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I N T R O D U C T I O N  A N D 
B A S I C  C O N C E P T S

In this introductory chapter, we present the basic concepts commonly 

used in the analysis of fluid flow. We start this chapter with a discussion 

of the phases of matter and the numerous ways of classification of fluid 

flow, such as viscous versus inviscid regions of flow, internal versus exter-
nal flow, compressible versus incompressible flow, laminar versus turbulent 
flow, natural versus forced flow, and steady versus unsteady flow. We also 

discuss the no-slip condition at solid–fluid interfaces and present a brief his-

tory of the development of fluid mechanics. 

 After presenting the concepts of system and control volume, we review 

the unit systems that will be used. We then discuss how mathematical mod-

els for engineering problems are prepared and how to interpret the results 

obtained from the analysis of such models. This is followed by a presenta-

tion of an intuitive systematic problem-solving technique that can be used as 

a model in solving engineering problems. Finally, we discuss accuracy, pre-

cision, and significant digits in engineering measurements and calculations. 
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OBJECTIVES

When you finish reading this chapter, you 
should be able to

■ Understand the basic concepts 
of fluid mechanics 

■ Recognize the various types of 
fluid flow problems encountered 
in practice

■ Model engineering problems 
and solve them in a systematic 
manner

■ Have a working knowledge 
of accuracy, precision, and 
significant digits, and recognize 
the importance of dimensional 
homogeneity in engineering 
calculations

Schlieren image showing the thermal plume produced 

by Professor Cimbala as he welcomes you to the 

fascinating world of fluid mechanics.

Michael J. Hargather and Brent A. Craven, Penn State Gas 
Dynamics Lab. Used by Permission.

     CHAPTER
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INTRODUCTION AND BASIC CONCEPTS

1–1 ■ INTRODUCTION
Mechanics is the oldest physical science that deals with both stationary and 

moving bodies under the influence of forces. The branch of mechanics that 

deals with bodies at rest is called statics, while the branch that deals with 

bodies in motion is called dynamics. The subcategory fluid mechanics is 

defined as the science that deals with the behavior of fluids at rest (fluid 
statics) or in motion (fluid dynamics), and the interaction of fluids with 

solids or other fluids at the boundaries. Fluid mechanics is also referred to 

as fluid dynamics by considering fluids at rest as a special case of motion 

with zero velocity (Fig. 1–1).

 Fluid mechanics itself is also divided into several categories. The study of 

the motion of fluids that can be approximated as incompressible (such as liq-

uids, especially water, and gases at low speeds) is usually referred to as hydro-
dynamics. A subcategory of hydrodynamics is hydraulics, which deals with 

liquid flows in pipes and open channels. Gas dynamics deals with the flow 

of fluids that undergo significant density changes, such as the flow of gases 

through nozzles at high speeds. The category aerodynamics deals with the 

flow of gases (especially air) over bodies such as aircraft, rockets, and automo-

biles at high or low speeds. Some other specialized categories such as meteo-
rology, oceanography, and hydrology deal with naturally occurring flows.

What Is a Fluid?
You will recall from physics that a substance exists in three primary phases: 

solid, liquid, and gas. (At very high temperatures, it also exists as plasma.) 

A substance in the liquid or gas phase is referred to as a fluid. Distinction 

between a solid and a fluid is made on the basis of the substance’s abil-

ity to resist an applied shear (or tangential) stress that tends to change its 

shape. A solid can resist an applied shear stress by deforming, whereas a 
fluid deforms continuously under the influence of a shear stress, no matter 

how small. In solids, stress is proportional to strain, but in fluids, stress is 

proportional to strain rate. When a constant shear force is applied, a solid 

eventually stops deforming at some fixed strain angle, whereas a fluid never 

stops deforming and approaches a constant rate of strain.

 Consider a rectangular rubber block tightly placed between two plates. As 

the upper plate is pulled with a force F while the lower plate is held fixed, 

the rubber block deforms, as shown in Fig. 1–2. The angle of deformation 

� (called the shear strain or angular displacement) increases in proportion 

to the applied force F. Assuming there is no slip between the rubber and the 

plates, the upper surface of the rubber is displaced by an amount equal to 

the displacement of the upper plate while the lower surface remains station-

ary. In equilibrium, the net force acting on the upper plate in the horizontal 

direction must be zero, and thus a force equal and opposite to F must be 

acting on the plate. This opposing force that develops at the plate–rubber 

interface due to friction is expressed as F � �A, where � is the shear stress 

and A is the contact area between the upper plate and the rubber. When the 

force is removed, the rubber returns to its original position. This phenome-

non would also be observed with other solids such as a steel block provided 

that the applied force does not exceed the elastic range. If this experiment 

were repeated with a fluid (with two large parallel plates placed in a large 

body of water, for example), the fluid layer in contact with the upper plate 

Contact area,
A

Shear stress
� = F/A

Shear
strain, �

Force, F

�
Deformed 

rubber

FIGURE 1–2
Deformation of a rubber block placed 

between two parallel plates under the 

influence of a shear force. The shear 

stress shown is that on the rubber—an 

equal but opposite shear stress acts on 

the upper plate.

FIGURE 1–1
Fluid mechanics deals with liquids and 

gases in motion or at rest. 

© D. Falconer/PhotoLink /Getty RF

001-036_cengel_ch01.indd   2001-036_cengel_ch01.indd   2 7/3/13   1:54 PM7/3/13   1:54 PM

SAMPLE
 C

HAPTER

SAMPLE
 C

HAPTER



3
CHAPTER 1

would move with the plate continuously at the velocity of the plate no mat-

ter how small the force F. The fluid velocity would decrease with depth 

because of friction between fluid layers, reaching zero at the lower plate. 

 You will recall from statics that stress is defined as force per unit area 

and is determined by dividing the force by the area upon which it acts. The 

normal component of a force acting on a surface per unit area is called the 

normal stress, and the tangential component of a force acting on a surface 

per unit area is called shear stress (Fig. 1–3). In a fluid at rest, the normal 

stress is called pressure. A fluid at rest is at a state of zero shear stress. 

When the walls are removed or a liquid container is tilted, a shear develops 

as the liquid moves to re-establish a horizontal free surface. 

 In a liquid, groups of molecules can move relative to each other, but the 

volume remains relatively constant because of the strong cohesive forces 

between the molecules. As a result, a liquid takes the shape of the container it 

is in, and it forms a free surface in a larger container in a gravitational field. A 

gas, on the other hand, expands until it encounters the walls of the container 

and fills the entire available space. This is because the gas molecules are 

widely spaced, and the cohesive forces between them are very small. Unlike 

liquids, a gas in an open container cannot form a free surface (Fig. 1–4).

 Although solids and fluids are easily distinguished in most cases, this dis-

tinction is not so clear in some borderline cases. For example, asphalt appears 

and behaves as a solid since it resists shear stress for short periods of time. 

When these forces are exerted over extended periods of time, however, the 

asphalt deforms slowly, behaving as a fluid. Some plastics, lead, and slurry 

mixtures exhibit similar behavior. Such borderline cases are beyond the scope 

of this text. The fluids we deal with in this text will be clearly recognizable as 

fluids.

 Intermolecular bonds are strongest in solids and weakest in gases. One 

reason is that molecules in solids are closely packed together, whereas in 

gases they are separated by relatively large distances (Fig. 1–5). The mole-

cules in a solid are arranged in a pattern that is repeated throughout. Because 

of the small distances between molecules in a solid, the attractive forces of 

molecules on each other are large and keep the molecules at fixed positions. 

The molecular spacing in the liquid phase is not much different from that of 

Free surface

Liquid Gas

FIGURE 1–4
Unlike a liquid, a gas does not form a 

free surface, and it expands to fill the 

entire available space.

(a) (b) (c)

FIGURE 1–5
The arrangement of atoms in different phases: (a) molecules are at relatively fixed positions

in a solid, (b) groups of molecules move about each other in the liquid phase, and 

(c) individual molecules move about at random in the gas phase.

FIGURE 1–3
The normal stress and shear stress at 

the surface of a fluid element. For 

fluids at rest, the shear stress is zero 

and pressure is the only normal stress.

Fn

Ft

F

Normal
to surface

Tangent
to surface

Force acting
on area dA
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Shear stress: t 5
Ft

dA

001-036_cengel_ch01.indd   3001-036_cengel_ch01.indd   3 7/3/13   1:54 PM7/3/13   1:54 PM

SAMPLE
 C

HAPTER

SAMPLE
 C

HAPTER



4
INTRODUCTION AND BASIC CONCEPTS

the solid phase, except the molecules are no longer at fixed positions relative 

to each other and they can rotate and translate freely. In a liquid, the inter-

molecular forces are weaker relative to solids, but still strong compared with 

gases. The distances between molecules generally increase slightly as a solid 

turns liquid, with water being a notable exception.

 In the gas phase, the molecules are far apart from each other, and molecu-

lar ordering is nonexistent. Gas molecules move about at random, continu-

ally colliding with each other and the walls of the container in which they 

are confined. Particularly at low densities, the intermolecular forces are very 

small, and collisions are the only mode of interaction between the mole-

cules. Molecules in the gas phase are at a considerably higher energy level 

than they are in the liquid or solid phase. Therefore, the gas must release a 

large amount of its energy before it can condense or freeze. 

 Gas and vapor are often used as synonymous words. The vapor phase of 

a substance is customarily called a gas when it is above the critical tempera-

ture. Vapor usually implies that the current phase is not far from a state of 

condensation.

 Any practical fluid system consists of a large number of molecules, and the 

properties of the system naturally depend on the behavior of these molecules. 

For example, the pressure of a gas in a container is the result of momentum 

transfer between the molecules and the walls of the container. However, one 

does not need to know the behavior of the gas molecules to determine the pres-

sure in the container. It is sufficient to attach a pressure gage to the container 

(Fig. 1–6). This macroscopic or classical approach does not require a knowl-

edge of the behavior of individual molecules and provides a direct and easy 

way to analyze engineering problems. The more elaborate microscopic or sta-
tistical approach, based on the average behavior of large groups of individual 

molecules, is rather involved and is used in this text only in a supporting role.

Application Areas of Fluid Mechanics
It is important to develop a good understanding of the basic principles of 

fluid mechanics, since fluid mechanics is widely used both in everyday 

activities and in the design of modern engineering systems from vacuum 

cleaners to supersonic aircraft. For example, fluid mechanics plays a vital 

role in the human body. The heart is constantly pumping blood to all parts 

of the human body through the arteries and veins, and the lungs are the sites 

of airflow in alternating directions. All artificial hearts, breathing machines, 

and dialysis systems are designed using fluid dynamics (Fig. 1–7). 

 An ordinary house is, in some respects, an exhibition hall filled with appli-

cations of fluid mechanics. The piping systems for water, natural gas, and 

sewage for an individual house and the entire city are designed primarily on 

the basis of fluid mechanics. The same is also true for the piping and ducting 

network of heating and air-conditioning systems. A refrigerator involves tubes 

through which the refrigerant flows, a compressor that pressurizes the refrig-

erant, and two heat exchangers where the refrigerant absorbs and rejects heat. 

Fluid mechanics plays a major role in the design of all these components. 

Even the operation of ordinary faucets is based on fluid mechanics.

