an arc of a parabola for 0.2 s and a straight 
line for the next 0.2 s as shown in the figure. Knowing that v  0 
when t  0 and x  0.4 m when t  0.4 s, (a) construct the v – t 
curve for 0  t  0.4 s, (b) determine the position of the part at 
t  0.3 s and t  0.2 s.

0

8

12

a (m/s2)

0 0.2 0.4 t (s)

a = 12 – 100t2

a = 16 – 40t

fig. p11.77

 11.78 A car is traveling at a constant speed of 54 km/h when its driver 
sees a child run into the road. The driver applies her brakes until 
the child returns to the sidewalk and then accelerates to resume 
her original speed of 54 km/h; the acceleration record of the car 
is shown in the figure. Assuming x 5 0 when t 5 0, determine 
(a) the time t1 at which the velocity is again 54 km/h, (b) the posi-
tion of the car at that time, (c) the average velocity of the car 
during the interval 1 s # t # t1.

B A

20 m

(vB)0 = 70 km/h (vA)0 = 60 km/h

fig. p11.76
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641Problems 11.79 An airport shuttle train travels between two terminals that are 
2.5 km apart. To maintain passenger comfort, the acceleration of 
the train is limited to 61.2 m/s2, and the jerk, or rate of change 
of acceleration, is limited to 60.24 m/s2 per second. If the shuttle 
has a maximum speed of 30 km/h, determine (a) the shortest time 
for the shuttle to travel between the two terminals, (b) the cor-
responding average velocity of the shuttle.

 11.80 During a manufacturing process, a conveyor belt starts from rest 
and travels a total of 400 mm before temporarily coming to rest. 
Knowing that the jerk, or rate of change of acceleration, is limited 
to 61.5 m/s2 per second, determine (a) the shortest time required 
for the belt to move 400 mm, (b) the maximum and average values 
of the velocity of the belt during that time.

 11.81 Two seconds are required to bring the piston rod of an air cylinder 
to rest; the acceleration record of the piston rod during the 2 s is 
as shown. Determine by approximate means (a) the initial velocity 
of the piston rod, (b) the distance traveled by the piston rod as it 
is brought to rest.

a (m/s2)

t (s)

6.0

7.0

5.0

4.0

3.0

2.0

1.0

0
0 2 4 6 8 10 12 14 16 18 20 22

fig. p11.82

t (s)

4.0

3.0

2.0

1.0

0

–a (m/s2)

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

fig. p11.81

 11.82 The acceleration record shown was obtained during the speed tri-
als of a sports car. Knowing that the car starts from rest, determine 
by approximate means (a) the velocity of the car at t 5 8 s, (b) the 
distance the car has traveled at t 5 20 s.
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642 Kinematics of Particles  11.83 A training airplane has a velocity of 38 m/s when it lands on an 
aircraft carrier. As the arresting gear of the carrier brings the air-
plane to rest, the velocity and the acceleration of the airplane are 
recorded; the results are shown (solid curve) in the figure. Deter-
mine by approximate means (a) the time required for the airplane 
to come to rest, (b) the distance traveled in that time.

30

a (m/s2)

t1

0.8 s

t(s)

–10

fig. p11.87

 11.84 Shown in the figure is a portion of the experimentally determined v–x 
curve for a shuttle cart. Determine by approximate means the accel-
eration of the cart (a) when x 5 250 mm, (b) when v 5 2000 mm/s.

 11.85 Using the method of Sec. 11.8, derive the formula x 5 x0 1 v0t 1 
1
2 at2 for the position coordinate of a particle in uniformly accelerated 
rectilinear motion.

 11.86 Using the method of Sec. 11.8, determine the position of the par-
ticle of Sample Problem 11.6 when t 5 14 s.

 11.87 The acceleration of an object subjected to the pressure wave of a 
large explosion is defined approximately by the curve shown. The 
object is initially at rest and is again at rest at time t1. Using the 
method of Sec. 11.8, determine (a) the time t1, (b) the distance 
through which the object is moved by the pressure wave.

 11.88 For the particle of Prob. 11.63, draw the a–t curve and determine, 
using the method of Sec. 11.8, (a) the position of the particle when 
t 5 52 s, (b) the maximum value of its position coordinate.

18

15

9

12

6

3

0
0 6 12 18 24 30 36 42

–a (m/s2)

v (m/s)

fig. P11.83
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x (mm)

fig. P11.84
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643cuRvilineaR Motion of PaRticles

11.9  PosItIon Vector, VelocIty,  
and acceleratIon

When a particle moves along a curve other than a straight line, we say 
that the particle is in curvilinear motion. To define the position P occu-
pied by the particle at a given time t, we select a fixed reference system, 
such as the x, y, z axes shown in Fig. 11.14a, and draw the vector r 
joining the origin O and point P. Since the vector r is characterized by its 
magnitude r and its direction with respect to the reference axes, it com-
pletely defines the position of the particle with respect to those axes; the 
vector r is referred to as the position vector of the particle at time t.
 Consider now the vector r9 defining the position P9 occupied by 
the same particle at a later time t 1 ¢t. The vector ¢r joining P and 
P9 represents the change in the position vector during the time interval 
¢t since, as we can easily check from Fig. 11.14a, the vector r9 is 
obtained by adding the vectors r and ¢r according to the triangle 
rule. We note that ¢r represents a change in direction as well as a 
change in magnitude of the position vector r. The average velocity of 
the particle over the time interval ¢t is defined as the quotient of ¢r 
and ¢t. Since ¢r is a vector and ¢t is a scalar, the quotient ¢r/¢t is 
a vector attached at P, of the same direction as ¢r and of magnitude 
equal to the magnitude of ¢r divided by ¢t (Fig. 11.14b).
 The instantaneous velocity of the particle at time t is obtained 
by choosing shorter and shorter time intervals ¢t and, correspond-
ingly, shorter and shorter vector increments ¢r. The instantaneous 
velocity is thus represented by the vector

 v 5 lim
¢ty0

 
¢r
¢t

 (11.14)

As ¢t and ¢r become shorter, the points P and P9 get closer; the 
vector v obtained in the limit must therefore be tangent to the path 
of the particle (Fig. 11.14c).
 Since the position vector r depends upon the time t, we can 
refer to it as a vector function of the scalar variable t and denote it 
by r(t). Extending the concept of derivative of a scalar function intro-
duced in elementary calculus, we will refer to the limit of the quo-
tient ¢r/¢t as the derivative of the vector function r(t). We write

 v 5
dr
dt

 (11.15)

 The magnitude v of the vector v is called the speed of the particle. 
It can be obtained by substituting for the vector ¢r in formula (11.14) 
the magnitude of this vector represented by the straight-line segment 
PP9. But the length of the segment PP9 approaches the length ¢s of 
the arc PP9 as ¢t decreases (Fig. 11.14a), and we can write

 v 5 lim
¢ty0

 
PP¿
¢t

5 lim
¢ty0

 
¢s
¢t

    v 5
ds
dt

 (11.16)

11.9 Position Vector, Velocity, and Acceleration

fig. 11.14
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644 Kinematics of Particles

The speed v can thus be obtained by differentiating with respect to t 
the length s of the arc described by the particle.
 Consider the velocity v of the particle at time t and its velocity v9 
at a later time t 1 ¢t (Fig. 11.15a). Let us draw both vectors v and v9 
from the same origin O9 (Fig. 11.15b). The vector ¢v joining Q and 
Q9 represents the change in the velocity of the particle during the time 
interval ¢t, since the vector v9 can be obtained by adding the vectors 
v and ¢v. We should note that ¢v represents a change in the direction 
of the velocity as well as a change in speed. The average acceleration 
of the particle over the time interval ¢t is defined as the quotient of 
¢v and ¢t. Since ¢v is a vector and ¢t a scalar, the quotient ¢v/¢t is 
a vector of the same direction as ¢v.
 The instantaneous acceleration of the particle at time t is 
obtained by choosing smaller and smaller values for ¢t and ¢v. The 
instantaneous acceleration is thus represented by the vector

 a 5 lim
¢ty0

 
¢v
¢t

 (11.17)

Noting that the velocity v is a vector function v(t) of the time t, we 
can refer to the limit of the quotient ¢v/¢t as the derivative of v 
with respect to t. We write

 a 5
dv
dt

 (11.18)

 We observe that the acceleration a is tangent to the curve 
described by the tip Q of the vector v when the latter is drawn from 
a fixed origin O9 (Fig. 11.15c) and that, in general, the acceleration 
is not tangent to the path of the particle (Fig. 11.15d). The curve 
described by the tip of v and shown in Fig. 11.15c is called the 
hodograph of the motion.fig. 11.15
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64511.10 derIVatIVes of Vector functIons
We saw in the preceding section that the velocity v of a particle in 
curvilinear motion can be represented by the derivative of the vector 
function r(t) characterizing the position of the particle. Similarly, the 
acceleration a of the particle can be represented by the derivative 
of the vector function v(t). In this section, we will give a formal 
definition of the derivative of a vector function and establish a few 
rules governing the differentiation of sums and products of vector 
functions.
 Let P(u) be a vector function of the scalar variable u. By that we 
mean that the scalar u completely defines the magnitude and direction 
of the vector P. If the vector P is drawn from a fixed origin O and the 
scalar u is allowed to vary, the tip of P will describe a given curve in 
space. Consider the vectors P corresponding, respectively, to the  values 
u and u 1 ¢u of the scalar variable (Fig. 11.16a). Let ¢P be the vector 
joining the tips of the two given vectors; we write

¢P 5 P(u 1 ¢u) 2 P(u)

Dividing through by ¢u and letting ¢u approach zero, we define the 
derivative of the vector function P(u):

 
dP
du

5 lim
¢uy0

 
¢P
¢u

5 lim
¢uy0

 
P(u 1 ¢u) 2 P(u)

¢u
 (11.19)

As ¢u approaches zero, the line of action of ¢P becomes tangent 
to the curve of Fig. 11.16a. Thus, the derivative dP/du of the vector 
function P(u) is tangent to the curve described by the tip of  P(u) 
(Fig. 11.16b).
 The standard rules for the differentiation of the sums and prod-
ucts of scalar functions can be extended to vector functions. Consider 
first the sum of two vector functions P(u) and Q(u) of the same scalar 
variable u. According to the definition given in (11.19), the derivative 
of the vector P 1 Q is

d(P 1 Q)
du

5 lim
¢uy0

 
¢(P 1 Q)
¢u

5 lim
¢uy0

 a¢P
¢u

1
¢Q
¢u
b

or since the limit of a sum is equal to the sum of the limits of its terms,

d(P 1 Q)
du

5 lim
¢uy0

 
¢P
¢u

1 lim
¢uy0

 
¢Q
¢u

 
d(P 1 Q)

du
5

dP
du

1
dQ
du

 (11.20)

 The product of a scalar function f(u) and a vector function P(u) 
of the same scalar variable u will now be considered. The derivative 
of the vector f P is

d( f P)

du
5 lim
¢uy0

 
( f 1 ¢f )(P 1 ¢P) 2 f P

¢u
5 lim
¢uy0 

a ¢f

¢u
P 1 f 

¢P
¢u
b

11.10 Derivatives of Vector Functions

fig. 11.16
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646 Kinematics of Particles or recalling the properties of the limits of sums and products,

 
d(f P)

du
5

df

du
 P 1 f 

dP
du

 (11.21)

The derivatives of the scalar product and the vector product of two 
vector functions P(u) and Q(u) can be obtained in a similar way. We 
have

  
d(P ? Q)

du
5

dP
du

? Q 1 P ?
dQ
du

 (11.22)

  
d(P 3 Q)

du
5

dP
du

3 Q 1 P 3
dQ
du

 (11.23)†

 The properties established above can be used to determine the 
rectangular components of the derivative of a vector function P(u). 
Resolving P into components along fixed rectangular axes x, y, z, we 
write
 P 5 Pxi 1 Pyj 1 Pzk (11.24)

where Px, Py, Pz are the rectangular scalar components of the vector 
P, and i, j, k the unit vectors corresponding, respectively, to the x, y, 
and z axes (Sec. 2.12). By (11.20), the derivative of P is equal to the 
sum of the derivatives of the terms in the right-hand member. Since 
each of these terms is the product of a scalar and a vector function, 
we should use (11.21). But the unit vectors i, j, k have a constant 
magnitude (equal to 1) and fixed directions. Their derivatives are 
therefore zero, and we write

 
dP
du

5
dPx

du
 i 1

dPy

du
 j 1

dPz

du
 k (11.25)

Noting that the coefficients of the unit vectors are, by definition, the 
scalar components of the vector dP/du, we conclude that the rectan-
gular scalar components of the derivative dP/du of the vector func-
tion P(u) are obtained by differentiating the corresponding scalar 
components of P.

rate of change of a Vector. When the vector P is a function 
of the time t, its derivative dP/dt represents the rate of change of P 
with respect to the frame Oxyz. Resolving P into rectangular com-
ponents, we have, by (11.25),

dP
dt

5
dPx

dt
 i 1

dPy

dt
 j 1

dPz

dt
 k

or, using dots to indicate differentiation with respect to t,

 Ṗ 5 Ṗxi 1 Ṗyj 1 Ṗzk (11.259)

†Since the vector product is not commutative (Sec. 3.4), the order of the factors in 
Eq. (11.23) must be maintained.
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647 As you will see in Sec. 15.10, the rate of change of a vector as 
observed from a moving frame of reference is, in general, different 
from its rate of change as observed from a fixed frame of reference. 
However, if the moving frame O9x9y9z9 is in translation, i.e., if its 
axes remain parallel to the corresponding axes of the fixed frame 
Oxyz (Fig. 11.17), the same unit vectors i, j, k are used in both 
frames, and at any given instant the vector P has the same compo-
nents Px, Py, Pz in both frames. It follows from (11.259) that the rate of 
change Ṗ is the same with respect to the frames Oxyz and O9x9y9z9. 
We state, therefore: The rate of change of a vector is the same with 
respect to a fixed frame and with respect to a frame in translation. 
This property will greatly simplify our work, since we will be con-
cerned mainly with frames in translation.