 We can also see numerous applications of fluid mechanics in an automo-

bile. All components associated with the transportation of the fuel from the 

fuel tank to the cylinders—the fuel line, fuel pump, and fuel injectors or 

Pressure
gage

FIGURE 1–6
On a microscopic scale, pressure 

is determined by the interaction of 

individual gas molecules. However, 

we can measure the pressure on a 

macroscopic scale with a pressure 

gage.

FIGURE 1–7
Fluid dynamics is used extensively in 

the design of artificial hearts. Shown 

here is the Penn State Electric Total 

Artificial Heart.

Photo courtesy of the Biomedical Photography 
Lab, Penn State Biomedical Engineering Institute. 
Used by Permission.
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5
CHAPTER 1

carburetors—as well as the mixing of the fuel and the air in the cylinders 

and the purging of combustion gases in exhaust pipes—are analyzed using 

fluid mechanics. Fluid mechanics is also used in the design of the heating 

and air-conditioning system, the hydraulic brakes, the power steering, the 

automatic transmission, the lubrication systems, the cooling system of the 

engine block including the radiator and the water pump, and even the tires. 

The sleek streamlined shape of recent model cars is the result of efforts to 

minimize drag by using extensive analysis of flow over surfaces.

 On a broader scale, fluid mechanics plays a major part in the design and 

analysis of aircraft, boats, submarines, rockets, jet engines, wind turbines, 

biomedical devices, cooling systems for electronic components, and trans-

portation systems for moving water, crude oil, and natural gas. It is also 

considered in the design of buildings, bridges, and even billboards to make 

sure that the structures can withstand wind loading. Numerous natural phe-

nomena such as the rain cycle, weather patterns, the rise of ground water to 

the tops of trees, winds, ocean waves, and currents in large water bodies are 

also governed by the principles of fluid mechanics (Fig. 1–8). 

FIGURE 1–8
Some application areas of fluid mechanics.

Cars

© Mark Evans/Getty RF
Power plants

© Malcom Fife/Getty RF
Human body

© Ryan McVay/Getty RF

Piping and plumbing systems

Photo by John M. Cimbala.
Wind turbines

© F. Schussler/PhotoLink/Getty RF
Industrial applications

Digital Vision/PunchStock

Aircraft and spacecraft

© Photo Link/Getty RF
Natural flows and weather

© Glen Allison/Betty RF
Boats

© Doug Menuez/Getty RF
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INTRODUCTION AND BASIC CONCEPTS

1–2 ■ A BRIEF HISTORY OF FLUID MECHANICS1

One of the first engineering problems humankind faced as cities were devel-

oped was the supply of water for domestic use and irrigation of crops. Our 

urban lifestyles can be retained only with abundant water, and it is clear 

from archeology that every successful civilization of prehistory invested in 

the construction and maintenance of water systems. The Roman aqueducts, 

some of which are still in use, are the best known examples. However, per-

haps the most impressive engineering from a technical viewpoint was done 

at the Hellenistic city of Pergamon in present-day Turkey. There, from 283 to 

133 bc, they built a series of pressurized lead and clay pipelines (Fig. 1–9), 

up to 45 km long that operated at pressures exceeding 1.7 MPa (180 m of 

head). Unfortunately, the names of almost all these early builders are lost to 

history.

 The earliest recognized contribution to fluid mechanics theory was made 

by the Greek mathematician Archimedes (285–212 bc). He formulated and 

applied the buoyancy principle in history’s first nondestructive test to deter-

mine the gold content of the crown of King Hiero I. The Romans built great 

aqueducts and educated many conquered people on the benefits of clean 

water, but overall had a poor understanding of fluids theory. (Perhaps they 

shouldn’t have killed Archimedes when they sacked Syracuse.)

 During the Middle Ages, the application of fluid machinery slowly but 

steadily expanded. Elegant piston pumps were developed for dewatering 

mines, and the watermill and windmill were perfected to grind grain, forge 

metal, and for other tasks. For the first time in recorded human history, sig-

nificant work was being done without the power of a muscle supplied by a 

person or animal, and these inventions are generally credited with enabling 

the later industrial revolution. Again the creators of most of the progress 

are unknown, but the devices themselves were well documented by several 

technical writers such as Georgius Agricola (Fig. 1–10).

 The Renaissance brought continued development of fluid systems and 

machines, but more importantly, the scientific method was perfected and 

adopted throughout Europe. Simon Stevin (1548–1617), Galileo Galilei 

(1564–1642), Edme Mariotte (1620–1684), and Evangelista Torricelli 

(1608–1647) were among the first to apply the method to fluids as they 

investigated hydrostatic pressure distributions and vacuums. That work was 

integrated and refined by the brilliant mathematician and philosopher, Blaise 

Pascal (1623–1662). The Italian monk, Benedetto Castelli (1577–1644) was 

the first person to publish a statement of the continuity principle for flu-

ids. Besides formulating his equations of motion for solids, Sir Isaac New-

ton (1643–1727) applied his laws to fluids and explored fluid inertia and 

resistance, free jets, and viscosity. That effort was built upon by  Daniel 

Bernoulli (1700–1782), a Swiss, and his associate Leonard Euler (1707–

1783). Together, their work defined the energy and momentum equations. 

Bernoulli’s 1738 classic treatise Hydrodynamica may be considered the first 

fluid mechanics text. Finally, Jean d’Alembert (1717–1789) developed the 

idea of velocity and acceleration components, a differential expression of 

1 This section is contributed by Professor Glenn Brown of Oklahoma State University.

FIGURE 1–9
Segment of Pergamon pipeline. 

Each clay pipe section was 

13 to 18 cm in diameter. 

Courtesy Gunther Garbrecht.  
Used by permission.

FIGURE 1–10
A mine hoist powered 

by a reversible water wheel. 

G. Agricola, De Re Metalica, Basel, 1556.
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7
CHAPTER 1

continuity, and his “paradox” of zero resistance to steady uniform motion 

over a body.

 The development of fluid mechanics theory through the end of the eigh-

teenth century had little impact on engineering since fluid properties and 

parameters were poorly quantified, and most theories were abstractions that 

could not be quantified for design purposes. That was to change with the 

development of the French school of engineering led by Riche de Prony 

(1755–1839). Prony (still known for his brake to measure shaft power) and 

his associates in Paris at the École Polytechnique and the École des Ponts 

et Chaussées were the first to integrate calculus and scientific theory into 

the engineering curriculum, which became the model for the rest of the 

world. (So now you know whom to blame for your painful freshman year.) 

Antonie Chezy (1718–1798), Louis Navier (1785–1836), Gaspard Coriolis 

(1792–1843), Henry Darcy (1803–1858), and many other contributors to 

fluid engineering and theory were students and/or instructors at the schools.

 By the mid nineteenth century, fundamental advances were coming on 

several fronts. The physician Jean Poiseuille (1799–1869) had accurately 

measured flow in capillary tubes for multiple fluids, while in Germany 

Gotthilf Hagen (1797–1884) had differentiated between laminar and turbu-

lent flow in pipes. In England, Lord Osborne Reynolds (1842–1912) con-

tinued that work (Fig. 1–11) and developed the dimensionless number that 

bears his name. Similarly, in parallel to the early work of Navier, George 

Stokes (1819–1903) completed the general equation of fluid motion (with 

friction) that takes their names. William Froude (1810–1879) almost single-

handedly developed the procedures and proved the value of physical model 

testing. American expertise had become equal to the Europeans as demon-

strated by James Francis’ (1815–1892) and Lester Pelton’s (1829–1908) 

pioneering work in turbines and Clemens Herschel’s (1842–1930) invention 

of the Venturi meter.

 In addition to Reynolds and Stokes, many notable contributions were made 

to fluid theory in the late nineteenth century by Irish and English  scientists, 

including William Thomson, Lord Kelvin (1824–1907), William Strutt, Lord 

Rayleigh (1842–1919), and Sir Horace Lamb (1849–1934). These individu-

als investigated a large number of problems, including dimensional analysis, 

irrotational flow, vortex motion, cavitation, and waves. In a broader sense, 

FIGURE 1–11
Osborne Reynolds’ original apparatus 

for demonstrating the onset of turbu-

lence in pipes, being operated 

by John Lienhard at the University 

of Manchester in 1975. 

Photo courtesy of John Lienhard, University of 
Houston. Used by permission.
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INTRODUCTION AND BASIC CONCEPTS

their work also explored the links between fluid mechanics, thermodynam-

ics, and heat transfer.

 The dawn of the twentieth century brought two monumental developments. 

First, in 1903, the self-taught Wright brothers (Wilbur, 1867–1912; Orville, 

1871–1948) invented the airplane through application of theory and deter-

mined experimentation. Their primitive invention was complete and contained 

all the major aspects of modern aircraft (Fig. 1–12). The Navier–Stokes equa-

tions were of little use up to this time because they were too difficult to solve. 

In a pioneering paper in 1904, the German Ludwig Prandtl (1875–1953) 

showed that fluid flows can be divided into a layer near the walls, the bound-
ary layer, where the friction effects are significant, and an outer layer where 

such effects are negligible and the simplified Euler and Bernoulli equations 

are applicable. His students, Theodor von Kármán (1881–1963), Paul Blasius 

(1883–1970), Johann Nikuradse (1894–1979), and others, built on that theory 

in both hydraulic and aerodynamic applications. (During World War II, both 

sides benefited from the theory as Prandtl remained in Germany while his 

best student, the Hungarian-born von Kármán, worked in America.) 

 The mid twentieth century could be considered a golden age of fluid 

mechanics applications. Existing theories were adequate for the tasks at 

hand, and fluid properties and parameters were well defined. These sup-

ported a huge expansion of the aeronautical, chemical, industrial, and 

water resources sectors; each of which pushed fluid mechanics in new 

directions. Fluid mechanics research and work in the late twentieth century 

were dominated by the development of the digital computer in America. 

The ability to solve large complex problems, such as global climate mod-

eling or the optimization of a turbine blade, has provided a benefit to our 

society that the eighteenth-century developers of fluid mechanics could 

never have imagined (Fig. 1–13). The principles presented in the following 

pages have been applied to flows ranging from a moment at the micro-

scopic scale to 50 years of simulation for an entire river basin. It is truly 

mind-boggling.

 Where will fluid mechanics go in the twenty-first century and beyond? 

Frankly, even a limited extrapolation beyond the present would be sheer folly. 

However, if history tells us anything, it is that engineers will be applying 

what they know to benefit society, researching what they don’t know, and 

having a great time in the process.

1–3 ■ THE NO-SLIP CONDITION
Fluid flow is often confined by solid surfaces, and it is important to under-

stand how the presence of solid surfaces affects fluid flow. We know that 

water in a river cannot flow through large rocks, and must go around them. 

That is, the water velocity normal to the rock surface must be zero, and 

water approaching the surface normally comes to a complete stop at the sur-

face. What is not as obvious is that water approaching the rock at any angle 

also comes to a complete stop at the rock surface, and thus the tangential 

velocity of water at the surface is also zero. 

 Consider the flow of a fluid in a stationary pipe or over a solid surface 

that is nonporous (i.e., impermeable to the fluid). All experimental observa-

tions indicate that a fluid in motion comes to a complete stop at the surface 

FIGURE 1–12
The Wright brothers take 

flight at Kitty Hawk.

Library of Congress Prints & Photographs 
Division [LC-DIG-ppprs-00626]

FIGURE 1–13
Old and new wind turbine technologies 

north of Woodward, OK. The modern 

turbines have 1.6 MW capacities.

Photo courtesy of the Oklahoma Wind Power 
Initiative. Used by permission.
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CHAPTER 1

and assumes a zero velocity relative to the surface. That is, a fluid in direct 

contact with a solid “sticks” to the surface, and there is no slip. This is 

known as the no-slip condition. The fluid property responsible for the no-

slip condition and the development of the boundary layer is viscosity and is 

discussed in Chap. 2.

 The photograph in Fig. 1–14 clearly shows the evolution of a velocity 

gradient as a result of the fluid sticking to the surface of a blunt nose. The 

layer that sticks to the surface slows the adjacent fluid layer because of vis-

cous forces between the fluid layers, which slows the next layer, and so 

on. A consequence of the no-slip condition is that all velocity profiles must 

have zero values with respect to the surface at the points of contact between 

a fluid and a solid surface (Fig. 1–15). Therefore, the no-slip condition is 

responsible for the development of the velocity profile. The flow region 

adjacent to the wall in which the viscous effects (and thus the velocity gra-

dients) are significant is called the boundary layer. Another consequence 

of the no-slip condition is the surface drag, or skin friction drag, which is 

the force a fluid exerts on a surface in the flow direction. 

 When a fluid is forced to flow over a curved surface, such as the back 

side of a cylinder, the boundary layer may no longer remain attached to the 

sur face and separates from the surface—a process called flow separation 

(Fig. 1–16). We emphasize that the no-slip condition applies everywhere 

along the surface, even downstream of the separation point. Flow separation 

is discussed in greater detail in Chap. 9. 

 A phenomenon similar to the no-slip condition occurs in heat transfer. 

When two bodies at different temperatures are brought into contact, heat 

transfer occurs such that both bodies assume the same temperature at the 

points of contact. Therefore, a fluid and a solid surface have the same tem-

perature at the points of contact. This is known as no-temperature-jump 
condition.

1–4 ■ CLASSIFICATION OF FLUID FLOWS
Earlier we defined fluid mechanics as the science that deals with the behav-

ior of fluids at rest or in motion, and the interaction of fluids with solids or 

other fluids at the boundaries. There is a wide variety of fluid flow prob-

lems encountered in practice, and it is usually convenient to classify them 

on the basis of some common characteristics to make it feasible to study 

them in groups. There are many ways to classify fluid flow problems, and 

here we present some general categories.

FIGURE 1–14
The development of a velocity profile 

due to the no-slip condition as a fluid 

flows over a blunt nose.

“Hunter Rouse: Laminar and Turbulent Flow Film.” 
Copyright IIHR-Hydroscience & Engineering, The 
University of Iowa. Used by permission.

Relative
velocities
of fluid layers

Uniform
approach
velocity, V

Zero 
velocity
at the 
surface

Plate

FIGURE 1–15
A fluid flowing over a stationary 

surface comes to a complete stop at 

the surface because of the no-slip 

condition.

Separation point

FIGURE 1–16
Flow separation during flow over a curved surface.

From G. M. Homsy et al, “Multi-Media Fluid Mechanics,” Cambridge Univ. 
Press (2001). ISBN 0-521-78748-3. Reprinted by permission.
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Viscous versus Inviscid Regions of Flow
When two fluid layers move relative to each other, a friction force devel-

ops between them and the slower layer tries to slow down the faster layer. 

This internal resistance to flow is quantified by the fluid property viscosity, 

which is a measure of internal stickiness of the fluid. Viscosity is caused by 

cohesive forces between the molecules in liquids and by molecular colli-

sions in gases. There is no fluid with zero viscosity, and thus all fluid flows 

involve viscous effects to some degree. Flows in which the frictional effects 

are significant are called viscous flows. However, in many flows of practi-

cal interest, there are regions (typically regions not close to solid surfaces) 

where viscous forces are negligibly small compared to inertial or pressure 

forces. Neglecting the viscous terms in such inviscid flow regions greatly 

simplifies the analysis without much loss in accuracy. 

 The development of viscous and inviscid regions of flow as a result of 

inserting a flat plate parallel into a fluid stream of uniform velocity is shown 

in Fig. 1–17. The fluid sticks to the plate on both sides because of the no-slip 

condition, and the thin boundary layer in which the viscous effects are signifi-

cant near the plate surface is the viscous flow region. The region of flow on 

both sides away from the plate and largely unaffected by the presence of the 

plate is the inviscid flow region. 

Internal versus External Flow
A fluid flow is classified as being internal or external, depending on whether 

the fluid flows in a confined space or over a surface. The flow of an 

unbounded fluid over a surface such as a plate, a wire, or a pipe is external 
flow. The flow in a pipe or duct is internal flow if the fluid is completely 

bounded by solid surfaces. Water flow in a pipe, for example, is internal flow, 

and airflow over a ball or over an exposed pipe during a windy day is external 

flow (Fig. 1–18). The flow of liquids in a duct is called open-channel flow if 

the duct is only partially filled with the liquid and there is a free surface. The 

flows of water in rivers and irrigation ditches are examples of such flows.

 Internal flows are dominated by the influence of viscosity throughout the 

flow field. In external flows the viscous effects are limited to boundary lay-

ers near solid surfaces and to wake regions downstream of bodies. 

Compressible versus Incompressible Flow
A flow is classified as being compressible or incompressible, depending 

on the level of variation of density during flow. Incompressibility is an 

approximation, in which the flow is said to be incompressible if the density 

remains nearly constant throughout. Therefore, the volume of every portion 

of fluid remains unchanged over the course of its motion when the flow is 

approximated as incompressible. 

 The densities of liquids are essentially constant, and thus the flow of liq-

uids is typically incompressible. Therefore, liquids are usually referred to as 

incompressible substances. A pressure of 210 atm, for example, causes the 

density of liquid water at 1 atm to change by just 1 percent. Gases, on the 

other hand, are highly compressible. A pressure change of just 0.01 atm, for 

example, causes a change of 1 percent in the density of atmospheric air.

FIGURE 1–18
External flow over a tennis ball, and 

the turbulent wake region behind.

Courtesy NASA and Cislunar Aerospace, Inc.

Inviscid flow
region

Viscous flow

region

Inviscid flow
region

FIGURE 1–17
The flow of an originally uniform 

fluid stream over a flat plate, and 

the regions of viscous flow (next to 

the plate on both sides) and inviscid 

flow (away from the plate).

Fundamentals of Boundary Layers, 
National Committee from Fluid Mechanics Films, 
© Education Development Center.
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CHAPTER 1

 When analyzing rockets, spacecraft, and other systems that involve high-

speed gas flows (Fig. 1–19), the flow speed is often expressed in terms of 

the dimensionless Mach number defined as 

Ma 5
V
c

5
Speed of flow

Speed of sound

where c is the speed of sound whose value is 346 m/s in air at room tempera-

ture at sea level. A flow is called sonic when Ma � 1, subsonic when Ma � 1, 

supersonic when Ma � 1, and hypersonic when Ma �� 1. Dimensionless 

parameters are discussed in detail in Chapter 7.

 Liquid flows are incompressible to a high level of accuracy, but the level 

of variation of density in gas flows and the consequent level of approxi-

mation made when modeling gas flows as incompressible depends on the 

Mach number. Gas flows can often be approximated as incompressible if 

the density changes are under about 5 percent, which is usually the case 

when Ma � 0.3. Therefore, the compressibility effects of air at room tem-

perature can be neglected at speeds under about 100 m/s.

 Small density changes of liquids corresponding to large pressure changes 

can still have important consequences. The irritating “water hammer” in a 

water pipe, for example, is caused by the vibrations of the pipe generated by 

the reflection of pressure waves following the sudden closing of the valves.

Laminar versus Turbulent Flow
Some flows are smooth and orderly while others are rather chaotic. The 

highly ordered fluid motion characterized by smooth layers of fluid is called 

laminar. The word laminar comes from the movement of adjacent fluid 

particles together in “laminae.” The flow of high-viscosity fluids such as 

oils at low velocities is typically laminar. The highly disordered fluid motion 

that typically occurs at high velocities and is characterized by velocity fluc-

tuations is called turbulent (Fig. 1–20). The flow of low-viscosity fluids 

such as air at high velocities is typically turbulent. A flow that alternates 

between being laminar and turbulent is called transitional. The experiments 

conducted by Osborne Reynolds in the 1880s resulted in the establishment 

of the dimensionless Reynolds number, Re, as the key parameter for the 

determination of the flow regime in pipes (Chap. 8). 

Natural (or Unforced) versus Forced Flow
A fluid flow is said to be natural or forced, depending on how the fluid 

motion is initiated. In forced flow, a fluid is forced to flow over a surface 

or in a pipe by external means such as a pump or a fan. In natural flows,  
fluid motion is due to natural means such as the buoyancy effect, which 

manifests itself as the rise of warmer (and thus lighter) fluid and the fall of 

cooler (and thus denser) fluid (Fig. 1–21). In solar hot-water systems, for 

example, the thermosiphoning effect is commonly used to replace pumps by 

placing the water tank sufficiently above the solar collectors.

Laminar

Transitional

Turbulent

FIGURE 1–20
Laminar, transitional, and turbulent 

flows over a flat plate.

Courtesy ONERA, photograph by Werlé.

FIGURE 1–19
Schlieren image of the spherical shock 

wave produced by a bursting ballon 

at the Penn State Gas Dynamics Lab. 

Several secondary shocks are seen in 

the air surrounding the ballon.

Photo by G. S. Settles, Penn State University. Used 
by permission.
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INTRODUCTION AND BASIC CONCEPTS

Steady versus Unsteady Flow
The terms steady and uniform are used frequently in engineering, and thus 

it is important to have a clear understanding of their meanings. The term 

steady implies no change of properties, velocity, temperature, etc., at a point 
with time. The opposite of steady is unsteady. The term uniform implies no 
change with location over a specified region. These meanings are consistent 

with their everyday use (steady girlfriend, uniform distribution, etc.).

 The terms unsteady and transient are often used interchangeably, but these 

terms are not synonyms. In fluid mechanics, unsteady is the most general term 

that applies to any flow that is not steady, but transient is typically used for 

developing flows. When a rocket engine is fired up, for example, there are tran-

sient effects (the pressure builds up inside the rocket engine, the flow accelerates, 

etc.) until the engine settles down and operates steadily. The term periodic refers 

to the kind of unsteady flow in which the flow oscillates about a steady mean.

 Many devices such as turbines, compressors, boilers, condensers, and heat 

exchangers operate for long periods of time under the same conditions, and they 

are classified as steady-flow devices. (Note that the flow field near the rotating 

blades of a turbomachine is of course unsteady, but we consider the overall 

flow field rather than the details at some localities when we classify devices.) 

During steady flow, the fluid properties can change from point to point within 

a device, but at any fixed point they remain constant. Therefore, the volume, 

the mass, and the total energy content of a steady-flow device or flow section 

remain constant in steady operation. A simple analogy is shown in Fig. 1–22.

 Steady-flow conditions can be closely approximated by devices that are 

intended for continuous operation such as turbines, pumps, boilers, con-

densers, and heat exchangers of power plants or refrigeration systems. Some 

cyclic devices, such as reciprocating engines or compressors, do not sat-

isfy the steady-flow conditions since the flow at the inlets and the exits is 

FIGURE 1–21
In this schlieren image of a girl in 

a swimming suit, the rise of lighter, 

warmer air adjacent to her body 

indicates that humans and warm-

blooded animals are surrounded by 

thermal plumes of rising warm air.