11.11  rectanGular comPonents of VelocIty 
and acceleratIon

When the position of a particle P is defined at any instant by its 
rectangular coordinates x, y, and z, it is convenient to resolve the 
velocity v and the acceleration a of the particle into rectangular com-
ponents (Fig. 11.18).
 Resolving the position vector r of the particle into rectangular 
components, we write

 r 5 xi 1 yj 1 zk (11.26)

where the coordinates x, y, z are functions of t. Differentiating twice, 
we obtain

  v 5
dr
dt

5 x
.
i 1 y

.
j 1 z

. k (11.27)

  a 5
dv
dt

5 ẍi 1 ÿj 1 z̈k (11.28)

where x. , y. , z.  and ẍ , ÿ , z̈  represent, respectively, the first and second 
derivatives of x, y, and z with respect to t. It follows from (11.27) 
and (11.28) that the scalar components of the velocity and accelera-
tion are
 vx 5 ẋ    vy 5 ẏ    vz 5 ż (11.29)
 ax 5 ẍ    ay 5 ÿ    az 5 z̈ (11.30)

A positive value for vx indicates that the vector component vx is 
directed to the right, and a negative value indicates that it is directed 
to the left. The sense of each of the other vector components can 
be determined in a similar way from the sign of the corresponding 
scalar component. If desired, the magnitudes and directions of the 
velocity and acceleration can be obtained from their scalar compo-
nents by the methods of Secs. 2.7 and 2.12.
 The use of rectangular components to describe the position, 
the velocity, and the acceleration of a particle is particularly effective 
when the component ax of the acceleration depends only upon t, x, 
and/or vx, and when, similarly, ay depends only upon t, y, and/or vy, 

11.11 Rectangular Components of Velocity  
and Acceleration

fig. 11.17
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648 Kinematics of Particles and az upon t, z, and/or vz. Equations (11.30) can then be integrated 
independently, and so can Eqs. (11.29). In other words, the motion 
of the particle in the x direction, its motion in the y direction, and 
its motion in the z direction can be considered separately.
 In the case of the motion of a projectile, for example, it can be 
shown (see Sec. 12.5) that the components of the acceleration are

ax 5 ẍ 5 0    ay 5 ÿ 5 2g    az 5 z̈ 5 0

if the resistance of the air is neglected. Denoting by x0, y0, and z0 
the coordinates of a gun, and by (vx)0, (vy)0, and (vz)0 the components 
of the initial velocity v0 of the projectile (a bullet), we integrate twice 
in t and obtain

 vx 5 ẋ 5 (vx)0       vy 5 ẏ 5 (vy)0 2 gt        vz 5 ż 5 (vz)0

 x 5 x0 1 (vx)0t      y 5 y0 1 (vy)0t 2 1
2gt2      z 5 z0 1 (vz)0t

If the projectile is fired in the xy plane from the origin O, we have 
x0 5 y0 5 z0 5 0 and (vz)0 5 0, and the equations of motion 
reduce  to
 vx 5 (vx)0    vy 5 (vy)0 2 gt      vz 5 0
 x 5 (vx)0t    y 5 (vy)0t 2 1

2gt2    z 5 0

These equations show that the projectile remains in the xy plane, 
that its motion in the horizontal direction is uniform, and that its 
motion in the vertical direction is uniformly accelerated. The motion 
of a projectile can thus be replaced by two independent rectilinear 
motions, which are easily visualized if we assume that the projectile 
is fired vertically with an initial velocity (vy)0 from a platform moving 
with a constant horizontal velocity (vx)0 (Fig. 11.19). The coordinate 
x of the projectile is equal at any instant to the distance traveled by 
the platform, and its coordinate y can be computed as if the projec-
tile were moving along a vertical line.
 It can be observed that the equations defining the coordinates 
x and y of a projectile at any instant are the parametric equations 
of a parabola. Thus, the trajectory of a projectile is parabolic. This 
result, however, ceases to be valid when the resistance of the air 
or the variation with altitude of the acceleration of gravity is taken 
into account.

11.12  motIon relatIVe to a frame  
In translatIon

In the preceding section, a single frame of reference was used to 
describe the motion of a particle. In most cases this frame was 
attached to the earth and was considered as fixed. Situations in 
which it is convenient to use several frames of reference simultane-
ously will now be analyzed. If one of the frames is attached to the 
earth, it will be called a fixed frame of reference, and the other 
frames will be referred to as moving frames of reference. It should 
be understood, however, that the selection of a fixed frame of refer-
ence is purely arbitrary. Any frame can be designated as “fixed”; all 
other frames not rigidly attached to this frame will then be described 
as “moving.”

fig. 11.19

y

x
O

(vy)0

(vx)0

v0

(a) Motion of a projectile

y

x

(vy)0

(vx)0 (vx)0

(b) Equivalent rectilinear motions

Photo 11.3 The motion of this snowboarder in 
the air will be a parabola assuming we can 
neglect air resistance.
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649 Consider two particles A and B moving in space (Fig. 11.20); 
the vectors rA and rB define their positions at any given instant with 
respect to the fixed frame of reference Oxyz. Consider now a sys-
tem of axes x9, y9, z9 centered at A and parallel to the x, y, z axes. 
While the origin of these axes moves, their orientation remains the 
same; the frame of reference Ax9y9z9 is in translation with respect 
to Oxyz. The vector rB/A joining A and B defines the position of B 
relative to the moving frame Ax9y9z9 (or, for short, the position of 
B relative to A).
 We note from Fig. 11.20 that the position vector rB of particle B 
is the sum of the position vector rA of particle A and of the position 
vector rB/A of B relative to A; we write

 rB 5 rA 1 rB/A (11.31)

Differentiating (11.31) with respect to t within the fixed frame of 
reference, and using dots to indicate time derivatives, we have

 ṙB 5 ṙA 1 ṙB/A (11.32)

The derivatives ṙA and ṙB represent, respectively, the velocities vA 
and vB of the particles A and B. Since Ax9y9z9 is in translation, the 
derivative ṙB/A represents the rate of change of rB/A with respect to 
the frame Ax9y9z9 as well as with respect to the fixed frame (Sec. 
11.10). This derivative, therefore, defines the velocity vB/A of B rela-
tive to the frame Ax9y9z9 (or, for short, the velocity vB/A of B relative 
to A). We write

 vB 5 vA 1 vB/A (11.33)

Differentiating Eq. (11.33) with respect to t, and using the derivative 
v̇B/A to define the acceleration aB/A of B relative to the frame Ax9y9z9 
(or, for short, the acceleration aB/A of B relative to A), we write

 aB 5 aA 1 aB/A (11.34)

 The motion of B with respect to the fixed frame Oxyz is 
referred to as the absolute motion of B. The equations derived in 
this section show that the absolute motion of B can be obtained by 
combining the motion of A and the relative motion of B with respect 
to the moving frame attached to A. Equation (11.33), for example, 
expresses that the absolute velocity vB of particle B can be obtained 
by adding vectorially the velocity of A and the velocity of B relative 
to the frame Ax9y9z9. Equation (11.34) expresses a similar property 
in terms of the accelerations.† We should keep in mind, however, 
that the frame Ax9y9z9 is in translation; that is, while it moves with A, 
it maintains the same orientation. As you will see later (Sec. 15.14), 
different relations must be used in the case of a rotating frame of 
reference.

11.12 Motion Relative to a Frame 
in Translation

†Note that the product of the subscripts A and B/A used in the right-hand member of 
Eqs. (11.31) through (11.34) is equal to the subscript B used in their left-hand member.

fig. 11.20
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Photo 11.4 The pilot of a helicopter must take 
into account the relative motion of the ship when 
landing. 
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650

saMPle PRobleM 11.7

A projectile is fired from the edge of a 150-m cliff with an initial velocity 
of 180 m/s at an angle of 30° with the horizontal. Neglecting air resistance, 
find (a) the horizontal distance from the gun to the point where the pro-
jectile strikes the ground, (b) the greatest elevation above the ground 
reached by the projectile.

solution

The vertical and the horizontal motion will be considered separately.

Vertical motion. Uniformly Accelerated Motion. Choosing the positive 
sense of the y axis upward and placing the origin O at the gun, we have

 (vy)0 5 (180 m/s) sin 30° 5 190 m/s
 a 5 29.81 m/s2

Substituting into the equations of uniformly accelerated motion, we have

 vy 5 (vy)0 1 at      vy 5 90 2 9.81t (1)
 y 5 (vy)0t 1 1

2 at2    y 5 90t 2 4.90t2 (2)
 v2

y 5 (vy)
2
0 1 2ay    v2

y 5 8100 2 19.62y (3)

horizontal motion. Uniform Motion. Choosing the positive sense of the 
x axis to the right, we have

(vx)0 5 (180 m/s) cos 30° 5 1155.9 m/s

Substituting into the equation of uniform motion, we obtain

 x 5 (vx)0t    x 5 155.9t (4)

a. horizontal distance. When the projectile strikes the ground, we have

y 5 2150 m

Carrying this value into Eq. (2) for the vertical motion, we write

2150 5 90t 2 4.90t2 t2 2 18.37t 2 30.6 5 0 t 5 19.91 s

Carrying t 5 19.91 s into Eq. (4) for the horizontal motion, we obtain

 x 5 155.9(19.91) x 5 3100 m ◀

b. Greatest elevation. When the projectile reaches its greatest elevation, 
we have vy 5 0; carrying this value into Eq. (3) for the vertical motion, 
we write

0 5 8100 2 19.62y    y 5 413 m
Greatest elevation above ground 5 150 m 1 413 m 5 563 m ◀

x

30°

180 m/s

150 m

O

y

30°

180 m/s

–150 m

a = –9.81 m /s2

(vy)0

x
O 30°

180 m/s

(vx)0
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651

saMPle PRobleM 11.8

A projectile is fired with an initial velocity of 240 m/s at a target B located 
600 m above the gun A and at a horizontal distance of 3600 m. Neglecting 
air resistance, determine the value of the firing angle a.

solution

The horizontal and the vertical motion will be considered separately.

horizontal motion. Placing the origin of the coordinate axes at the gun, 
we have

(vx)0 5 240 cos a

Substituting into the equation of uniform horizontal motion, we obtain

x 5 (vx)0t  x 5 (240 cos a)t

The time required for the projectile to move through a horizontal distance 
of 3600 m is obtained by setting x equal to 3600 m.