G. S. Settles, Gas Dynamics Lab, 
Penn State University. Used by permission.

FIGURE 1–22
Comparison of (a) instantaneous 

snapshot of an unsteady flow, and 

(b) long exposure picture of the 

same flow.

Photos by Eric A. Paterson. Used by permission. (a) (b)
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CHAPTER 1

pulsating and not steady. However, the fluid properties vary with time in a 

periodic manner, and the flow through these devices can still be analyzed as 

a steady-flow process by using time-averaged values for the properties.

 Some fascinating visualizations of fluid flow are provided in the book An 
Album of Fluid Motion by Milton Van Dyke (1982). A nice illustration of 

an unsteady-flow field is shown in Fig. 1–23, taken from Van Dyke’s book. 

Figure 1–23a is an instantaneous snapshot from a high-speed motion picture; it 

reveals large, alternating, swirling, turbulent eddies that are shed into the peri-

odically oscillating wake from the blunt base of the object. The eddies produce 

shock waves that move upstream alternately over the top and bottom surfaces 

of the airfoil in an unsteady fashion. Figure 1–23b shows the same flow field, 

but the film is exposed for a longer time so that the image is time averaged 

over 12 cycles. The resulting time-averaged flow field appears “steady” since 

the details of the unsteady oscillations have been lost in the long exposure.

 One of the most important jobs of an engineer is to determine whether it is 

sufficient to study only the time-averaged “steady” flow features of a problem, 

or whether a more detailed study of the unsteady features is required. If the 

engineer were interested only in the overall properties of the flow field (such 

as the time-averaged drag coefficient, the mean velocity, and pressure fields), a 

time-averaged description like that of Fig. 1–23b, time-averaged experimental 

measurements, or an analytical or numerical calculation of the time-averaged 

flow field would be sufficient. However, if the engineer were interested in details 

about the unsteady-flow field, such as flow-induced vibrations, unsteady pres-

sure fluctuations, or the sound waves emitted from the turbulent eddies or the 

shock waves, a time-averaged description of the flow field would be insufficient.

 Most of the analytical and computational examples provided in this text-

book deal with steady or time-averaged flows, although we occasionally 

point out some relevant unsteady-flow features as well when appropriate.

One-, Two-, and Three-Dimensional Flows
A flow field is best characterized by its velocity distribution, and thus a flow 

is said to be one-, two-, or three-dimensional if the flow velocity varies in 

one, two, or three primary dimensions, respectively. A typical fluid flow 

involves a three-dimensional geometry, and the velocity may vary in all three 

dimensions, rendering the flow three-dimensional [V
!
(x, y, z) in rectangular 

or V
!
(r, �, z) in cylindrical coordinates]. However, the variation of velocity in 

certain directions can be small relative to the variation in other directions and 

can be ignored with negligible error. In such cases, the flow can be modeled 

conveniently as being one- or two-dimensional, which is easier to analyze. 

 Consider steady flow of a fluid entering from a large tank into a circular 

pipe. The fluid velocity everywhere on the pipe surface is zero because of the 

no-slip condition, and the flow is two-dimensional in the entrance region of 

the pipe since the velocity changes in both the r- and z-directions, but not in 

the �-direction. The velocity profile develops fully and remains unchanged after 

some distance from the inlet (about 10 pipe diameters in turbulent flow, and 

less in laminar pipe flow, as in Fig. 1–24), and the flow in this region is said 

to be fully developed. The fully developed flow in a circular pipe is one-dimen-
sional since the velocity varies in the radial r-direction but not in the angular 

�- or axial z-directions, as shown in Fig. 1–24. That is, the velocity profile is 

the same at any axial z-location, and it is symmetric about the axis of the pipe.

(a)

(b)

FIGURE 1–23
Oscillating wake of a blunt-based 

airfoil at Mach number 0.6. Photo (a) 

is an instantaneous image, while 

photo (b) is a long-exposure 

(time-averaged) image.

(a) Dyment, A., Flodrops, J. P. & Gryson, P. 1982 
in Flow Visualization II, W. Merzkirch, ed., 331–

336. Washington: Hemisphere. Used by permission 
of Arthur Dyment.

(b) Dyment, A. & Gryson, P. 1978 in Inst. Mèc. 

Fluides Lille, No. 78-5. Used by permission of 
Arthur Dyment.
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 Note that the dimensionality of the flow also depends on the choice of coor-

dinate system and its orientation. The pipe flow discussed, for example, is 

one-dimensional in cylindrical coordinates, but two-dimensional in Cartesian 

coordinates—illustrating the importance of choosing the most appropriate 

coordinate system. Also note that even in this simple flow, the velocity cannot 

be uniform across the cross section of the pipe because of the no-slip condi-

tion. However, at a well-rounded entrance to the pipe, the velocity profile may 

be approximated as being nearly uniform across the pipe, since the velocity is 

nearly constant at all radii except very close to the pipe wall.

 A flow may be approximated as two-dimensional when the aspect ratio is 

large and the flow does not change appreciably along the longer dimension. For 

example, the flow of air over a car antenna can be considered two-dimensional 

except near its ends since the antenna’s length is much greater than its diam-

eter, and the airflow hitting the antenna is fairly uniform (Fig. 1–25).

EXAMPLE 1–1    Axisymmetric Flow over a Bullet

Consider a bullet piercing through calm air during a short time interval in which 
the bullet’s speed is nearly constant. Determine if the time-averaged airflow 
over the bullet during its flight is one-, two-, or three-dimensional (Fig. 1–26).

SOLUTION  It is to be determined whether airflow over a bullet is one-, two-, 
or three-dimensional.
Assumptions  There are no significant winds and the bullet is not spinning.
Analysis  The bullet possesses an axis of symmetry and is therefore an axi-
symmetric body. The airflow upstream of the bullet is parallel to this axis, 
and we expect the time-averaged airflow to be rotationally symmetric about 
the axis—such flows are said to be axisymmetric. The velocity in this case 
varies with axial distance z and radial distance r, but not with angle �. There-
fore, the time-averaged airflow over the bullet is two-dimensional.
Discussion  While the time-averaged airflow is axisymmetric, the instantaneous 
airflow is not, as illustrated in Fig. 1–23. In Cartesian coordinates, the flow 
would be three-dimensional. Finally, many bullets also spin.

1–5 ■ SYSTEM AND CONTROL VOLUME
A system is defined as a quantity of matter or a region in space chosen for 
study. The mass or region outside the system is called the surroundings. 
The real or imaginary surface that separates the system from its surround-

ings is called the boundary (Fig. 1–27). The boundary of a system can be 

SURROUNDINGS

BOUNDARY

SYSTEM

FIGURE 1–27
System, surroundings, and boundary.

FIGURE 1–25
Flow over a car antenna is 

approximately two-dimensional 

except near the top and bottom 

of the antenna.

Axis of
symmetry

r

z
�

FIGURE 1–26
Axisymmetric flow over a bullet.

z

r

Developing velocity

profile, V(r, z)

Fully developed

velocity profile, V(r)
FIGURE 1–24
The development of the velocity 

profile in a circular pipe. V � V(r, z) 

and thus the flow is two-dimensional 

in the entrance region, and becomes 

one-dimensional downstream when 

the velocity profile fully develops 

and remains unchanged in the flow 

direction, V � V(r).
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fixed or movable. Note that the boundary is the contact surface shared by 

both the system and the surroundings. Mathematically speaking, the bound-

ary has zero thickness, and thus it can neither contain any mass nor occupy 

any volume in space.

 Systems may be considered to be closed or open, depending on whether 

a fixed mass or a volume in space is chosen for study. A closed system 

(also known as a control mass or simply a system when the context makes 

it clear) consists of a fixed amount of mass, and no mass can cross its 

boundary. But energy, in the form of heat or work, can cross the boundary, 

and the volume of a closed system does not have to be fixed. If, as a special 

case, even energy is not allowed to cross the boundary, that system is called 

an isolated system.
 Consider the piston–cylinder device shown in Fig. 1–28. Let us say that 

we would like to find out what happens to the enclosed gas when it is 

heated. Since we are focusing our attention on the gas, it is our system. The 

inner surfaces of the piston and the cylinder form the boundary, and since 

no mass is crossing this boundary, it is a closed system. Notice that energy 

may cross the boundary, and part of the boundary (the inner surface of the 

piston, in this case) may move. Everything outside the gas, including the 

piston and the cylinder, is the surroundings.

 An open system, or a control volume, as it is often called, is a selected 
region in space. It usually encloses a device that involves mass flow such as 

a compressor, turbine, or nozzle. Flow through these devices is best stud-

ied by selecting the region within the device as the control volume. Both 

mass and energy can cross the boundary (the control surface) of a control 

volume.

 A large number of engineering problems involve mass flow in and out 

of an open system and, therefore, are modeled as control volumes. A water 

heater, a car radiator, a turbine, and a compressor all involve mass flow 

and should be analyzed as control volumes (open systems) instead of as 

control masses (closed systems). In general, any arbitrary region in space 

can be selected as a control volume. There are no concrete rules for the 

selection of control volumes, but a wise choice certainly makes the analy-

sis much easier. If we were to analyze the flow of air through a nozzle, for 

example, a good choice for the control volume would be the region within 

the nozzle, or perhaps surrounding the entire nozzle.

 A control volume can be fixed in size and shape, as in the case of a noz-

zle, or it may involve a moving boundary, as shown in Fig. 1–29. Most con-

trol volumes, however, have fixed boundaries and thus do not involve any 

moving boundaries. A control volume may also involve heat and work inter-

actions just as a closed system, in addition to mass interaction.

1–6 ■ IMPORTANCE OF DIMENSIONS AND UNITS
Any physical quantity can be characterized by dimensions. The magnitudes 

assigned to the dimensions are called units. Some basic dimensions such 

as mass m, length L, time t, and temperature T are selected as primary or 

fundamental dimensions, while others such as velocity V, energy E, and 

volume V are expressed in terms of the primary dimensions and are called 

secondary dimensions, or derived dimensions.

GAS
2 kg
1.5 m3GAS

2 kg
1 m3

Moving
boundary

Fixed
boundary

FIGURE 1–28
A closed system with a moving 

boundary.

FIGURE 1–29
A control volume may involve 

fixed, moving, real, and imaginary 

boundaries.

CV

Moving
boundary

Fixed
boundary

Real boundary

(b) A control volume (CV) with fixed and
     moving boundaries as well as real and
     imaginary boundaries

(a) A control volume (CV) with real and
      imaginary boundaries

Imaginary
boundary

CV
(a nozzle)
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 A number of unit systems have been developed over the years. Despite 

strong efforts in the scientific and engineering community to unify the 

world with a single unit system, two sets of units are still in common use 

today: the English system, which is also known as the United States Cus-
tomary System (USCS), and the metric SI (from Le Système International 
d’  Unités), which is also known as the International System. The SI is a 

simple and logical system based on a decimal relationship between the vari-

ous units, and it is being used for scientific and engineering work in most of 

the industrialized nations, including England. The English system, however, 

has no apparent systematic numerical base, and various units in this system 

are related to each other rather arbitrarily (12 in � 1 ft, 1 mile � 5280 ft, 

4 qt � 1 gal, etc.), which makes it confusing and difficult to learn. The 

United States is the only industrialized country that has not yet fully con-

verted to the metric system.