 3600 5 (240 cos a)t

 t 5
3600

240 cos a
5

15
cos a

Vertical motion

(vy)0 5 240 sin a  a 5 29.81 m/s2

Substituting into the equation of uniformly accelerated vertical motion, 
we obtain

y 5 (vy)0t 1 1
2 at2    y 5 (240 sin a)t 2 4.905 t2

Projectile hits target. When x 5 3600 m, we must have y 5 600 m. 
Substituting for y and setting t equal to the value found above, we write

600 5 240 sin a  

15
cos a

24.905
15

cos a

2

Since 1/cos2 a 5 sec2 a 5 1 1 tan2 a, we have

600 5 240(15) tan a 2 4.905(152)(1 1 tan2 a)
1104 tan2 a 2 3600 tan a 1 1704 5 0

Solving this quadratic equation for tan a, we have

tan a 5 0.575  and  tan a 5 2.69
a 5 29.9°  and  a 5 69.6° ◀

The target will be hit if either of these two firing angles is used (see figure).

69.6°

29.9°A

B

(vx)0 = 240 cos a
x

O

v0 = 240 m/s
B

a

3600 m

240 m/s

600 mA

B

a

3600 m

(vy)0 = 240 sin a

a = – 9.81 m/s2

O
v0 = 240 m/s

B

a

y

600 m

bee02324_ch11.indd   651 22/11/2012   16:59

SAMPLE
 C

HAPTER



652

saMPle PRobleM 11.9

Automobile A is traveling east at the constant speed of 36 km/h. As automobile 
A crosses the intersection shown, automobile B starts from rest 35 m north of 
the intersection and moves south with a constant acceleration of 1.2 m/s2. 
Determine the position, velocity, and acceleration of B relative to A 5 s after 
A crosses the intersection.

solution

We choose x and y axes with origin at the intersection of the two streets 
and with positive senses directed respectively east and north.

motion of automobile A. First the speed is expressed in m/s:

vA 5 a36 

km
h
b a1000 m

1 km
b a 1 h

3600 s
b 5 10 m/s

Noting that the motion of A is uniform, we write, for any time t,

 aA 5 0
 vA 5 110 m/s
 xA 5 (xA)0 1 vAt 5 0 1 10t

For t 5 5 s, we have

 aA 5 0 aA 5 0
 vA 5 110 m/s vA 5 10 m/s y
 xA 5 1(10 m/s)(5 s) 5 150 m  rA 5 50 m y

motion of automobile B. We note that the motion of B is uniformly ac-
celerated and write

 aB 5 21.2 m/s2

 vB 5 (vB)0 1 at 5 0 2 1.2 t
 yB 5 (yB)0 1 (vB)0t 1 1

2 aBt2 5 35 1 0 2 1
2(1.2)t2

For t 5 5 s, we have

 aB 5 21.2 m/s2 aB 5 1.2 m/s2w
 vB 5 2(1.2 m/s2)(5 s) 5 26 m/s vB 5 6 m/sw
 yB 5 35 2 1

2(1.2 m/s2)(5 s)2 5 120 m  rB 5 20 mx

motion of B relative to A. We draw the triangle corresponding to the vec-
tor equation rB 5 rA 1 rB/A and obtain the magnitude and direction of the 
position vector of B relative to A.

rB/A 5 53.9 m    a 5 21.8°    rB/A 5 53.9 m b 21.8° ◀

Proceeding in a similar fashion, we find the velocity and acceleration of B 
relative to A.
 vB 5 vA 1 vB/A
 vB/A 5 11.66 m/s  b 5 31.0°  vB/A 5 11.66 m/s d 31.0° ◀

 aB 5 aA 1 aB/A aB/A 5 1.2 m/s2w ◀

A

B

36 km /h

1.2 m /s2
35 m

rB

rA

rB/ArB/A

vB

vA

vB/A vB/A

aB aB/A aB/A

a

b

20 m

10 m/s

6 m/s

1.2 m/s2

50 m

A

B

x

y

xA

yB

35 m
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solvinG PRobleMs
on YouR oWn

In the problems for this lesson, you will analyze the two- and three-dimensional 
motion of a particle. While the physical interpretations of the velocity and accel-

eration are the same as in the first lessons of the chapter, you should remember 
that these quantities are vectors. In addition, you should understand from your 
experience with vectors in statics that it will often be advantageous to express 
position vectors, velocities, and accelerations in terms of their rectangular scalar 
components [Eqs. (11.27) and (11.28)]. Furthermore, given two vectors A and B, 
recall that A ? B 5 0 if A and B are perpendicular to each other, while A 3 B 5 0 
if A and B are parallel.

a. analyzing the motion of a projectile. Many of the following problems deal 
with the two-dimensional motion of a projectile, where the resistance of the air 
can be neglected. In Sec. 11.11, we developed the equations which describe this 
type of motion, and we observed that the horizontal component of the velocity 
remained constant (uniform motion) while the vertical component of the accelera-
tion was constant (uniformly accelerated motion). We were able to consider sepa-
rately the horizontal and the vertical motions of the particle. Assuming that the 
projectile is fired from the origin, we can write the two equations

x 5 (vx)0t   y 5 (vy)0t 2 1
2gt2

1. If the initial velocity and firing angle are known, the value of y correspond-
ing to any given value of x (or the value of x for any value of y) can be obtained 
by solving one of the above equations for t and substituting for t into the other, 
equation [Sample Prob. 11.7].

2. If the initial velocity and the coordinates of a point of the trajectory are 
known, and you wish to determine the firing angle a, begin your solution by 
expressing the components (vx)0 and (vy)0 of the initial velocity as functions of the 
angle a. These expressions and the known values of x and y are then substituted 
into the above equations. Finally, solve the first equation for t and substitute that 
value of t into the second equation to obtain a trigonometric equation in a, which 
you can solve for that unknown [Sample Prob. 11.8].

(continued)
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B. solving translational two-dimensional relative-motion problems. You saw 
in Sec. 11.12 that the absolute motion of a particle B can be obtained by combin-
ing the motion of a particle A and the relative motion of B with respect to a frame 
attached to A which is in translation. The velocity and acceleration of B can then 
be expressed as shown in Eqs. (11.33) and (11.34), respectively.

1. to visualize the relative motion of B with respect to A, imagine that you 
are attached to particle A as you observe the motion of particle B. For example, 
to a passenger in automobile A of Sample Prob. 11.9, automobile B appears to be 
heading in a southwesterly direction (south should be obvious; and west is due 
to the fact that automobile A is moving to the east—automobile B then appears 
to travel to the west). Note that this conclusion is consistent with the direction 
of vB/A.

2. to solve a relative-motion problem, first write the vector equations (11.31), 
(11.33), and (11.34), which relate the motions of particles A and B. You may then 
use either of the following methods:
 a. construct the corresponding vector triangles and solve them for the 
desired position vector, velocity, and acceleration [Sample Prob. 11.9].
 b. express all vectors in terms of their rectangular components and solve 
the two independent sets of scalar equations obtained in that way. If you choose 
this approach, be sure to select the same positive direction for the displacement, 
velocity, and acceleration of each particle.
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655

concePt Questions

 11.cQ3 Two model rockets are fired simultaneously from a ledge and fol-
low the trajectories shown. Neglecting air resistance, which of the 
rockets will hit the ground first?

 a. A.
 b. B.
 c. They hit at the same time.
 d. The answer depends on h.

 11.cQ4 Ball A is thrown straight up. Which of the following statements 
about the ball are true at the highest point in its path?

 a. The velocity and acceleration are both zero.
 b. The velocity is zero, but the acceleration is not zero.
 c. The velocity is not zero, but the acceleration is zero.
 d. Neither the velocity nor the acceleration is zero.

 11.cQ5 Ball A is thrown straight up with an initial speed v0 and reaches a 
maximum elevation h before falling back down. When A reaches its 
maximum elevation, a second ball is thrown straight upward with 
the same initial speed v0. At what height, y, will the balls cross paths?

 a. y 5 h
 b. y . h/2
 c. y 5 h/2
 d. y , h/2
 e. y 5 0

 11.cQ6 Two cars are approaching an intersection at constant speeds as 
shown. What velocity will car B appear to have to an observer in 
car A?

 a. n b. q c. r d. p e. o

h

A

B

 fig. P11.cQ3

v0

h

y
A

 fig. P11.cQ4

(a) (b) (c) (d) (e)

vA

vB

 fig. P11.cQ6

 11.cQ7 Blocks A and B are released from rest in the positions shown. Ne-
glecting friction between all surfaces, which figure best indicates 
the direction a of the acceleration of block B?

a. b. c. d. e.
aB

aB

aB

a = q

aB

a > q

q

aB

a < q

A

B

a. b. c. d. e.
aB

aB

aB

a = q

aB

a > q

q

aB

a < q

A

B

 fig. P11.cQ7
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656 Kinematics of Particles end-of-section PRobleMs

 11.89 A ball is thrown so that the motion is defined by the equations 
x 5 5t and y 5 2 1 6t 2 4.9t2, where x and y are expressed in meters 
and t is expressed in seconds. Determine (a) the velocity at t 5 l s, 
(b) the horizontal distance the ball travels before hitting the ground.

 11.90 The motion of a vibrating particle is defined by the position 
 vector r 5 10(1 2 e23t)i 1 (4e22t sin 15t)j, where r and t are 
expressed in millimeters and seconds, respectively. Determine 
the velocity and acceleration when (a) t 5 0, (b) t 5 0.5 s.

 11.91 The motion of a vibrating particle is defined by the position vector 
r 5 (4 sin pt)i 2 (cos 2pt)j, where r is expressed in meters and 
t in seconds. (a) Determine the velocity and acceleration when 
t 5 1 s. (b) Show that the path of the particle is parabolic.

 11.92 The motion of a particle is defined by the equations x 5 100t 
2 50 sin t and y 5 100 2 50 cos t, where x and y are expressed 
in mm and t is expressed in seconds. Sketch the path of the 
 particle, and determine (a) the magnitudes of the smallest and 
largest velocities reached by the particle, (b) the corresponding 
times, positions, and directions of the velocities.

 11.93 The damped motion of a vibrating particle is defined by the posi-
tion vector r 5 x1[1 2 1/(t 1 1)]i 1 (y1e2pt/2 cos 2pt)j, where t is 
expressed in seconds. For x1 5 30 mm and y1 5 20 mm, determine 
the position, the velocity, and the acceleration of the particle when 
(a) t 5 0, (b) t 5 1.5 s.

y

x

fig. P11.89 

3

1

2

0

−1

−2

2 4 6 8 10

y

x

fig. P11.90

y

O
x

4 m 4 m

1 m

1 m

fig. P11.91

1.0

0.5

0

–0.5

–1.0

0.2 0.4 0.6

y/y1

x/x1

fig. p11.93

 11.94 The motion of a particle is defined by the position vector r 5 
A(cos t 1 t sin t)i 1 A(sin t 2 t cos t)j, where t is expressed in 
seconds. Determine the values of t for which the position vector 
and the acceleration are (a) perpendicular, (b) parallel.

y

P
r

xO P0A

fig. p11.94

bee02324_ch11.indd   656 22/11/2012   16:59

SAMPLE
 C

HAPTER



657Problems 11.95 The three-dimensional motion of a particle is defined by the posi-
tion vector r 5 (Rt cos vnt)i 1 ctj 1 (Rt sin vnt)k. Determine 
the magnitudes of the velocity and acceleration of the particle. 
(The space curve described by the particle is a conic helix.)

 *11.96 The three-dimensional motion of a particle is defined by the 
  position vector r 5 (At cos t)i 1  1 (Bt sin t)k, 

where r and t are expressed in meters and seconds, respectively. 
Show that the curve described by the particle lies on the hyper-
boloid (y/A)2 2 (x/A)2 2 (z/B)2 5 1. For A 5 3 and B 5 1, 
determine (a) the magnitudes of the velocity and acceleration 
when t 5 0, (b) the smallest nonzero value of t for which the 
position vector and the velocity are perpendicular to each other.

 11.97 An airplane used to drop water on brushfires is flying horizontally 
in a straight line at 315 km/h at an altitude of 80 m. Determine 
the distance d at which the pilot should release the water so that 
it will hit the fire at B.

A

v0

B

d

fig. P11.97

y

xz

y2

A2
x2

A2
z2

B2
– – = 1

fig. p11.96

 11.98 A helicopter is flying with a constant horizontal velocity of 180 km/h 
and is directly above point A when a loose part begins to fall. The 
part lands 6.5 s later at point B on an inclined surface. Determine 
(a) the distance d between points A and B. (b) the initial height h.

d

10°

h

A

B

180 km/h

fig. P11.98
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658 Kinematics of Particles

v0A

B

C

350 mm

200 mm
200 mm

200 mm

900 mm

1.2 m

2.1 m

fig. P11.100

 11.99 A baseball pitching machine “throws” baseballs with a horizontal 
velocity v0. Knowing that height h varies between 788 mm and 
1068 mm, determine (a) the range of values of v0, (b) the values 
of a corresponding to h 5 788 mm and h 5 1068 mm.

 11.100 While delivering newspapers, a girl throws a newspaper with a 
horizontal velocity v0. Determine the range of values of v0 if the 
newspaper is to land between points B and C.

 11.101 Water flows from a drain spout with an initial velocity of 0.75 m/s 
at an angle of 15° with the horizontal. Determine the range of values 
of the distance d for which the water will enter the trough BC.

v0A

Bh
1.5 m

12.2 m

a

fig. P11.99

A

CB

v0

15°

0.6 m

0.36 m

d

3 m

fig. p11.101
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659Problems 11.102 Milk is poured into a glass of height 140 mm and inside diameter 
66 mm. If the initial velocity of the milk is 1.2 m/s at an angle of 
40° with the horizontal, determine the range of values of the 
height h for which the milk will enter the glass.

 11.103 A volleyball player serves the ball with an initial velocity v0 of 
magnitude 13.40 m/s at an angle of 20° with the horizontal. Deter-
mine (a) if the ball will clear the top of the net, (b) how far from 
the net the ball will land.

v0

A

40°

B C

h

80 mm

fig. P11.102

A

B

v0

25°
5°

d

fig. p11.104

 11.104 A golfer hits a golf ball with an initial velocity of 50 m/s at an angle 
of 25° with the horizontal. Knowing that the fairway slopes down-
ward at an average angle of 5°, determine the distance d between 
the golfer and point B where the ball first lands.

 11.105 A homeowner uses a snowblower to clear his driveway. Knowing 
that the snow is discharged at an average angle of 40° with the 
horizontal, determine the initial velocity n0 of the snow.

v0

A
C

20°

2.1 m 2.43 m

9 m

fig. P11.103

A

B
v0

40°
1.05 m

0.6 m

4.2 m

fig. p11.105
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660 Kinematics of Particles  11.106 At halftime of a football game souvenir balls are thrown to the 
spectators with a velocity v0. Determine the range of values of v0 
if the balls are to land between points B and C.

 11.107 A basketball player shoots when she is 5 m from the backboard. 
Knowing that the ball has an initial velocity v0 at an angle of 30° 
with the horizontal, determine the value of v0 when d is equal to 
(a) 225 mm, (b) 425 mm.

A

B

C

8 m

10 m

7 m

1.5 m2 m

v0

40° 35°

fig. P11.106

12.2 m 6.4 m

0.914 m

5°

v0

h

fig. P11.108

 11.108 A tennis player serves the ball at a height h 5 2.5 m with an initial 
velocity of v0 at an angle of 58 with the horizontal. Determine the 
range of v0 for which the ball will land in the service area that 
extends to 6.4 m beyond the net.

30°
A

B v0

d
5 m

3 m

2.1 m

fig. P11.107
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661Problems 11.109 The nozzle at A discharges cooling water with an initial velocity 
v0 at an angle of 6° with the horizontal onto a grinding wheel 
350 mm in diameter. Determine the range of values of the initial 
velocity for which the water will land on the grinding wheel 
between points B and C.

v0

vB

A
B

0.6 m

0.68 m

14 m

a
q

fig. P11.111

 11.110 While holding one of its ends, a worker lobs a coil of rope over 
the lowest limb of a tree. If he throws the rope with an initial 
velocity v0 at an angle of 65° with the horizontal, determine the 
range of values of v0 for which the rope will go over only the 
lowest limb.

 11.111 The pitcher in a softball game throws a ball with an initial velocity 
v0 of 72 km/h at an angle a with the horizontal. If the height of 
the ball at point B is 0.68 m, determine (a) the angle a, (b) the 
angle u that the velocity of the ball at point B forms with the 
horizontal.

10°

6°

v0

20 mm

A B

C 30°
205 mm

200 mm

fig. p11.109 65°

v0

A

B

C

0.9 m

0.7 m

5.7 m

5 m

fig. p11.110

 11.112 A model rocket is launched from point A with an initial velocity 
v0 of 75 m/s. If the rocket’s descent parachute does not deploy and 
the rocket lands a distance d  100 m from A, determine (a) the 
angle a that v0 forms with the vertical, (b) the maximum height 
above point A reached by the rocket, (c) the duration of the flight.

d

fig. P11.112
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662 Kinematics of Particles  11.113 The initial velocity v0 of a hockey puck is 160 km/h. Determine 
(a) the largest value (less than 45°) of the angle a for which the 
puck will enter the net, (b) the corresponding time required for 
the puck to reach the net.

A

B

1.1 m

d

v0

C

a

fig. P11.114

 11.114 A worker uses high-pressure water to clean the inside of a long 
drainpipe. If the water is discharged with an initial velocity v0 of 
11.5 m/s, determine (a) the distance d to the farthest point B on 
the top of the pipe that the worker can wash from his position at 
A, (b) the corresponding angle a.

 11.115 An oscillating garden sprinkler which discharges water with an 
initial velocity v0 of 8 m/s is used to water a vegetable garden. 
Determine the distance d to the farthest point B that will be 
watered and the corresponding angle a when (a) the vegetables are 
just beginning to grow, (b) the height h of the corn is 1.8 m.

v0

A B

d

1.5 m

hv0

a

fig. p11.115

  *11.116 A mountain climber plans to jump from A to B over a crevasse. 
Determine the smallest value of the climber’s initial velocity v0 and 
the corresponding value of angle a so that he lands at B.fig. p11.116

v0

DC

0.75 m
5 m

1.2 m

B EA

a

fig. P11.113
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663Problems 11.117 The velocities of skiers A and B are as shown. Determine the 
velocity of A with respect to B.

fig. P11.120

 11.118 The three blocks shown move with constant velocities. Find the 
velocity of each block, knowing that the relative velocity of A with 
respect to C is 300 mm/s upward and that the relative velocity of 
B with respect to A is 200 mm/s downward.

 11.119 Three seconds after automobile B passes through the intersec-
tion shown, automobile A passes through the same intersection. 
Knowing that the speed of each automobile is constant, deter-
mine (a) the relative velocity of B with respect to A, (b) the 
change in position of B with respect to A during a 4-s interval, 
(c) the distance between the two automobiles 2 s after A has 
passed through the intersection.

 11.120 Shore-based radar indicates that a ferry leaves its slip with a veloc-
ity v 5 18 km/h d70°, while instruments aboard the ferry indicate 
a speed of 18.4 km/h and a heading of 30° west of south relative 
to the river. Determine the velocity of the river.

A B

D

C

fig. P11.118

70°

A

B

60 km/h60 km/h90 km/h90 km/h

N

S

fig. P11.119

A

B

25°

10°

14 m/s

10 m/s

fig. P11.117
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664 Kinematics of Particles  11.121 Airplanes A and B are flying at the same altitude and are tracking 
the eye of hurricane C. The relative velocity of C with respect to 
A is vC/A 5 350 km/h d75°, and the relative velocity of C with 
respect to B is vC/B 5 400 km/h c 40°. Determine (a) the relative 
velocity of B with respect to A, (b) the velocity of A if ground-based 
radar indicates that the hurricane is moving at a speed of 30 km/h 
due north, (c) the change in position of C with respect to B during 
a 15-min interval.

 11.122 Pin P moves at a constant speed of 150 mm/s in a counterclock-
wise sense along a circular slot which has been milled in the 
slider block A shown. Knowing that the block moves downward 
at a constant speed of 100 mm/s, determine the velocity of pin 
P when (a) u 5 308, (b) u 5 1208.

25°

15°

A

B

fig. P11.124

B

A

q = 50°

fig. P11.123

 11.123 Knowing that at the instant shown assembly A has a velocity of 
225 mm/s2 and an acceleration of 375 mm/s2 both directed downwards, 
determine (a) the velocity of block B, (b) the acceleration of block B.

 11.124 Knowing that at the instant shown block A has a velocity of 200 mm/s 
and an acceleration of 150 mm/s2 both directed down the incline, 
determine (a) the velocity of block B, (b) the acceleration of block B.

A

B

C
N

fig. p11.121

q

P

30 mm

fig. p11.122
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665Problems 11.125 A boat is moving to the right with a constant deceleration of 
0.3 m/s2 when a boy standing on the deck D throws a ball with an 
initial velocity relative to the deck which is vertical. The ball rises 
to a maximum height of 8 m above the release point and the boy 
must step forward a distance d to catch it at the same height as 
the release point. Determine (a) the distance d, (b) the relative 
velocity of the ball with respect to the deck when the ball is 
caught.

A

B
75°

20°

C

fig. P11.126

 11.126 The assembly of rod A and wedge B starts from rest and moves 
to the right with a constant acceleration of 2 mm/s2. Determine 
(a) the acceleration of wedge C, (b) the velocity of wedge C when 
t 5 10 s.

8 m

D
d

vD

aD = 0.3 m/s2

fig. P11.125

 11.127 Determine the required velocity of the belt B if the relative veloc-
ity with which the sand hits belt B is to be (a) vertical, (b) as small 
as possible.

vB

vA = 2.5 m/s

1.5 m

15°

A

B

fig. P11.127
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666 Kinematics of Particles  11.128 Conveyor belt A, which forms a 20° angle with the horizontal, 
moves at a constant speed of 1.2 m/s and is used to load an airplane. 
Knowing that a worker tosses duffel bag B with an initial velocity 
of 0.75 m/s at an angle of 30° with the horizontal, determine the 
velocity of the bag relative to the belt as it lands on the belt.

 11.129 During a rainstorm the paths of the raindrops appear to form an 
angle of 308 with the vertical and to be directed to the left when 
observed from a side window of a train moving at a speed of  
15 km/h. A short time later, after the speed of the train has 
increased to 24 km/h, the angle between the vertical and the paths 
of the drops appears to be 458. If the train were stopped, at what 
angle and with what velocity would the drops be observed to fall?

 11.130 As observed from a ship moving due east at 9 km/h, the wind 
appears to blow from the south. After the ship has changed course 
and speed, and as it is moving north at 6 km/h, the wind appears 
to blow from the southwest. Assuming that the wind velocity is 
constant during the period of observation, determine the magni-
tude and direction of the true wind velocity.

 11.131 When a small boat travels north at 5 km/h, a flag mounted on its 
stern forms an angle u 5 50° with the centerline of the boat as shown. 
A short time later, when the boat travels east at 20 km/h, angle u is 
again 50°. Determine the speed and the direction of the wind.

q

fig. P11.131

vA

(vB)0

30°

20°
A

B

450 mm

fig. P11.128
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 11.132 As part of a department store display, a model train D runs on a 
slight incline between the store’s up and down escalators. When 
the train and shoppers pass point A, the train appears to a shopper 
on the up escalator B to move downward at an angle of 22° with 
the horizontal, and to a shopper on the down escalator C to move 
upward at an angle of 23° with the horizontal and to travel to the 
left. Knowing that the speed of the escalators is 1 m/s, determine 
the speed and the direction of the train.

11.13 tanGentIal and normal comPonents
We saw in Sec. 11.9 that the velocity of a particle is a vector tangent 
to the path of the particle but that, in general, the acceleration is 
not tangent to the path. It is sometimes convenient to resolve the 
acceleration into components directed, respectively, along the tan-
gent and the normal to the path of the particle.