 The systematic efforts to develop a universally acceptable system of units 

dates back to 1790 when the French National Assembly charged the French 

Academy of Sciences to come up with such a unit system. An early version of 

the metric system was soon developed in France, but it did not find universal 

acceptance until 1875 when The Metric Convention Treaty was prepared and 

signed by 17 nations, including the United States. In this international treaty, 

meter and gram were established as the metric units for length and mass, 

respectively, and a General Conference of Weights and Measures (CGPM) was 

established that was to meet every six years. In 1960, the CGPM produced 

the SI, which was based on six fundamental quantities, and their units were 

adopted in 1954 at the Tenth General Conference of Weights and Measures: 

meter (m) for length, kilogram (kg) for mass, second (s) for time, ampere (A) 

for electric current, degree Kelvin (°K) for temperature, and candela (cd) for 

luminous intensity (amount of light). In 1971, the CGPM added a seventh 

fundamental quantity and unit: mole (mol) for the amount of matter.

 Based on the notational scheme introduced in 1967, the degree symbol 

was officially dropped from the absolute temperature unit, and all unit 

names were to be written without capitalization even if they were derived 

from proper names (Table 1–1). However, the abbreviation of a unit was 

to be capitalized if the unit was derived from a proper name. For example, 

the SI unit of force, which is named after Sir Isaac Newton (1647–1723), 

is newton (not Newton), and it is abbreviated as N. Also, the full name 

of a unit may be pluralized, but its abbreviation cannot. For example, the 

length of an object can be 5 m or 5 meters, not 5 ms or 5 meter. Finally, no 

period is to be used in unit abbreviations unless they appear at the end of a 

sentence. For example, the proper abbreviation of meter is m (not m.).

 The recent move toward the metric system in the United States seems to 

have started in 1968 when Congress, in response to what was happening 

in the rest of the world, passed a Metric Study Act. Congress continued to 

promote a voluntary switch to the metric system by passing the Metric Con-

version Act in 1975. A trade bill passed by Congress in 1988 set a Septem-

ber 1992 deadline for all federal agencies to convert to the metric system. 

However, the deadlines were relaxed later with no clear plans for the future.

 As pointed out, the SI is based on a decimal relationship between units. The 

prefixes used to express the multiples of the various units are listed in Table 1–2. 

TABLE 1–1

The seven fundamental (or primary) 
dimensions and their units in SI

Dimension Unit

Length meter (m)
Mass kilogram (kg)
Time second (s)
Temperature kelvin (K)
Electric current ampere (A)
Amount of light candela (cd)
Amount of matter mole (mol)

TABLE 1–2

Standard prefixes in SI units

 Multiple Prefix

 1024 yotta, Y
 1021 zetta, Z
 1018 exa, E
 1015 peta, P
 1012 tera, T
 109 giga, G
 106 mega, M
 103 kilo, k
 102 hecto, h
 101 deka, da
 10�1 deci, d
 10�2 centi, c
 10�3 milli, m
 10�6 micro, �
 10�9 nano, n
 10�12 pico, p
 10�15 femto, f
 10�18 atto, a
 10�21 zepto, z
 10�24 yocto, y
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They are standard for all units, and the student is encouraged to memorize some 

of them because of their widespread use (Fig. 1–30).

Some SI and English Units
In SI, the units of mass, length, and time are the kilogram (kg), meter (m), 

and second (s), respectively. The respective units in the English system are 

the pound-mass (lbm), foot (ft), and second (s). The pound symbol lb is 

actually the abbreviation of libra, which was the ancient Roman unit of 

weight. The English retained this symbol even after the end of the Roman 

occupation of Britain in 410. The mass and length units in the two systems 

are related to each other by

1 lbm 5 0.45359 kg

1 ft 5 0.3048 m

 In the English system, force is often considered to be one of the primary 

dimensions and is assigned a nonderived unit. This is a source of confu-

sion and error that necessitates the use of a dimensional constant (gc) in 

many formulas. To avoid this nuisance, we consider force to be a secondary 

dimension whose unit is derived from Newton’s second law, i.e.,

Force � (Mass) (Acceleration)

or F � ma (1–1)

In SI, the force unit is the newton (N), and it is defined as the force required 
to accelerate a mass of 1 kg at a rate of 1 m/s2. In the English system, the 

force unit is the pound-force (lbf) and is defined as the force required to 
accelerate a mass of 32.174 lbm (1 slug) at a rate of 1 ft/s2 (Fig. 1–31). 

That is,

 1 N 5 1 kg·m/s2

1 lbf 5 32.174 lbm·ft/s2

A force of 1 N is roughly equivalent to the weight of a small apple 

(m � 102 g), whereas a force of 1 lbf is roughly equivalent to the weight of 

four medium apples (mtotal � 454 g), as shown in Fig. 1–32. Another force 

unit in common use in many European countries is the kilogram-force (kgf), 

which is the weight of 1 kg mass at sea level (1 kgf � 9.807 N).

 The term weight is often incorrectly used to express mass, particularly 

by the “weight watchers.” Unlike mass, weight W is a force. It is the gravi-

tational force applied to a body, and its magnitude is determined from an 

equation based on Newton’s second law,

 W 5 mg  (N) (1–2)

where m is the mass of the body, and g is the local gravitational accel-

eration (g is 9.807 m/s2 or 32.174 ft/s2 at sea level and 45° latitude). An 

ordinary bathroom scale measures the gravitational force acting on a body. 

The weight per unit volume of a substance is called the specific weight � 

and is determined from � � �g, where � is density.

1 kg200 mL
(0.2 L) (103 g)

1 MV

(106 V)

FIGURE 1–30
The SI unit prefixes are used in all 

branches of engineering.

m = 1 kg

m = 32.174 lbm

a = 1 m/s2

a = 1 ft/s2

F = 1 lbf

F = 1 N

FIGURE 1–31
The definition of the force units.

1 kgf

10 apples
m � 1 kg

4 apples
m � 1 lbm

1 lbf

1 apple
m � 102 g

1 N

FIGURE 1–32
The relative magnitudes of the force 

units newton (N), kilogram-force 

(kgf), and pound-force (lbf).
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 The mass of a body remains the same regardless of its location in the uni-

verse. Its weight, however, changes with a change in gravitational accelera-

tion. A body weighs less on top of a mountain since g decreases (by a small 

amount) with altitude. On the surface of the moon, an astronaut weighs 

about one-sixth of what she or he normally weighs on earth (Fig. 1–33).

 At sea level a mass of 1 kg weighs 9.807 N, as illustrated in Fig. 1–34. A 

mass of 1 lbm, however, weighs 1 lbf, which misleads people to believe that 

pound-mass and pound-force can be used interchangeably as pound (lb), 

which is a major source of error in the English system.

 It should be noted that the gravity force acting on a mass is due to the 

attraction between the masses, and thus it is proportional to the mag-

nitudes of the masses and inversely proportional to the square of the dis-

tance between them. Therefore, the gravitational acceleration g at a location 

depends on the local density of the earth’s crust, the distance to the center 

of the earth, and to a lesser extent, the positions of the moon and the sun. 

The value of g varies with location from 9.8295 m/s2 at 4500 m below sea 

level to 7.3218 m/s2 at 100,000 m above sea level. However, at altitudes up 

to 30,000 m, the variation of g from the sea-level value of 9.807 m/s2, is 

less than 1 percent. Therefore, for most practical purposes, the gravitational 

acceleration can be assumed to be constant at 9.807 m/s2, often rounded to 

9.81 m/s2. It is interesting to note that the value of g increases with distance 

below sea level, reaches a maximum at about 4500 m below sea level, and 

then starts decreasing. (What do you think the value of g is at the center of 

the earth?)

 The primary cause of confusion between mass and weight is that mass is 

usually measured indirectly by measuring the gravity force it exerts. This 

approach also assumes that the forces exerted by other effects such as air 

buoyancy and fluid motion are negligible. This is like measuring the dis-

tance to a star by measuring its red shift, or measuring the altitude of an 

airplane by measuring barometric pressure. Both of these are also indirect 

measurements. The correct direct way of measuring mass is to compare it 

to a known mass. This is cumbersome, however, and it is mostly used for 

calibration and measuring precious metals.

 Work, which is a form of energy, can simply be defined as force times 

distance; therefore, it has the unit “newton-meter (N.m),” which is called a 

joule (J). That is,

 1 J 5 1 N·m (1–3)

A more common unit for energy in SI is the kilojoule (1 kJ � 103 J). In the 

English system, the energy unit is the Btu (British thermal unit), which is 

defined as the energy required to raise the temperature of 1 lbm of water at 

68°F by 1°F. In the metric system, the amount of energy needed to raise the 

temperature of 1 g of water at 14.5°C by 1°C is defined as 1 calorie (cal), 

and 1 cal � 4.1868 J. The magnitudes of the kilojoule and Btu are very 

nearly the same (1 Btu � 1.0551 kJ). Here is a good way to get a feel for 

these units: If you light a typical match and let it burn itself out, it yields 

approximately one Btu (or one kJ) of energy (Fig. 1–35).

 The unit for time rate of energy is joule per second (J/s), which is called 

a watt (W). In the case of work, the time rate of energy is called power. 

A commonly used unit of power is horsepower (hp), which is equivalent 

FIGURE 1–33
A body weighing 72 kgf on earth will 

weigh only 12 kgf on the moon.

g = 9.807 m/s2

W = 9.807 kg·m/s2

 = 9.807 N
 = 1 kgf

W = 32.174 lbm·ft/s2

 = 1 lbf

g = 32.174 ft/s2

kg lbm

FIGURE 1–34
The weight of a unit mass at sea level.

FIGURE 1–35
A typical match yields about one Btu 

(or one kJ) of energy if completely 

burned.

Photo by John M. Cimbala.
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to 745.7 W. Electrical energy typically is expressed in the unit kilowatt-hour 

(kWh), which is equivalent to 3600 kJ. An electric appliance with a rated 

power of 1 kW consumes 1 kWh of electricity when running continu-

ously for one hour. When dealing with electric power generation, the units 

kW and kWh are often confused. Note that kW or kJ/s is a unit of power, 

whereas kWh is a unit of energy. Therefore, statements like “the new wind 

turbine will generate 50 kW of electricity per year” are meaningless and 

incorrect. A correct statement should be something like “the new wind tur-

bine with a rated power of 50 kW will generate 120,000 kWh of electricity 

per year.” 

Dimensional Homogeneity
We all know that you cannot add apples and oranges. But we somehow 

manage to do it (by mistake, of course). In engineering, all equations must 

be dimensionally homogeneous. That is, every term in an equation must 

have the same dimensions. If, at some stage of an analysis, we find our-

selves in a position to add two quantities that have different dimensions 

or units, it is a clear indication that we have made an error at an earlier 

stage. So checking dimensions (or units) can serve as a valuable tool to 

spot errors.

EXAMPLE 1–2   Electric Power Generation by a Wind Turbine

A school is paying $0.09/kWh for electric power. To reduce its power bill, 
the school installs a wind turbine (Fig 1–36) with a rated power of 30 kW. 
If the turbine operates 2200 hours per year at the rated power, determine 
the amount of electric power generated by the wind turbine and the money 
saved by the school per year.