Plane motion of a Particle. First, let us consider a particle which 
moves along a curve contained in the plane of the figure. Let P be 
the position of the particle at a given instant. We attach at P a unit 
vector et tangent to the path of the particle and pointing in the direc-
tion of motion (Fig. 11.21a). Let e9t be the unit vector corresponding 
to the position P9 of the particle at a later instant. Drawing both vec-
tors from the same origin O9, we define the vector ¢et 5 e9t 2 et 
(Fig. 11.21b). Since et and e9t are of unit length, their tips lie on a 
circle of radius 1. Denoting by ¢u the angle formed by et and e9t, we 
find that the magnitude of ¢et is 2 sin (¢u/2). Considering now the 
vector ¢et/¢u, we note that as ¢u approaches zero, this vector 
becomes tangent to the unit circle of Fig. 11.21b, i.e., perpendicular 
to et, and that its magnitude approaches

lim
¢uy0

2 sin(¢u/2)
¢u

5 lim
¢uy0

 sin(¢u/2)
¢u/2

5 1

y

O x

P

P'

en

et

et

∆ete't

e't

(a)

(b)

∆q

O'

1

fig. 11.21

vB

vC

30°

A

B

C

D

30°

fig. p11.132
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668 Kinematics of Particles Thus, the vector obtained in the limit is a unit vector along the 
 normal to the path of the particle, in the direction toward which et 
turns. Denoting this vector by en, we write

en 5 lim
¢uy0

 
¢et

¢u

 en 5
det

du
 (11.35)

 Since the velocity v of the particle is tangent to the path, it can be 
expressed as the product of the scalar v and the unit vector et. We have

 v 5 vet (11.36)

To obtain the acceleration of the particle, (11.36) will be differenti-
ated with respect to t. Applying the rule for the differentiation of 
the product of a scalar and a vector function (Sec. 11.10), we write

 a 5
dv
dt

5
dv
dt

 et 1 v 

det

dt
 (11.37)

But

det

dt
5

det

du
 
du
ds

 
ds
dt

Recalling from (11.16) that ds/dt 5 v, from (11.35) that det/du 5 en, 
and from elementary calculus that du/ds is equal to 1/r, where r is 
the radius of curvature of the path at P (Fig. 11.22), we have

 
det

dt
5

v
r

 en (11.38)

Substituting into (11.37), we obtain

 a 5
dv
dt

 et 1
v2

r
 en (11.39)

Thus, the scalar components of the acceleration are

 at 5
dv
dt

  an 5
v2

r
 (11.40)

 The relations obtained express that the tangential component 
of the acceleration is equal to the rate of change of the speed of the 
particle, while the normal component is equal to the square of the 
speed divided by the radius of curvature of the path at P. If the speed 
of the particle increases, at is positive and the vector component at 
points in the direction of motion. If the speed of the particle 
decreases, at is negative and at points against the direction of motion. 
The vector component an, on the other hand, is always directed 
toward the center of curvature C of the path (Fig. 11.23).
 We conclude from the above that the tangential component of 
the acceleration reflects a change in the speed of the particle, while 

Photo 11.5 The passengers in a train traveling 
around a curve will experience a normal 
acceleration toward the center of curvature  
of the path.

C

P

P'
et

e't

∆q

∆s
ρ

∆ q = ∆s
ρ

O x

y

fig. 11.22

an =      en
v2

ρ

a t =      et
dv
dt

C

P

y

O x

fig. 11.23
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669its normal component reflects a change in the direction of motion 
of the particle. The acceleration of a particle will be zero only if both 
its components are zero. Thus, the acceleration of a particle moving 
with constant speed along a curve will not be zero unless the particle 
happens to pass through a point of inflection of the curve (where the 
radius of curvature is infinite) or unless the curve is a straight line.
 The fact that the normal component of the acceleration depends 
upon the radius of curvature of the path followed by the particle is 
taken into account in the design of structures or mechanisms as 
widely different as airplane wings, railroad tracks, and cams. In order 
to avoid sudden changes in the acceleration of the air particles flowing 
past a wing, wing profiles are designed without any sudden change 
in curvature. Similar care is taken in designing railroad curves, to 
avoid sudden changes in the acceleration of the cars (which would be 
hard on the equipment and unpleasant for the passengers). A straight 
section of track, for instance, is never directly followed by a circular 
section. Special transition sections are used to help pass smoothly 
from the infinite radius of curvature of the straight section to the 
finite radius of the circular track. Likewise, in the design of high-
speed cams, abrupt changes in acceleration are avoided by using tran-
sition curves which produce a continuous change in acceleration.

motion of a Particle in space. The relations (11.39) and (11.40) 
still hold in the case of a particle moving along a space curve. How-
ever, since there are an infinite number of straight lines which are 
perpendicular to the tangent at a given point P of a space curve, it is 
necessary to define more precisely the direction of the unit vector en.
 Let us consider again the unit vectors et and e9t tangent to the 
path of the particle at two neighboring points P and P9 (Fig. 11.24a) 
and the vector ¢et representing the difference between et and e9t 
(Fig. 11.24b). Let us now imagine a plane through P (Fig. 11.24a) 
parallel to the plane defined by the vectors et, e9t, and ¢et (Fig. 11.24b). 
This plane contains the tangent to the curve at P and is parallel to 
the tangent at P9. If we let P9 approach P, we obtain in the limit the 
plane which fits the curve most closely in the neighborhood of P. 
This plane is called the osculating plane at P.† It follows from this 

11.13 Tangential and Normal Components

y

O
x

et

e't

et

∆et

e't

Osculating
plane

z

y'

x'

z'

P

P'

O'

(a) (b)

∆θ

y

O
x

et

en

eb

z

P

(c)

fig. 11.24

†From the Latin osculari, to kiss. 
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670 Kinematics of Particles definition that the osculating plane contains the unit vector en, since 
this vector represents the limit of the vector ¢et/¢u. The normal 
defined by en is thus contained in the osculating plane; it is called 
the principal normal at P. The unit vector eb 5 et 3 en which com-
pletes the right-handed triad et, en, eb (Fig. 11.24c) defines the 
binormal at P. The binormal is thus perpendicular to the osculating 
plane. We conclude that the acceleration of the particle at P can be 
resolved into two components, one along the tangent, the other along 
the principal normal at P, as indicated in Eq. (11.39). Note that the 
acceleration has no component along the binormal.

11.14 radIal and transVerse comPonents
In certain problems of plane motion, the position of the particle P is 
defined by its polar coordinates r and u (Fig. 11.25a). It is then con-
venient to resolve the velocity and acceleration of the particle into 
components parallel and perpendicular, respectively, to the line OP. 
These components are called radial and transverse components.

 We attach at P two unit vectors, er and eu (Fig. 11.25b). The 
vector er is directed along OP and the vector eu is obtained by rotat-
ing er through 90° counterclockwise. The unit vector er defines the 
radial direction, i.e., the direction in which P would move if r were 
increased and u were kept constant; the unit vector eu defines the 
transverse direction, i.e., the direction in which P would move if u 
were increased and r were kept constant. A derivation similar to the 
one we used in Sec. 11.13 to determine the derivative of the unit 
vector et leads to the relations

 
der

du
5 eu   deu

du
5 2er (11.41)

where 2er denotes a unit vector of sense opposite to that of er 
(Fig. 11.25c). Using the chain rule of differentiation, we express the 
time derivatives of the unit vectors er and eu as follows:

der

dt
5

der

du
 
du
dt

5 eu 

du
dt

  deu
dt

5
deu
du

 
du
dt

5 2er 

du
dt

or, using dots to indicate differentiation with respect to t,

 ėr 5 u
.
eu   ėu 5 2u

.
er (11.42)

P
P

O O

r

θ θ

(a) (b) (c)

er

r = rer

eθ

er

eθ

e'θ

e'r
∆eθ

∆er

∆θ

O'

∆θ

fig. 11.25

Photo 11.6 The footpads on an elliptical 
trainer undergo curvilinear motion.
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671 To obtain the velocity v of the particle P, we express the posi-
tion vector r of P as the product of the scalar r and the unit vector 
er and differentiate with respect to t:

v 5
d
dt

 (rer) 5 ·rer 1 rėr

or, recalling the first of the relations (11.42),

 v 5 ·rer 1 ru
.
eu (11.43)

Differentiating again with respect to t to obtain the acceleration, 
we write

a 5
dv
dt

5 r̈er 1 ṙėr 1 ṙu̇eu 1 r üeu 1 ru̇ėu

or, substituting for ėr and ėu from (11.42) and factoring er and eu,

 a 5 (r̈ 2 ru
.
2)er 1 (rü 1 2r

.
u
.
)eu (11.44)

The scalar components of the velocity and the acceleration in the 
radial and transverse directions are, therefore,

 vr 5 ṙ  vu 5 ru̇ (11.45)

 ar 5 r̈ 2 ru̇2  au 5 rü  1 2ṙu̇ (11.46)

It is important to note that ar is not equal to the time derivative of vr 
and that au is not equal to the time derivative of vu.
 In the case of a particle moving along a circle of center O, we 
have r 5 constant and ṙ 5 r̈ 5 0, and the formulas (11.43) and 
(11.44) reduce, respectively, to

 v 5 ru̇eu  a 5 2ru̇2er 1 rüeu (11.47)

extension to the motion of a Particle in space: cylindrical 
coordinates. The position of a particle P in space is sometimes 
defined by its cylindrical coordinates R, u, and z (Fig. 11.26a). It is 
then convenient to use the unit vectors eR, eu, and k shown in Fig. 
11.26b. Resolving the position vector r of the particle P into compo-
nents along the unit vectors, we write

 r 5 ReR 1 zk (11.48)

Observing that eR and eu define, respectively, the radial and trans-
verse directions in the horizontal xy plane, and that the vector k, 
which defines the axial direction, is constant in direction as well as 
in magnitude, we easily verify that

  v 5
dr
dt

5 R
.
eR 1 Ru

.
eu 1 z

. k  (11.49)

  a 5
dv
dt

5 (R̈ 2 Ru
.
2)eR 1 (Rü 1 2R

.
u
.
)eu 1 z̈k (11.50)

11.14 Radial and Transverse Components

fig. 11.26

O y

x

θ
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672

saMPle PRobleM 11.10

A motorist is traveling on a curved section of highway of radius 750 m at 
the speed of 90 km/h. The motorist suddenly applies the brakes, causing 
the automobile to slow down at a constant rate. Knowing that after 8 s the 
speed has been reduced to 72 km/h, determine the acceleration of the 
automobile immediately after the brakes have been applied.

saMPle PRobleM 11.11

Determine the minimum radius of curvature of the trajectory described by 
the projectile considered in Sample Prob. 11.7.

solution

tangential component of acceleration. First the speeds are expressed 
in m/s.

 90 km/h 5 90 

km
h

 

1000 m
1 km

 

1 h
3600 s

5 25 m/s

 72 km/h 5 20 m/s
Since the automobile slows down at a constant rate, we have

at 5 average at 5
¢v
¢t

5
20 m/s 2 25 m/s

8 s
5 20.625 m/s2

normal component of acceleration. Immediately after the brakes have 
been applied, the speed is still 25 m/s, and we have

an 5
v2

r
5

(25 m/s)2

750 m
5 0.833 m/s2

magnitude and direction of acceleration. The magnitude and direction 
of the resultant a of the components an and at are

  tan a 5
an

at
5

0.833 m/s2

0.625 m/s2  
a 5 53.1° ◀

 a 5
an

 sin a
5

0.833m/s2

 sin 53.1° 
a 5 1.041 m/s2

 ◀

solution

Since an 5 v2/r, we have r 5 v2/an. The radius will be small when v is small 
or when an is large. The speed v is minimum at the top of the trajectory since 
vy 5 0 at that point; an is maximum at that same point, since the direction of 
the vertical coincides with the direction of the normal. Therefore, the  minimum 
radius of curvature occurs at the top of the trajectory. At this point, we have

v 5 vx 5 155.9 m/s    an 5 a 5 9.81 m/s2

    r 5
v2

an
5

(155.9 m/s)2

9.81 m/s2  r 5 2480 m ◀

a = a n

v = vx

A

at = 0.625 m/s2

an = 0.833 m/s2

a

a
Motion

A

vA = 90 km/h

750 m
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673

saMPle PRobleM 11.12

The rotation of the 0.9-m arm OA about O is defined by the relation 
u 5 0.15t2, where u is expressed in radians and t in seconds. Collar B slides 
along the arm in such a way that its distance from O is r 5 0.9 2 0.12t2, 
where r is expressed in meters and t in seconds. After the arm OA has 
rotated through 30°, determine (a) the total velocity of the collar, (b) the 
total acceleration of the collar, (c) the relative acceleration of the collar with 
respect to the arm.

solution

time t at which U 5 30°. Substituting u 5 30° 5 0.524 rad into the 
expression for u, we obtain

u 5 0.15t2    0.524 5 0.15t2    t 5 1.869 s

equations of motion. Substituting t 5 1.869 s in the expressions for r, u, 
and their first and second derivatives, we have

 r 5 0.9 2 0.12t2 5 0.481 m  u 5 0.15t2 5 0.524 rad
 ṙ 5 20.24t 5 20.449 m/s   u̇ 5 0.30t 5 0.561 rad /s
 r̈ 5 20.24 5 20.240 m/s2   ü 5 0.30 5 0.300 rad /s2

a. Velocity of B. Using Eqs. (11.45), we obtain the values of vr and vu 
when t 5 1.869 s.

 vr 5 ṙ 5 20.449 m/s
 vu 5 ru̇ 5 0.481(0.561) 5 0.270 m/s

Solving the right triangle shown, we obtain the magnitude and direction of 
the velocity,

v 5 0.524 m/s  b 5 31.0° ◀

b. acceleration of B. Using Eqs. (11.46), we obtain

 ar 5 r̈ 2 ru̇2

 5 20.240 2 0.481(0.561)2 5 20.391 m/s2

 au 5 rü 1 2ṙu̇
 5 0.481(0.300) 1 2(20.449)(0.561) 5 20.359 m/s2

a 5 0.531 m/s2  g 5 42.6° ◀

c. acceleration of B with respect to arm OA. We note that the motion 
of the collar with respect to the arm is rectilinear and defined by the coor-
dinate r. We write

aB/OA 5  r̈ 5 20.240 m/s2

aB/OA 5 0.240 m/s2 toward O. ◀

O

B
A

q

r

er

eq

A

B

B

B

B

O

q
O

O

v = vrer + vUeU

vU = (0.270 m /s)eU

vr = (–0.449 m /s)er

aU = (–0.359 m/s2)eq

a r = (–0.391 m/s2)er

aB/OA = (–0.240 m/s2)er

a = arer + aUeU

b

30°

g

r

r =
 0.481 m

a

v

q

q

q

qq

q

q
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solvinG PRobleMs 
on YouR oWn

You will be asked in the following problems to express the velocity and the 
acceleration of particles in terms of either their tangential and normal compo-

nents or their radial and transverse components. Although those components may 
not be as familiar to you as the rectangular components, you will find that they 
can simplify the solution of many problems and that certain types of motion are 
more easily described when they are used.