SOLUTION  A wind turbine is installed to generate electricity. The amount of 
electric energy generated and the money saved per year are to be determined.
Analysis  The wind turbine generates electric energy at a rate of 30 kW or 
30 kJ/s. Then the total amount of electric energy generated per year becomes 

Total energy � (Energy per unit time)(Time interval)

  � (30 kW)(2200 h)

  � 66,000 kWh

The money saved per year is the monetary value of this energy determined as 

Money saved � (Total energy)(Unit cost of energy)

 � (66,000 kWh)($0.09/kWh)

 � $5940

Discussion  The annual electric energy production also could be determined 
in kJ by unit manipulations as

Total energy 5  (30 kW)(2200 h)a3600 s

1 h
b a1 kJ/s

1 kW
b 5 2.38 3 108 kJ

which is equivalent to 66,000 kWh (1 kWh = 3600 kJ).

FIGURE 1–36
A wind turbine, as discussed in 

Example 1–2.

Photo by Andy Cimbala.
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 We all know from experience that units can give terrible headaches if they 

are not used carefully in solving a problem. However, with some attention 

and skill, units can be used to our advantage. They can be used to check 

formulas; sometimes they can even be used to derive formulas, as explained 

in the following example.

EXAMPLE 1–3    Obtaining Formulas from Unit Considerations

A tank is filled with oil whose density is � � 850 kg/m3. If the volume of the 
tank is V � 2 m3, determine the amount of mass m in the tank.

SOLUTION  The volume of an oil tank is given. The mass of oil is to be 
determined.
Assumptions  Oil is a nearly incompressible substance and thus its density 
is constant.
Analysis  A sketch of the system just described is given in Fig. 1–37. Sup-
pose we forgot the formula that relates mass to density and volume. However, 
we know that mass has the unit of kilograms. That is, whatever calculations 
we do, we should end up with the unit of kilograms. Putting the given infor-
mation into perspective, we have

r 5 850 kg/m3  and  V 5 2 m3

It is obvious that we can eliminate m3 and end up with kg by multiplying 
these two quantities. Therefore, the formula we are looking for should be

m 5 rV

Thus,

m 5 (850 kg/m3)(2 m3) 5 1700 kg

Discussion  Note that this approach may not work for more complicated 
formulas. Nondimensional constants also may be present in the formulas, 
and these cannot be derived from unit considerations alone.

 You should keep in mind that a formula that is not dimensionally homo-

geneous is definitely wrong (Fig. 1 –38), but a dimensionally homogeneous 

formula is not necessarily right.

Unity Conversion Ratios
Just as all nonprimary dimensions can be formed by suitable combina-

tions of primary dimensions, all nonprimary units (secondary units) can be 
formed by combinations of primary units. Force units, for example, can be 

expressed as

N 5 kg 
m

s2
  and  lbf 5 32.174 lbm 

ft

s2

They can also be expressed more conveniently as unity conversion ratios as

N

kg·m/s2
5 1  and  

lbf

32.174 lbm·ft/s2
5 1

FIGURE 1–38
Always check the units in your 

calculations.

Oil
   = 2 m3

m = ?
r = 850  kg/m3

FIGURE 1–37
Schematic for Example 1–3.
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Unity conversion ratios are identically equal to 1 and are unitless, and thus 

such ratios (or their inverses) can be inserted conveniently into any calcu-

lation to properly convert units (Fig 1–39). You are encouraged to always 

use unity conversion ratios such as those given here when converting units. 

Some text books insert the archaic gravitational constant gc defined as 

gc � 32.174 lbm·ft/lbf·s2 � kg·m/N·s2 � 1 into equations in order to force 

units to match. This practice leads to unnecessary confusion and is strongly 

discouraged by the present authors. We recommend that you instead use 

unity conversion ratios.

EXAMPLE 1–4    The Weight of One Pound-Mass

Using unity conversion ratios, show that 1.00 lbm weighs 1.00 lbf on earth 
(Fig. 1–40).

Solution  A mass of 1.00 lbm is subjected to standard earth gravity. Its 
weight in lbf is to be determined.
Assumptions  Standard sea-level conditions are assumed.
Properties  The gravitational constant is g � 32.174 ft/s2.
Analysis  We apply Newton’s second law to calculate the weight (force) that 
corresponds to the known mass and acceleration. The weight of any object 
is equal to its mass times the local value of gravitational acceleration. Thus,

W 5 mg 5 (1.00  lbm)(32.174  ft/s2)a 1 lbf

32.174  lbm·ft/s2
b 5 1.00  lbf

Discussion  The quantity in large parentheses in this equation is a unity 
conversion ratio. Mass is the same regardless of its location. However, on 
some other planet with a different value of gravitational acceleration, the 
weight of 1 lbm would differ from that calculated here.

 When you buy a box of breakfast cereal, the printing may say “Net 

weight: One pound (454 grams).” (See Fig. 1–41.) Technically, this means 

that the cereal inside the box weighs 1.00 lbf on earth and has a mass of 

453.6 g (0.4536 kg). Using Newton’s second law, the actual weight of the 

cereal on earth is

W 5 mg 5 (453.6 g)(9.81 m/s2)a 1 N

1 kg·m/s2
b a 1 kg

1000 g
b 5 4.49 N

1–7 ■  MODELING IN ENGINEERING
An engineering device or process can be studied either experimentally (test-

ing and taking measurements) or analytically (by analysis or calculations). 

The experimental approach has the advantage that we deal with the actual 

physical system, and the desired quantity is determined by measurement, 

lbm

FIGURE 1–40
A mass of 1 lbm weighs 1 lbf on earth.

0.3048 m
1 ft

1 min
60 s

1 lbm
0.45359 kg

32.174 lbm�ft/s2

1 lbf
1 kg�m/s2

1 N

1 kPa
1000 N/m2

1 kJ
1000 N�m

1 W
1 J/s

FIGURE 1–39
Every unity conversion ratio (as well 

as its inverse) is exactly equal to one. 

Shown here are a few commonly used 

unity conversion ratios.

Net weight:
One pound 
(454 grams)

FIGURE 1–41
A quirk in the metric system of units.
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within the limits of experimental error. However, this approach is expen-

sive, time-consuming, and often impractical. Besides, the system we are 

studying may not even exist. For example, the entire heating and plumbing 

systems of a building must usually be sized before the building is actu-

ally built on the basis of the specifications given. The analytical approach 

(including the numerical approach) has the advantage that it is fast and 

inexpensive, but the results obtained are subject to the accuracy of the 

assumptions, approximations, and idealizations made in the analysis. 

In engineering studies, often a good compromise is reached by reduc-

ing the choices to just a few by analysis, and then verifying the findings 

experimentally.

 The descriptions of most scientific problems involve equations that relate 

the changes in some key variables to each other. Usually the smaller the 

increment chosen in the changing variables, the more general and accurate 

the description. In the limiting case of infinitesimal or differential changes 

in variables, we obtain differential equations that provide precise math-

ematical formulations for the physical principles and laws by represent-

ing the rates of change as derivatives. Therefore, differential equations are 

used to investigate a wide variety of problems in sciences and engineering 

(Fig. 1–42). However, many problems encountered in practice can be solved 

without resorting to differential equations and the complications associated 

with them.

 The study of physical phenomena involves two important steps. In the 

first step, all the variables that affect the phenomena are identified, reason-

able assumptions and approximations are made, and the interdependence 

of these variables is studied. The relevant physical laws and principles are 

invoked, and the problem is formulated mathematically. The equation itself 

is very instructive as it shows the degree of dependence of some variables 

on others, and the relative importance of various terms. In the second step, 

the problem is solved using an appropriate approach, and the results are 

interpreted.

 Many processes that seem to occur in nature randomly and without any 

order are, in fact, being governed by some visible or not-so-visible physi-

cal laws. Whether we notice them or not, these laws are there, governing 

consistently and predictably over what seem to be ordinary events. Most of 

these laws are well defined and well understood by scientists. This makes 

it possible to predict the course of an event before it actually occurs or to 

study various aspects of an event mathematically without actually running 

expensive and time-consuming experiments. This is where the power of 

analysis lies. Very accurate results to meaningful practical problems can be 

obtained with relatively little effort by using a suitable and realistic mathe-

matical model. The preparation of such models requires an adequate knowl-

edge of the natural phenomena involved and the relevant laws, as well as 

sound judgment. An unrealistic model will obviously give inaccurate and 

thus unacceptable results.

 An analyst working on an engineering problem often finds himself or her-

self in a position to make a choice between a very accurate but complex 

model, and a simple but not-so-accurate model. The right choice depends 

on the situation at hand. The right choice is usually the simplest model that 

Identify
important
variables Make

reasonable
assumptions and
approximationsApply

relevant
physical laws

Physical problem

A differential equation

Apply
applicable
solution

technique

Apply
boundary
and initial
conditions

Solution of the problem

FIGURE 1–42
Mathematical modeling of physical 

problems.
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yields satisfactory results (Fig 1–43). Also, it is important to consider the 

actual operating conditions when selecting equipment.

 Preparing very accurate but complex models is usually not so difficult. 

But such models are not much use to an analyst if they are very difficult 

and time-consuming to solve. At the minimum, the model should reflect the 

essential features of the physical problem it represents. There are many sig-

nificant real-world problems that can be analyzed with a simple model. But 

it should always be kept in mind that the results obtained from an analysis 

are at best as accurate as the assumptions made in simplifying the problem. 

Therefore, the solution obtained should not be applied to situations for 

which the original assumptions do not hold.

 A solution that is not quite consistent with the observed nature of the 

problem indicates that the mathematical model used is too crude. In that 

case, a more realistic model should be prepared by eliminating one or more 

of the questionable assumptions. This will result in a more complex problem 

that, of course, is more difficult to solve. Thus any solution to a problem 

should be interpreted within the context of its formulation.

1–8 ■  PROBLEM-SOLVING TECHNIQUE
The first step in learning any science is to grasp the fundamentals and to gain 

a sound knowledge of it. The next step is to master the fundamentals by test-

ing this knowledge. This is done by solving significant real-world problems. 

Solving such problems, especially complicated ones, requires a systematic 

approach. By using a step-by-step approach, an engineer can reduce the 

FIGURE 1–43
Simplified models are often used in fluid mechanics to obtain approximate solutions to difficult engineering problems. 

Here, the helicopter’s rotor is modeled by a disk, across which is imposed a sudden change in pressure. The helicopter’s 

body is modeled by a simple ellipsoid. This simplified model yields the essential features of the overall air flow field in the 

vicinity of the ground.

Photo by John M. Cimbala.

Ground

Rotor disk

Simplified body

(a) Actual engineering problem (b) Minimum essential model of the engineering problem
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solution of a complicated problem into the solution of a series of simple 

problems (Fig. 1–44). When you are solving a problem, we recommend that 

you use the following steps zealously as applicable. This will help you avoid 

some of the common pitfalls associated with problem solving.

Step 1: Problem Statement
In your own words, briefly state the problem, the key information given, 

and the quantities to be found. This is to make sure that you understand the 

problem and the objectives before you attempt to solve the problem.

Step 2: Schematic
Draw a realistic sketch of the physical system involved, and list the relevant 

information on the figure. The sketch does not have to be something elabo-

rate, but it should resemble the actual system and show the key features. 

Indicate any energy and mass interactions with the surroundings. Listing 

the given information on the sketch helps one to see the entire problem 

at once. Also, check for properties that remain constant during a process 

(such as temperature during an isothermal process), and indicate them on 

the sketch.

Step 3: Assumptions and Approximations
State any appropriate assumptions and approximations made to simplify 

the problem to make it possible to obtain a solution. Justify the ques-

tionable assumptions. Assume reasonable values for missing quantities 

that are necessary. For example, in the absence of specific data for atmo-

spheric pressure, it can be taken to be 1 atm. However, it should be noted 

in the analysis that the atmospheric pressure decreases with increasing 

elevation. For example, it drops to 0.83 atm in Denver (elevation 1610 m) 

(Fig. 1–45).

Step 4: Physical Laws
Apply all the relevant basic physical laws and principles (such as the con-

servation of mass), and reduce them to their simplest form by utilizing the 

assumptions made. However, the region to which a physical law is applied 

must be clearly identified first. For example, the increase in speed of water 

flowing through a nozzle is analyzed by applying conservation of mass 

between the inlet and outlet of the nozzle.

Step 5: Properties
Determine the unknown properties at known states necessary to solve the 

problem from property relations or tables. List the properties separately, and 

indicate their source, if applicable.

Step 6: Calculations
Substitute the known quantities into the simplified relations and perform the 

calculations to determine the unknowns. Pay particular attention to the units 

and unit cancellations, and remember that a dimensional quantity without a 

unit is meaningless. Also, don’t give a false implication of high precision 

SOLUTION

H
A

R
D

 W
A

YEASY W
AY

PROBLEM

FIGURE 1–44
A step-by-step approach can greatly 

simplify problem solving.

Given: Air temperature in Denver

To be found: Density of air

Missing information: Atmospheric
pressure

Assumption #1: Take P = 1 atm
(Inappropriate. Ignores effect of 
altitude. Will cause more than 
15% error.)

Assumption #2: Take P = 0.83 atm
(Appropriate. Ignores only minor 
effects such as weather.)

FIGURE 1–45
The assumptions made while solving 

an engineering problem must be 

reasonable and justifiable.
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by copying all the digits from the screen of the calculator—round the final 

results to an appropriate number of significant digits (Section 1–10).

Step 7: Reasoning, Verification, and Discussion
Check to make sure that the results obtained are reasonable and intuitive, 

and verify the validity of the questionable assumptions. Repeat the calcula-

tions that resulted in unreasonable values. For example, under the same test 

conditions the aerodynamic drag acting on a car should not increase after 

streamlining the shape of the car (Fig. 1–46).

 Also, point out the significance of the results, and discuss their implications. 

State the conclusions that can be drawn from the results, and any recommen-

dations that can be made from them. Emphasize the limitations under which 

the results are applicable, and caution against any possible misunderstand-

ings and using the results in situations where the underlying assumptions do 

not apply. For example, if you determined that using a larger-diameter pipe 

in a proposed pipeline will cost an additional $5000 in materials, but it will 

reduce the annual pumping costs by $3000, indicate that the larger-diameter 

pipeline will pay for its cost differential from the electricity it saves in less 

than two years. However, also state that only additional material costs associ-

ated with the larger-diameter pipeline are considered in the analysis.

 Keep in mind that the solutions you present to your instructors, and 

any engineering analysis presented to others, is a form of communication. 

Therefore neatness, organization, completeness, and visual appearance are 

of utmost importance for maximum effectiveness (Fig 1–47). Besides, neat-

ness also serves as a great checking tool since it is very easy to spot errors 

and inconsistencies in neat work. Carelessness and skipping steps to save 

time often end up costing more time and unnecessary anxiety.

 The approach described here is used in the solved example problems with-

out explicitly stating each step, as well as in the Solutions Manual of this 

text. For some problems, some of the steps may not be applicable or neces-

sary. For example, often it is not practical to list the properties separately. 

However, we cannot overemphasize the importance of a logical and orderly 

approach to problem solving. Most difficulties encountered while solving a 

problem are not due to a lack of knowledge; rather, they are due to a lack of 

organization. You are strongly encouraged to follow these steps in problem 

solving until you develop your own approach that works best for you.

1–9 ■  ENGINEERING SOFTWARE PACKAGES
You may be wondering why we are about to undertake an in-depth study of 

the fundamentals of another engineering science. After all, almost all such 

problems we are likely to encounter in practice can be solved using one 

of several sophisticated software packages readily available in the market 

today. These software packages not only give the desired numerical results, 

but also supply the outputs in colorful graphical form for impressive presen-

tations. It is unthinkable to practice engineering today without using some 

of these packages. This tremendous computing power available to us at the 

touch of a button is both a blessing and a curse. It certainly enables engi-

neers to solve problems easily and quickly, but it also opens the door for 

Before streamlining
V

V
After streamliningUnreasonable!

Before streamliningBefore streamlining
V

V
After streamliningAfter streamliningUnreasonable!Unreasonable!

FD

FD

FIGURE 1–46
The results obtained from an 

engineering analysis must be checked 

for reasonableness.

FIGURE 1–47
Neatness and organization are highly 

valued by employers.
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abuses and misinformation. In the hands of poorly educated people, these 

software packages are as dangerous as sophisticated powerful weapons in 

the hands of poorly trained soldiers.

 Thinking that a person who can use the engineering software packages 

without proper training in the fundamentals can practice engineering is like 

thinking that a person who can use a wrench can work as a car mechanic. If 

it were true that the engineering students do not need all these fundamental 

courses they are taking because practically everything can be done by com-

puters quickly and easily, then it would also be true that the employers would 

no longer need high-salaried engineers since any person who knows how 

to use a word-processing program can also learn how to use those software 

packages. However, the statistics show that the need for engineers is on the 

rise, not on the decline, despite the availability of these powerful packages.

 We should always remember that all the computing power and the engi-

neering software packages available today are just tools, and tools have 

meaning only in the hands of masters. Having the best word-processing 

program does not make a person a good writer, but it certainly makes the 

job of a good writer much easier and makes the writer more productive 

(Fig. 1–48). Hand calculators did not eliminate the need to teach our chil-

dren how to add or subtract, and sophisticated medical software packages 

did not take the place of medical school training. Neither will engineering 

software packages replace the traditional engineering education. They will 

simply cause a shift in emphasis in the courses from mathematics to physics. 

That is, more time will be spent in the classroom discussing the physical 

aspects of the problems in greater detail, and less time on the mechanics of 

solution procedures.

 All these marvelous and powerful tools available today put an extra bur-

den on today’s engineers. They must still have a thorough understanding 

of the fundamentals, develop a “feel” of the physical phenomena, be able 

to put the data into proper perspective, and make sound engineering judg-

ments, just like their predecessors. However, they must do it much better, 

and much faster, using more realistic models because of the powerful tools 

available today. The engineers in the past had to rely on hand calculations, 

slide rules, and later hand calculators and computers. Today they rely on 

software packages. The easy access to such power and the possibility of a 

simple misunderstanding or misinterpretation causing great damage make it 

more important today than ever to have solid training in the fundamentals 

of engineering. In this text we make an extra effort to put the emphasis on 

developing an intuitive and physical understanding of natural phenomena 

instead of on the mathematical details of solution procedures.

Engineering Equation Solver (EES)
EES is a program that solves systems of linear or nonlinear algebraic or 

differential equations numerically. It has a large library of built-in thermo-

dynamic property functions as well as mathematical functions, and allows 

the user to supply additional property data. Unlike some software packages, 

EES does not solve engineering problems; it only solves the equations sup-

plied by the user. Therefore, the user must understand the problem and for-

mulate it by applying any relevant physical laws and relations. EES saves 

FIGURE 1–48
An excellent word-processing program 

does not make a person a good writer; 

it simply makes a good writer a more 

efficient writer.

© Ingram Publishing RF

001-036_cengel_ch01.indd   26001-036_cengel_ch01.indd   26 7/3/13   1:56 PM7/3/13   1:56 PM

SAMPLE
 C

HAPTER

SAMPLE
 C

HAPTER



27
CHAPTER 1

the user considerable time and effort by simply solving the resulting math-

ematical equations. This makes it possible to attempt significant engineering 

problems not suitable for hand calculations and to conduct parametric stud-

ies quickly and conveniently. EES is a very powerful yet intuitive program 

that is very easy to use, as shown in Example 1–5. The use and capabilities 

of EES are explained in Appendix 3 on the text website.

EXAMPLE 1–5    Solving a System of Equations with EES

The difference of two numbers is 4, and the sum of the squares of these two 
numbers is equal to the sum of the numbers plus 20. Determine these two 
numbers.

SOLUTION  Relations are given for the difference and the sum of the 
squares of two numbers. The two numbers are to be determined.
Analysis  We start the EES program by double-clicking on its icon, open a 
new file, and type the following on the blank screen that appears:

x�y�4

x ˆ 21y ˆ 25x1y120

which is an exact mathematical expression of the problem statement with 
x and y denoting the unknown numbers. The solution to this system of two 
nonlinear equations with two unknowns is obtained by a single click on the 
“calculator” icon on the taskbar. It gives (Fig. 1–49)

x 5 5 and y 5 1

Discussion  Note that all we did is formulate the problem as we would on 
paper; EES took care of all the mathematical details of solution. Also note 
that equations can be linear or nonlinear, and they can be entered in any 
order with unknowns on either side. Friendly equation solvers such as EES 
allow the user to concentrate on the physics of the problem without worry-
ing about the mathematical complexities associated with the solution of the 
resulting system of equations.

CFD Software
Computational fluid dynamics (CFD) is used extensively in engineering 

and research, and we discuss CFD in detail in Chapter 15. We also show 

example solutions from CFD throughout the textbook since CFD graphics 

are great for illustrating flow streamlines, velocity, and pressure distribu-

tions, etc.– beyond what we are able to visualize in the laboratory. However, 

because there are several different commercial CFD packages available 

for users, and student access to these codes is highly dependent on depart-

mental licenses, we do not provide end-of-chapter CFD problems that are 

tied to any particular CFD package. Instead, we provide some general 

CFD problems in Chapter 15 , and we also maintain a website (see link 

at www.mhhe.com/cengel) containing CFD problems that can be solved 

with a number of different CFD programs. Students are encouraged to work 

through some of these problems to become familiar with CFD.

FIGURE 1–49
EES screen images for Example 1–5.
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1–10 ■  ACCURACY, PRECISION, 
AND SIGNIFICANT DIGITS

In engineering calculations, the supplied information is not known to more 

than a certain number of significant digits, usually three digits. Conse-

quently, the results obtained cannot possibly be precise to more significant 

digits. Reporting results in more significant digits implies greater precision 

than exists, and it should be avoided.

 Regardless of the system of units employed, engineers must be aware of 

three principles that govern the proper use of numbers: accuracy, precision, and 

significant digits. For engineering measurements, they are defined as follows:

• Accuracy error (inaccuracy) is the value of one reading minus the 

true value. In general, accuracy of a set of measurements refers to the 

closeness of the average reading to the true value. Accuracy is generally 

associated with repeatable, fixed errors. 

• Precision error is the value of one reading minus the average of readings. 

In general, precision of a set of measurements refers to the fineness of the 

resolution and the repeatability of the instrument. Precision is generally 

associated with unrepeatable, random errors.

• Significant digits are digits that are relevant and meaningful.