1. using tangential and normal components. These components are most often 
used when the particle of interest travels along a circular path or when the radius 
of curvature of the path is to be determined. Remember that the unit vector et is 
tangent to the path of the particle (and thus aligned with the velocity) while the 
unit vector en is directed along the normal to the path and always points toward 
its center of curvature. It follows that, as the particle moves, the directions of the 
two unit vectors are constantly changing.

2. expressing the acceleration in terms of its tangential and normal compo-
nents. We derived in Sec. 11.13 the following equation, applicable to both the 
two-dimensional and the three-dimensional motion of a particle:

 a 5
dv
dt

 et 1
v2

r
 en (11.39)

The following observations may help you in solving the problems of this lesson.
 a. the tangential component of the acceleration measures the rate of change 
of the speed: at 5 dv/dt. It follows that when at is constant, the equations for 
uniformly accelerated motion can be used with the acceleration equal to at. Fur-
thermore, when a particle moves at a constant speed, we have at 5 0 and the 
acceleration of the particle reduces to its normal component.
 b. the normal component of the acceleration is always directed toward the 
center of curvature of the path of the particle, and its magnitude is an 5 v2/r. 
Thus, the normal component can be easily determined if the speed of the particle 
and the radius of curvature r of the path are known. Conversely, when the speed 
and normal acceleration of the particle are known, the radius of curvature of the 
path can be obtained by solving this equation for r [Sample Prob. 11.11].
 c. In three-dimensional motion, a third unit vector is used, eb 5 et 3 en, 
which defines the direction of the binormal. Since this vector is perpendicular to 
both the velocity and the acceleration, it can be obtained by writing

eb 5
v 3 a
0v 3 a 0

bee02324_ch11.indd   674 22/11/2012   17:00

SAMPLE
 C

HAPTER



675

3. using radial and transverse components. These components are used to 
analyze the plane motion of a particle P, when the position of P is defined by its 
polar coordinates r and u. As shown in Fig. 11.25, the unit vector er, which defines 
the radial direction, is attached to P and points away from the fixed point O, while 
the unit vector eu, which defines the transverse direction, is obtained by rotating 
er counterclockwise through 90°. The velocity and the acceleration of a particle 
were expressed in terms of their radial and transverse components in Eqs. (11.43) 
and (11.44), respectively. You will note that the expressions obtained contain the 
first and second derivatives with respect to t of both coordinates r and u.

In the problems of this lesson, you will encounter the following types of problems 
involving radial and transverse components:
 a. Both r and U are known functions of t. In this case, you will compute 
the first and second derivatives of r and u and substitute the expressions obtained 
into Eqs. (11.43) and (11.44).
 b. a certain relationship exists between r and U. First, you should deter-
mine this relationship from the geometry of the given system and use it to express 
r as a function of u. Once the function r 5 f(u) is known, you can apply the chain 
rule to determine r

.  in terms of u and u̇, and r̈  in terms of u, u̇, ü :

 ṙ 5 f 9(u)u̇

 r̈ 5 f 0(u)u̇2 1 f 9(u)ü

The expressions obtained can then be substituted into Eqs. (11.43) and (11.44).
 c. the three-dimensional motion of a particle, as indicated at the end of 
Sec. 11.14, can often be effectively described in terms of the cylindrical coordi-
nates R, u, and z (Fig. 11.26). The unit vectors then should consist of eR, eu, and k. 
The corresponding components of the velocity and the acceleration are given  
in Eqs. (11.49) and (11.50). Please note that the radial distance R is always measured 
in a plane parallel to the xy plane, and be careful not to confuse the position vec-
tor r with its radial component ReR.
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concePt Questions

 11.cQ8 The Ferris wheel is rotating with a constant angular velocity v. 
What is the direction of the acceleration of point A?

 a. n b. h c. g d. m e. The acceleration is zero.

 11.cQ9 A race car travels around the track shown at a constant speed. At 
which point will the race car have the largest acceleration?

 a. A. b. B. c. C. d. D. e. The acceleration will be zero 
at all the points.

A
r

B

 fig. P11.133B
A

ρ

 fig. P11.134

 11.134 Determine the maximum speed that the cars of the roller-coaster 
can reach along the circular portion AB of the track if r 5 25 m 
and the normal component of their acceleration cannot exceed 3g.

A

 fig. P11.cQ8

C

B

A

D

v

 fig. P11.cQ9

 11.cQ10 A child walks across merry-go-round A with a constant speed u 
relative to A. The merry-go-round undergoes fixed-axis rotation 
about its center with a constant angular velocity v counterclock-
wise. When the child is at the center of A, as shown, what is the 
direction of his acceleration when viewed from above?

 a. n b. m c. h d. g e. The acceleration is zero.

end-of-section PRobleMs

 11.133 Determine the smallest radius that should be used for a highway 
if the normal component of the acceleration of a car traveling at 
72 km/h is not to exceed 0.8 m/s2.

ω

u

A

 fig. P11.cQ10
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677Problems 11.135 A bull-roarer is a piece of wood that produces a roaring sound when 
attached to the end of a string and whirled around in a circle. Deter-
mine the magnitude of the normal acceleration of a bull-roarer when 
it is spun in a circle of radius 0.9 m at a speed of 20 m/s.

v0

0.9 m

fig. P11.135

B

P

O

0.8 m

fig. P11.138

 11.139 A monorail train starts from rest on a curve of radius 400 m and 
accelerates at the constant rate at. If the maximum total accelera-
tion of the train must not exceed 1.5 m/s2, determine (a) the short-
est distance in which the train can reach a speed of 72 km/h, (b) the 
corresponding constant rate of acceleration at.

 11.140 A motorist starts from rest at point A on a circular entrance ramp 
when t 5 0, increases the speed of her automobile at a constant rate 
and enters the highway at point B. Knowing that her speed continues 
to  increase at the same rate until it reaches 100 km/h at point C, 
determine (a) the speed at point B, (b) the magnitude of the total 
acceleration when t 5 20 s.

B C

A

150 m

100 m

fig. p11.140

v

fig. P11.137

 11.136 To test its performance, an automobile is driven around a circular 
test track of diameter d. Determine (a) the value of d if when the 
speed of the automobile is 72 km/h, the normal component of 
the acceleration is 3.2 m/s2, (b) the speed of the automobile if 
d 5 180 m and the normal component of the acceleration is mea-
sured to be 0.6g.

 11.137 An outdoor track is 125 m in diameter. A runner increases her 
speed at a constant rate from 4 m/s to 7 m/s over a distance of 
30 m. Determine the total acceleration of the runner 2 s after she 
begins to increase her speed.

 11.138 A robot arm moves so that P travels in a circle about point B, which 
is not moving. Knowing that P starts from rest, and its speed 
increases at a constant rate of 10 mm/s2, determine (a) the magni-
tude of the acceleration when t 5 4 s, (b) the time for the magni-
tude of the acceleration to be 80 mm/s2.
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678 Kinematics of Particles  11.141 Race car A is traveling on a straight portion of the track while race 
car B is traveling on a circular portion of the track. At the instant 
shown, the speed of A is increasing at the rate of 10 m/s2, and the 
speed of B is decreasing at the rate of 6 m/s2. For the position 
shown, determine (a) the velocity of B relative to A, (b) the accelera-
tion of B relative to A.

 11.142 At a given instant in an airplane race, airplane A is flying horizon-
tally in a straight line, and its speed is being increased at the rate of 
8 m/s2. Airplane B is flying at the same altitude as airplane A and, 
as it rounds a pylon, is following a circular path of 300-m radius. 
Knowing that at the given instant the speed of B is being decreased 
at the rate of 3 m/s2, determine, for the positions shown, (a) the 
velocity of B relative to A, (b) the acceleration of B relative to A.

15°

A

vA

fig. P11.144

A

vA

25°

fig. P11.145

A 40°

vA

fig. P11.143

A

30°

400 m

B

300 m

450  km/h

540 km/h

fig. p11.142

50°

A

B

200 km/h
300 m

240 km/h

fig. P11.141

 11.143 From a photograph of a homeowner using a snowblower, it is deter-
mined that the radius of curvature of the trajectory of the snow 
was 8.5 m as the snow left the discharge chute at A. Determine 
(a) the discharge velocity vA of the snow, (b) the radius of curvature 
of the trajectory at its maximum height.

 11.144 A basketball is bounced on the ground at point A and rebounds 
with a velocity vA of magnitude 2 m/s as shown. Determine the 
radius of curvature of the trajectory described by the ball (a) at 
point A, (b) at the highest point of the trajectory.

 11.145 A golfer hits a golf ball from point A with an initial velocity of 
50 m/s at an angle of 25° with the horizontal. Determine the radius 
of curvature of the trajectory described by the ball (a) at point A, 
(b) at the highest point of the trajectory.
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679Problems 11.146 Three children are throwing snowballs at each other. Child A 
throws a snowball with a horizontal velocity v0. If the snowball just 
passes over the head of child B and hits child C, determine the 
radius of curvature of the trajectory described by the snowball 
(a) at point B, (b) at point C.

vA

50° A

fig. P11.147

25°A

vA

fig. P11.149

A

B

C

1 m

2 m

7 m d

v0

fig. P11.146

 11.147 Coal is discharged from the tailgate A of a dump truck with an 
initial velocity vA 5 2 m/s d 50°. Determine the radius of  curvature 
of the trajectory described by the coal (a) at point A, (b) at the point 
of the trajectory 1 m below point A.

 11.148 From measurements of a photograph, it has been found that as the 
stream of water shown left the nozzle at A, it had a radius of cur-
vature of 25 m. Determine (a) the initial velocity vA of the stream, 
(b) the radius of curvature of the stream as it reaches its maximum 
height at B.

A

B

4

3

vA

fig. p11.148

 11.149 A child throws a ball from point A with an initial velocity vA of 
20 m/s at an angle of 25° with the horizontal. Determine the 
velocity of the ball at the points of the trajectory described by the 
ball where the radius of curvature is equal to three-quarters of 
its value at A.
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680 Kinematics of Particles  11.150 A projectile is fired from point A with an initial velocity v0. 
(a) Show that the radius of curvature of the trajectory of the pro-
jectile reaches its minimum value at the highest point B of the 
trajectory. (b) Denoting by u the angle formed by the trajectory 
and the horizontal at a given point C, show that the radius of 
curvature of the trajectory at C is r 5 rmin/cos3u.

A

B

C qminr

r

v0

x

a

fig. p11.150

  *11.151 Determine the radius of curvature of the path described by the 
particle of Prob. 11.95 when t 5 0.

  *11.152 Determine the radius of curvature of the path described by the 
particle of Prob. 11.96 when t 5 0, A 5 3, and B 5 1.

 11.153 and 11.154 A satellite will travel indefinitely in a circular orbit 
around a planet if the normal component of the acceleration of the 
satellite is equal to g(Rr)2, where g is the acceleration of gravity 
at the surface of the planet, R is the radius of the planet, and r is 
the distance from the center of the planet to the satellite. Knowing 
that the diameter of the sun is 1.39 Gm and that the acceleration 
of gravity at its surface is 274 m/s2, determine the radius of the 
orbit of the indicated planet around the sun assuming that the orbit 
is circular.

11.153 Earth: (ymean)orbit 5 107 Mm/h.
11.154 Saturn: (ymean)orbit 5 34.7 Mm/h.

 11.155 through 11.157 Determine the speed of a satellite relative to 
the indicated planet if the satellite is to travel indefinitely in a 
circular orbit 160 km above the surface of the planet. (See infor-
mation given in Probs. 11.153–11.154.)

11.155 Venus: g 5 8.53 m/s2, R 5 6161 km.
11.156 Mars: g 5 3.83 m/s2, R 5 3332 km.
11.157 Jupiter: g 5 26.0 m/s2, R 5 69 893 km.

 11.158 A satellite is traveling in a circular orbit around Mars at an altitude 
of 300 km. After the altitude of the satellite is adjusted, it is found 
that the time of one orbit has increased by 10 percent. Knowing 
that the radius of Mars is 3382 km, determine the new altitude of 
the satellite. (See information given in Probs. 11.153–11.154).
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681Problems 11.159 Knowing that the radius of the earth is 6370 km, determine the 
time of one orbit of the Hubble Space Telescope knowing that the 
telescope travels in a circular orbit 590 km above the surface of 
the earth. (See information given in Probs. 11.153–11.154.)

 11.160 Satellites A and B are traveling in the same plane in circular orbits 
around the earth at altitudes of 180 km and 300 km, respectively. 
If at t 5 0 the satellites are aligned as shown and knowing that 
the radius of the earth is R 5 6370 km, determine when the satel-
lites will next be radially aligned. (See information given in Probs. 
11.153–11.155.)

 11.161 The oscillation of rod OA about O is defined by the relation 
u 5 (2/p)(sin pt), where u and t are expressed in radians and sec-
onds, respectively. Collar B slides along the rod so that its distance 
from O is r 5 625/(t 1 4) where r and t are expressed in mm and 
seconds, respectively. When t 5 1 s, determine (a) the velocity of 
the collar, (b) the total acceleration of the  collar, (c) the accelera-
tion of the collar relative to the rod.

A

B

rB

rA

fig. p11.160

P

r
q

fig. P11.163

O

B

A

q

r

fig. P11.161 and P11.162

 11.162 The rotation of rod OA about O is defined by the relation 
u 5 p(4t2 2 8t), where u and t are expressed in radians and 
seconds, respectively. Collar B slides along the rod so that its dis-
tance from O is r 5 250 1 150 sin pt, where r and t are expressed 
in mm and seconds, respectively. When t 5 1 s, determine (a) the 
velocity of the collar, (b) the total acceleration of the collar, (c) the 
acceleration of the collar relative to the rod.

 11.163 The path of particle P is the ellipse defined by the relations 
r 5 2/(2 2 cos pt) and u 5 pt, where r is expressed in meters, 
t is in seconds, and u is in radians. Determine the velocity and the 
acceleration of the particle when (a) t 5 0, (b) t 5 0.5 s.

 11.164 The two-dimensional motion of a particle is defined by the rela-
tions r 5 2a cos u and u 5 bt2/2, where a and b are constants. 
Determine (a) the magnitudes of the velocity and acceleration at 
any instant, (b) the radius of curvature of the path. What conclu-
sion can you draw regarding the path of the particle?
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682 Kinematics of Particles  11.165 As rod OA rotates, pin P moves along the parabola BCD. Knowing 
that the equation of this parabola is r 5 2b/(1 1 cos u) and that 
u 5 kt, determine the velocity and acceleration of P when (a) u 5 0, 
(b) u 5 908.

 11.166 The pin at B is free to slide along the circular slot DE and along 
the rotating rod OC. Assuming that the rod OC rotates at a constant 
rate 

·
u, (a) show that the acceleration of pin B is of constant mag-

nitude, (b) determine the direction of the acceleration of pin B.

 11.167 To study the performance of a race car, a high-speed camera is 
positioned at point A. The camera is mounted on a mechanism 
which permits it to record the motion of the car as the car travels 
on straightaway BC. Determine (a) the speed of the car in terms 
of b, u, and 

·
u, (b) the magnitude of the acceleration in terms of 

b, u, 
·
u, and ü .

 11.168 After taking off, a helicopter climbs in a straight line at a constant 
angle b. Its flight is tracked by radar from point A. Determine the 
speed of the helicopter in terms of d, b, u, and 

·
u.

A

O

D

P

C

B

θ

r

b

fig. P11.165

r

b

B
D C

A
O

E

b

θ

fig. P11.166

B

r

A q

C

v a

b

fig. p11.167

B

A q

d

v

b

fig. p11.168
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683Problems 11.169 At the bottom of a loop in the vertical plane an airplane has a 
horizontal velocity of 150 m/s and is speeding up at a rate of  
25 m/s2. The radius of curvature of the loop is 2000 m. The plane 
is being tracked by radar at O. What are the recorded  values of ·r, 
r
$
, 

·
u and ü  for this instant?

 11.170 Pin C is attached to rod BC and slides freely in the slot of rod 
OA which rotates at the constant rate v. At the instant when 
b  608,  determine (a) r.  and 

·
u, (b) r̈ and ü . Express your answers 

in terms of d and v.

r

d

B

A

C

b d
O q

fig. P11.170

 11.171 For the race car of Prob. 11.167, it was found that it took 0.5 s for 
the car to travel from the position u 5 60° to the position u 5 35°. 
Knowing that b 5 25 m, determine the average speed of the car 
during the 0.5-s interval.

 11.172 For the helicopter of Prob. 11.169, it was found that when the 
helicopter was at B, the distance and the angle of elevation of the 
helicopter were r 5 1000 m and u 5 20°, respectively. Four sec-
onds later, the radar station sighted the helicopter at r 5 1100 m 
and u 5 23.1°. Determine the average speed and the angle of climb 
b of the helicopter during the 4-s interval.

150 m/s

600 m

800 m

q

2000 m

r

fig. P11.169

bee02324_ch11.indd   683 22/11/2012   17:00

SAMPLE
 C

HAPTER



684 Kinematics of Particles  11.173 and 11.174 A particle moves along the spiral shown; deter-
mine the magnitude of the velocity of the particle in terms of b, u, 
and 

·
u.

O
b

Hyperbolic spiral  rq  = b

fig. p11.173 and P11.175

O

Logarithmic spiral  r = ebq

fig. p11.174 and P11.176

 11.175 and 11.176 A particle moves along the spiral shown. Know-
ing that 

·
u is constant and denoting this constant by v, determine 

the magnitude of the acceleration of the particle in terms of b, u, 
and v.

 11.177 The motion of a particle on the surface of a right circular cylinder 
is defined by the relations R 5 A, u 5 2pt, and z 5 B sin 2pnt, 
where A and B are constants and n is an integer. Determine the 
magnitudes of the velocity and acceleration of the particle at any 
time t.

y

z

B

A

B

n = 10
x

fig. P11.177

h

B

A

P

O

f

q

d

r

fig. P11.178

 11.178 Show that r
.

5 hf
.

  sin u knowing that at the instant shown, step 
AB of the step exerciser is rotating counterclockwise at a constant 
rate 

·
f.

 11.179 The three-dimensional motion of a particle is defined by the 
 relations R 5 A(1 2 e2t), u 5 2pt, and z 5 B(1 2 e2t). Determine 
the magnitudes of the velocity and acceleration when (a) t 5 0, 
(b) t 5 .̀

  *11.180 For the conic helix of Prob. 11.95, determine the angle that the 
osculating plane forms with the y axis.

  *11.181 Determine the direction of the binormal of the path described by 
the particle of Prob. 11.96 when (a) t 5 0, (b) t 5 p/2 s.
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685

RevieW and suMMaRY

In the first half of the chapter, we analyzed the rectilinear motion of 
a particle, i.e., the motion of a particle along a straight line. To define 
the position P of the particle on that line, we chose a fixed origin O 
and a positive direction (Fig. 11.27). The distance x from O to P, 
with the appropriate sign, completely defines the position of the 
particle on the line and is called the position coordinate of the par-
ticle [Sec. 11.2].

The velocity v of the particle was shown to be equal to the time 
derivative of the position coordinate x,

 v 5
dx
dt

 (11.1)

and the acceleration a was obtained by differentiating v with respect 
to t,

 a 5
dv
dt

 (11.2)

or

 a 5
d2x
dt2  (11.3)

We also noted that a could be expressed as

 a 5 v
dv
dx

 (11.4)

 We observed that the velocity v and the acceleration a were 
represented by algebraic numbers which can be positive or negative. 
A positive value for v indicates that the particle moves in the positive 
direction, and a negative value that it moves in the negative direc-
tion. A positive value for a, however, may mean that the particle is 
truly accelerated (i.e., moves faster) in the positive direction, or that 
it is decelerated (i.e., moves more slowly) in the negative direction. 
A negative value for a is subject to a similar interpretation [Sample 
Prob. 11.1].

In most problems, the conditions of motion of a particle are defined 
by the type of acceleration that the particle possesses and by the 
initial conditions [Sec. 11.3]. The velocity and position of the particle 
can then be obtained by integrating two of the equations (11.1) to 
(11.4). Which of these equations should be selected depends upon 
the type of acceleration involved [Sample Probs. 11.2 and 11.3].

Position coordinate of a particle
in rectilinear motion

Velocity and acceleration
in rectilinear motion

determination of the velocity
and acceleration by integration

O P

x
x

fig. 11.27
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686 Kinematics of Particles Two types of motion are frequently encountered: the uniform recti-
linear motion [Sec. 11.4], in which the velocity v of the particle is 
constant and

 x 5 x0 1 vt (11.5)

and the uniformly accelerated rectilinear motion [Sec. 11.5], in which 
the acceleration a of the particle is constant and we have

 v 5 v0 1 at (11.6)
 x 5 x0 1 v0t 1 1

2at2 (11.7)
 v2 5 v2

0 1 2a(x 2 x0) (11.8)

When two particles A and B move along the same straight line, 
we may wish to consider the relative motion of B with respect to A 

uniform rectilinear motion

uniformly accelerated rectilinear 
motion

relative motion of two particles

x
 xA

AO B

 xB

 xB/A

fig. 11.28

[Sec. 11.6]. Denoting by xB/A the relative position coordinate of B 
with respect to A (Fig. 11.28), we had

 xB 5 xA 1 xB/A (11.9)

Differentiating Eq. (11.9) twice with respect to t, we obtained 
successively

 vB 5 vA 1 vB/A (11.10)
 aB 5 aA 1 aB/A (11.11)

where vB/A and aB/A represent, respectively, the relative velocity and 
the relative acceleration of B with respect to A.

When several blocks are connected by inextensible cords, it is possi-
ble to write a linear relation between their position coordinates. 
Similar relations can then be written between their velocities and 
between their accelerations and can be used to analyze their motion 
[Sample Prob. 11.5].

It is sometimes convenient to use a graphical solution for problems 
involving the rectilinear motion of a particle [Secs. 11.7 and 11.8]. 
The graphical solution most commonly used involves the x−t, v−t, 
and a−t curves [Sec. 11.7; Sample Prob. 11.6]. It was shown that, at 
any given time t,

v 5 slope of x – t curve
a 5 slope of v – t curve

while, over any given time interval from t1 to t2,

v2 2 v1 5 area under a – t curve
x2 2 x1 5 area under v – t curve

In the second half of the chapter, we analyzed the curvilinear motion 
of a particle, i.e., the motion of a particle along a curved path. The 
position P of the particle at a given time [Sec. 11.9] was defined by 

Blocks connected by inextensible 
cords

Graphical solutions

Position vector and velocity  
in curvilinear motion
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687Review and Summarythe position vector r joining the O of the coordinates and point P 
(Fig. 11.29). The velocity v of the particle was defined by the 
relation

 v 5
dr
dt

 (11.15)

and was found to be a vector tangent to the path of the particle and 
of magnitude v (called the speed of the particle) equal to the time 
derivative of the length s of the arc described by the particle:

 v 5
ds
dt

 (11.16)

The acceleration a of the particle was defined by the relation

 a 5
dv
dt

 (11.18)

and we noted that, in general, the acceleration is not tangent to the 
path of the particle.

Before proceeding to the consideration of the components of velocity 
and acceleration, we reviewed the formal definition of the derivative 
of a vector function and established a few rules governing the differ-
entiation of sums and products of vector functions. We then showed 
that the rate of change of a vector is the same with respect to a fixed 
frame and with respect to a frame in translation [Sec. 11.10].

Denoting by x, y, and z the rectangular coordinates of a particle P, 
we found that the rectangular components of the velocity and accel-
eration of P equal, respectively, the first and second derivatives with 
respect to t of the corresponding coordinates:

  vx 5 x
.    vy 5 y

.    vz 5 z
.  (11.29)

  ax 5 ẍ    ay 5 ÿ    az 5 z̈  (11.30)

When the component ax of the acceleration depends only upon t, x, 
and/or vx, and when similarly ay depends only upon t, y, and/or vy, 
and az upon t, z, and/or vz, Eq. (11.30) can be integrated indepen-
dently. The analysis of the given curvilinear motion can thus be 
reduced to the analysis of three independent rectilinear component 
motions [Sec. 11.11]. This approach is particularly effective in the 
study of the motion of projectiles [Sample Probs. 11.7 and 11.8].

For two particles A and B moving in space (Fig. 11.30), we consid-
ered the relative motion of B with respect to A, or more precisely, 
with respect to a moving frame attached to A and in translation 
with A [Sec. 11.12]. Denoting by rB/A the relative position vector of 
B with respect to A (Fig. 11.30), we had

 rB 5 rA 1 rBA (11.31)

Denoting by vB/A and aB/A, respectively, the relative velocity and the 
relative acceleration of B with respect to A, we also showed that

 vB 5 vA 1 vB/A (11.33)
and
 aB 5 aA 1 aB/A (11.34)

acceleration in curvilinear motion

derivative of a vector function

rectangular components of velocity 
and acceleration

component motions

relative motion of two particles
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fig. 11.29
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688 Kinematics of Particles It is sometimes convenient to resolve the velocity and acceleration of 
a particle P into components other than the rectangular x, y, and z 
components. For a particle P moving along a path contained in a 
plane, we attached to P unit vectors et tangent to the path and en 
normal to the path and directed toward the center of curvature of 
the path [Sec. 11.13]. We then expressed the velocity and acceleration 
of the particle in terms of tangential and normal components. We 
wrote

 v 5 vet (11.36)

and

 a 5
dv
dt

 et 1
v2

r
 en (11.39)

where v is the speed of the particle and r the radius of curvature of 
its path [Sample Probs. 11.10 and 11.11]. We observed that while 
the velocity v is directed along the tangent to the path, the accelera-
tion a consists of a component at directed along the tangent to the 
path and a component an directed toward the center of curvature of 
the path (Fig. 11.31).

For a particle P moving along a space curve, we defined the plane 
which most closely fits the curve in the neighborhood of P as the 
osculating plane. This plane contains the unit vectors et and en which 
define, respectively, the tangent and principal normal to the curve. 
The unit vector eb which is perpendicular to the osculating plane 
defines the binormal.

When the position of a particle P moving in a plane is defined by its 
polar coordinates r and u, it is convenient to use radial and transverse 
components directed, respectively, along the position vector r of the 
particle and in the direction obtained by rotating r through 90° counter-
clockwise [Sec. 11.14]. We attached to P unit vectors er and eu 
directed, respectively, in the radial and transverse directions (Fig. 11.32). 
We then expressed the velocity and acceleration of the particle in 
terms of radial and transverse components

 v 5 r
. er 1 r

·
ueu (11.43)

 a 5 (r$ 2 r
·
u2)er 1 (ru

$
1 2 ·r

·
u)eu (11.44)

where dots are used to indicate differentiation with respect to time. 
The scalar components of the velocity and acceleration in the radial 
and transverse directions are therefore

  vr 5 ·r    vu 5 r
·
u  (11.45)

  ar 5 r$ 2 r
·
u2    au 5 ru

$
1 2 ·r

·
u (11.46)

It is important to note that ar is not equal to the time derivative 
of vr, and that au is not equal to the time derivative of vu [Sample 
Prob. 11.12].

 The chapter ended with a discussion of the use of cylindrical 
coordinates to define the position and motion of a particle in space.

tangential and normal components

motion along a space curve

radial and transverse components

fig. 11.31
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689

RevieW PRobleMs

 11.182 The motion of a particle is defined by the relation x 5 2t3 2 15t2 1 
24t 1 4, where x and t are expressed in meters and seconds, respec-
tively. Determine (a) when the velocity is zero, (b) the position and 
the total distance traveled when the acceleration is zero.

 11.183 A particle starting from rest at x 5 1 m is accelerated so that its 
velocity doubles in magnitude between x 5 2 m and x 5 8 m. 
Knowing that the acceleration of the particle is defined by the 
relation a 5 k[x 2 (A/x)], determine the values of the constants A 
and k if the particle has a velocity of 29 m/s when x 5 16 m.

 11.184 A particle moves in a straight line with the acceleration shown in 
the figure. Knowing that the particle starts from the origin with 
v0  2 m/s, (a) construct the v – t and x – t curves for 0  t  18 s, 
(b) determine the position and the velocity of the particle and the 
total distance traveled when t  18 s.

 11.185 The velocities of commuter trains A and B are as shown. Knowing 
that the speed of each train is constant and that B reaches the 
crossing 10 min after A passed through the same crossing, deter-
mine (a) the relative velocity of B with respect to A, (b) the dis-
tance between the fronts of the engines 3 min after A passed 
through the crossing.

66 km/h

48 km/h 25°B

A

 fig. P11.185

6

2

12
8

t (s)

a (m /s2)

0.75–

fig. p11.184
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690 Kinematics of Particles  11.186 Slider block B starts from rest and moves to the right with a con-
stant acceleration of 300 mm/s2. Determine (a) the relative accel-
eration of portion C of the cable with respect to slider block A, (b) 
the velocity of portion C of the cable after 2 s.

 11.187 Collar A starts from rest at t 5 0 and moves downward with a 
constant acceleration of 175 mm/s2. Collar B moves upward with 
a constant acceleration, and its initial velocity is 200 mm/s. Know-
ing that collar B moves through 500 mm between t 5 0 and t 5 
2 s, determine (a) the accelerations of collar B and block C, (b) 
the time at which the velocity of block C is zero, (c) the distance 
through which block C will have moved at that time.

 11.188 A golfer hits a ball with an initial velocity of magnitude v0 at an 
angle a with the horizontal. Knowing that the ball must clear the 
tops of two trees and land as close as possible to the flag, deter-
mine v0 and the distance d when the golfer uses (a) a six-iron with 
a 5 318, (b) a five-iron with a 5 278.

A
C

B

fig. p11.186

C

A

B

fig. P11.187

12 m 14 m

30 m 70 m
10 m

d

a

v0

fig. P11.188

 11.189 As the truck shown begins to back up with a constant acceleration 
of 1.2 m/s2, the outer section B of its boom starts to retract with 
a constant acceleration of 0.48 m/s2 relative to the truck. Deter-
mine (a) the acceleration of section B, (b) the velocity of section B 
when t 5 2 s.

 11.190 A motorist traveling along a straight portion of a highway is decreas-
ing the speed of his automobile at a constant rate before exiting 
from the highway onto a circular exit ramp with a radius of 170 m. 
He continues to decelerate at the same constant rate so that 10 s 
after entering the ramp, his speed has decreased to 30 km/h, a speed 
which he then maintains. Knowing that at this constant speed the 
total acceleration of the automobile is equal to one-quarter of its 
value prior to entering the ramp, determine the maximum value 
of the total acceleration of the automobile.

A

B

50°

fig. P11.189

170 m

fig. P11.190
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691Review Problems 11.191 Sand is discharged at A from a conveyor belt and falls onto the top 
of a stockpile at B. Knowing that the conveyor belt forms an angle 
a 5 258 with the horizontal, determine (a) the speed v0 of the 
belt, (b) the radius of curvature of the trajectory described by the 
sand at point B.

 11.192 The end point B of a boom is originally 5 m from fixed point A 
when the driver starts to retract the boom with a constant radial 
acceleration of r̈ 5 21.0 m/s2 and lower it with a constant angular 
acceleration u

$
5 20.5 rad/s2. At t 5 2 s, determine (a) the velocity 

of point B, (b) the acceleration of point B, (c) the radius of curva-
ture of the path.

 11.193 A telemetry system is used to quantify kinematic values of a ski 
jumper immediately before she leaves the ramp. According to  
the system r 5 150 m/s, r

.
5 2105 ft/s,31.5 m/s r̈ 5 210 ft/s2,3 m/s2, u 5 258, 

u
.

5 0.07 rad/s, u
$

5 0.06 rad/s2. Determine (a) the velocity of the 
skier immediately before she leaves the jump, (b) the acceleration 
of the skier at this instant, (c) the distance of the jump d neglecting 
lift and air resistance.

v0

a

A

B
5.4 m

9 m

fig. P11.191

A

B

60°

fig. p11.192

3 m

30°

q
d

r

fig. p11.193
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692

coMPuteR PRobleMs

 11.c1 The mechanism shown is known as a Whitworth quick-return 
 mechanism. The input rod AP rotates at a constant rate f, and the pin P 
is free to slide in the slot of the output rod BD. Plot u versus f and u�
versus f for one revolution of rod AP. Assume f? 5 1 red/s, l 5 100 mm, 
and (a) b 5 62.5 mm, (b) b 5 75 mm, (c) b 5 87.5 mm.

 11.c2 A ball is dropped with a velocity v0 at an angle a with the vertical 
onto the top step of a flight of stairs consisting of 8 steps. The ball rebounds 
and bounces down the steps as shown. Each time the ball bounces, at points 
A, B, C, . . . , the horizontal component of its velocity remains constant and 
the magnitude of the vertical component of its velocity is reduced by 
k percent. Use computational software to determine (a) if the ball bounces 
down the steps without skipping any step, (b) if the ball bounces down the 
steps without bouncing twice on the same step, (c) the first step on which 
the ball bounces twice. Use values of v0 from 1.8 m/s to 3.0 m/s in 0.6-m/s 
increments, values of a from 18° to 26° in 4° increments, and values of k 
equal to 40 and 50.

D

B

A

q

P

b
lf

fig. P11.c1

A

B

C

a

0.15 m

v0

0.15 m

0.15 m

0.15 m

0.3 m 0.3 m 0.3 m

fig. P11.c2

 11.c3 In an amusement park ride, “airplane” A is attached to the 10-m-long 
rigid member OB. To operate the ride, the airplane and OB are rotated so 
that 70° # u0 # 130° and then are allowed to swing freely about O. The 
airplane is subjected to the acceleration of gravity and to a deceleration due 
to air resistance, 2kv2, which acts in a direction opposite to that of its veloc-
ity v. Neglecting the mass and the aerodynamic drag of OB and the friction 
in the bearing at O, use computational software or write a computer pro-
gram to determine the speed of the airplane for given values of u0 and u 
and the value of u at which the airplane first comes to rest after being 
released. Use values of u0 from 70° to 130° in 30° increments, and deter-
mine the maximum speed of the airplane and the first two values of u at 
which v 5 0. For each value of u0, let (a) k 5 0, (b) k 5 2 3 1024 m21, 
(c) k 5 4 3 1022 m21. (Hint: Express the tangential acceleration of the 
airplane in terms of g, k, and u. Recall that vu 5 r

·
u.)

q
O

A

B

fig. P11.c3
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693Computer Problems 11.c4 A motorist traveling on a highway at a speed of 90 km/h exits onto 
an ice-covered exit ramp. Wishing to stop, he applies his brakes until his 
automobile comes to rest. Knowing that the magnitude of the total accelera-
tion of the automobile cannot exceed 3 m/s2, use computational software to 
determine the minimum time required for the automobile to come to rest 
and the distance it travels on the exit ramp during that time if the exit ramp 
(a) is straight, (b) has a constant radius of curvature of 240 m. Solve each 
part assuming that the driver applies his brakes so that dv/dt, during each 
time interval, (1) remains constant, (2) varies linearly.

 11.c5 An oscillating garden sprinkler discharges water with an initial 
velocity v0 of 10 m/s. (a) Knowing that the sides but not the top of arbor 
BCDE are open, use computational software to calculate the distance d to 
the point F that will be watered for values of a from 20° to 80°. (b) Deter-
mine the maximum value of d and the corresponding value of a.

A B

d

C

v0

2.2 m 3.2 m

1.8 m

D

E F
a

fig. P11.c5
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