 A measurement or calculation can be very precise without being very 

accurate, and vice versa. For example, suppose the true value of wind speed 

is 25.00 m/s. Two anemometers A and B take five wind speed readings each:

Anemometer A: 25.50, 25.69, 25.52, 25.58, and 25.61 m/s. Average 

of all readings � 25.58 m/s.

Anemometer B: 26.3, 24.5, 23.9, 26.8, and 23.6 m/s. Average of all 

readings � 25.02 m/s.

Clearly, anemometer A is more precise, since none of the readings differs 

by more than 0.11 m/s from the average. However, the average is 25.58 m/s, 

0.58 m/s greater than the true wind speed; this indicates significant bias 
error, also called constant error or systematic error. On the other hand, 

anemometer B is not very precise, since its readings swing wildly from the 

average; but its overall average is much closer to the true value. Hence, 

anemometer B is more accurate than anemometer A, at least for this set of 

readings, even though it is less precise. The difference between accuracy 

and precision can be illustrated effectively by analogy to shooting arrows at 

a target, as sketched in Fig. 1–50. Shooter A is very precise, but not very 

accurate, while shooter B has better overall accuracy, but less precision.

 Many engineers do not pay proper attention to the number of significant 

digits in their calculations. The least significant numeral in a number implies 

the precision of the measurement or calculation. For example, a result 

written as 1.23 (three significant digits) implies that the result is precise to 

within one digit in the second decimal place; i.e., the number is somewhere 

between 1.22 and 1.24. Expressing this number with any more digits would 

be misleading. The number of significant digits is most easily evaluated 

when the number is written in exponential notation; the number of signifi-

cant digits can then simply be counted, including zeroes. Alternatively, the 

A

B

+
+
+

+
+

+

+

++
++++

++

FIGURE 1–50
Illustration of accuracy versus 

precision. Shooter A is more precise, 

but less accurate, while shooter B is 

more accurate, but less precise.
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least significant digit can be underlined to indicate the author’s intent. Some 

examples are shown in Table 1–3.

 When performing calculations or manipulations of several parameters, the 

final result is generally only as precise as the least precise parameter in the 

problem. For example, suppose A and B are multiplied to obtain C. If A � 
2.3601 (five significant digits), and B � 0.34 (two significant digits), then 

C � 0.80 (only two digits are significant in the final result). Note that most 

students are tempted to write C � 0.802434, with six significant digits, since 

that is what is displayed on a calculator after multiplying these two numbers.

 Let’s analyze this simple example carefully. Suppose the exact value of 

B is 0.33501, which is read by the instrument as 0.34. Also suppose A is 

exactly 2.3601, as measured by a more accurate and precise instrument. In 

this case, C � A � B � 0.79066 to five significant digits. Note that our first 

answer, C � 0.80 is off by one digit in the second decimal place. Likewise, 

if B is 0.34499, and is read by the instrument as 0.34, the product of A and 

B would be 0.81421 to five significant digits. Our original answer of 0.80 

is again off by one digit in the second decimal place. The main point here 

is that 0.80 (to two significant digits) is the best one can expect from this 

multiplication since, to begin with, one of the values had only two signifi-

cant digits. Another way of looking at this is to say that beyond the first two 

digits in the answer, the rest of the digits are meaningless or not signifi-

cant. For example, if one reports what the calculator displays, 2.3601 times 

0.34 equals 0.802434, the last four digits are meaningless. As shown, the 

final result may lie between 0.79 and 0.81—any digits beyond the two sig-

nificant digits are not only meaningless, but misleading, since they imply to 

the reader more precision than is really there.

 As another example, consider a 3.75-L container filled with gasoline 

whose density is 0.845 kg/L, and determine its mass. Probably the first 

thought that comes to your mind is to multiply the volume and density 

to obtain 3.16875 kg for the mass, which falsely implies that the mass so 

determined is precise to six significant digits. In reality, however, the mass 

cannot be more precise than three significant digits since both the volume 

and the density are precise to three significant digits only. Therefore, the 

result should be rounded to three significant digits, and the mass should be 

reported to be 3.17 kg instead of what the calculator displays (Fig. 1–51). 

The result 3.16875 kg would be correct only if the volume and density 

were given to be 3.75000 L and 0.845000 kg/L, respectively. The value 

3.75 L implies that we are fairly confident that the volume is precise within 

�0.01  L, and it cannot be 3.74 or 3.76 L. However, the volume can be 

3.746, 3.750, 3.753, etc., since they all round to 3.75 L.

 You should also be aware that sometimes we knowingly introduce small 

errors in order to avoid the trouble of searching for more accurate data. 

For example, when dealing with liquid water, we often use the value of 

1000  kg/m3 for density, which is the density value of pure water at 0°C. 

Using this value at 75°C will result in an error of 2.5 percent since the den-

sity at this temperature is 975 kg/m3. The minerals and impurities in the 

water will introduce additional error. This being the case, you should have no 

reservation in rounding the final results to a reasonable number of significant 

digits. Besides, having a few percent uncertainty in the results of engineering 

analysis is usually the norm, not the exception.

Given:

Also,  3.75 × 0.845 = 3.16875

Volume:

Density:

Find: Mass: m =   V = 3.16875 kg

Rounding to 3 significant digits:
m = 3.17 kg

(3 significant digits)

V = 3.75 L

� = 0.845 kg/L

�

FIGURE 1–51
A result with more significant digits 

than that of given data falsely implies 

more precision.

TABLE 1–3

Significant digits

   Number of
  Exponential Significant
 Number Notation Digits

 12.3 1.23 � 101 3
 123,000 1.23 � 105 3
 0.00123 1.23 � 10�3 3
 40,300 4.03 � 104 3
 40,300 4.0300 � 104 5
 0.005600 5.600 � 10�3 4
 0.0056 5.6 � 10�3 2
 0.006 6. � 10�3 1
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 When writing intermediate results in a computation, it is advisable to 

keep several “extra” digits to avoid round-off errors; however, the final 

result should be written with the number of significant digits taken into 

consideration. You must also keep in mind that a certain number of signifi-

cant digits of precision in the result does not necessarily imply the same 

number of digits of overall accuracy. Bias error in one of the readings may, 

for example, significantly reduce the overall accuracy of the result, perhaps 

even rendering the last significant digit meaningless, and reducing the over-

all number of reliable digits by one. Experimentally determined values are 

subject to measurement errors, and such errors are reflected in the results 

obtained. For example, if the density of a substance has an uncertainty of 

2 percent, then the mass determined using this density value will also have 

an uncertainty of 2 percent.

 Finally, when the number of significant digits is unknown, the accepted 

engineering standard is three significant digits. Therefore, if the length of a 

pipe is given to be 40 m, we will assume it to be 40.0 m in order to justify 

using three significant digits in the final results.

EXAMPLE 1–6    Significant Digits and Volume Flow Rate

Jennifer is conducting an experiment that uses cooling water from a garden 
hose. In order to calculate the volume flow rate of water through the hose, 
she times how long it takes to fill a container (Fig. 1–52). The volume of 
water collected is V � 4.2 L in time period 	t � 45.62 s, as measured with 
a stopwatch. Calculate the volume flow rate of water through the hose in 
units of cubic meters per minute.

SOLUTION  Volume flow rate is to be determined from measurements of 
volume and time period.
Assumptions  1 Jennifer recorded her measurements properly, such that 
the volume measurement is precise to two significant digits while the time 
period is precise to four significant digits. 2 No water is lost due to splash-
ing out of the container.
Analysis  Volume flow rate V

.
 is volume displaced per unit time and is 

expressed as

Volume flow rate: V
#

5
DV 

Dt

Substituting the measured values, the volume flow rate is determined to be

V
#

5
4.2 L

45.62 s
 a  1 m3

1000 L
b a 60 s

1 min
b 5  5.5 � 10�3m3/min

Discussion  The final result is listed to two significant digits since we can-
not be confident of any more precision than that. If this were an interme-
diate step in subsequent calculations, a few extra digits would be carried 
along to avoid accumulated round-off error. In such a case, the volume flow 
rate would be written as V

.
 � 5.5239 � 10�3 m3/min. Based on the given 

information, we cannot say anything about the accuracy of our result, since 
we have no information about systematic errors in either the volume mea-
surement or the time measurement.

FIGURE 1–52
Photo for Example 1–6 for the 

measurement of volume flow rate.

Photo by John M. Cimbala.
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 Also keep in mind that good precision does not guarantee good accuracy. 
For example, if the batteries in the stopwatch were weak, its accuracy could 
be quite poor, yet the readout would still be displayed to four significant dig-
its of precision.
 In common practice, precision is often associated with resolution, which 
is a measure of how finely the instrument can report the measurement. For 
example, a digital voltmeter with five digits on its display is said to be more 
precise than a digital voltmeter with only three digits. However, the number 
of displayed digits has nothing to do with the overall accuracy of the mea-
surement. An instrument can be very precise without being very accurate 
when there are significant bias errors. Likewise, an instrument with very few 
displayed digits can be more accurate than one with many digits (Fig. 1–53).

Exact time span = 45.623451 . . . s

(a)

TIMEXAM

46. s

(b)

TIMEXAM

43. s

(c)

TIMEXAM

44.189 s

(d)

TIMEXAM

45.624 s

FIGURE 1–53
An instrument with many digits of 

resolution (stopwatch c) may be less 

accurate than an instrument with few 

digits of resolution (stopwatch a). 

What can you say about stopwatches b 

and d?

SUMMARY

In this chapter some basic concepts of fluid mechanics are 

introduced and discussed. A substance in the liquid or gas 

phase is referred to as a fluid. Fluid mechanics is the science 

that deals with the behavior of fluids at rest or in motion 

and the interaction of fluids with solids or other fluids at the 

boundaries.

 The flow of an unbounded fluid over a surface is external 
flow, and the flow in a pipe or duct is internal flow if the 

fluid is completely bounded by solid surfaces. A fluid 

flow is classified as being compressible or incompressible, 

depending on the density variation of the fluid during flow. 

The densities of liquids are essentially constant, and thus the 

flow of liquids is typically incompressible. The term steady 

implies no change with time. The opposite of steady is 

unsteady. The term uniform implies no change with location 

over a specified region. A flow is said to be one-dimensional 
when the properties or variables change in one dimension 

only. A fluid in direct contact with a solid surface sticks to 

the surface and there is no slip. This is known as the no-slip 
condition, which leads to the formation of boundary layers 

along solid surfaces. In this book we concentrate on steady 

incompressible  viscous flows—both internal and external.

 A system of fixed mass is called a closed system, and a 

system that involves mass transfer across its boundaries is 

called an open system or control volume. A large number 

of engineering problems involve mass flow in and out of a 

system and are therefore modeled as control volumes.

 In engineering calculations, it is important to pay particular 

attention to the units of the quantities to avoid errors caused 

by inconsistent units, and to follow a systematic approach. It 

is also important to recognize that the information given is 

not known to more than a certain number of significant digits, 

and the results obtained cannot possibly be accurate to more 

significant digits. The information given on dimensions and 

units; problem-solving technique; and accuracy, precision, 

and significant digits will be used throughout the entire text.
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Guest Author: Lorenz Sigurdson, Vortex Fluid Dynamics Lab, 
University of Alberta

Why do the two images in Fig. 1–54 look alike? Figure 1–54b shows an above-

ground nuclear test performed by the U.S. Department of Energy in 1957. An 

atomic blast created a fireball on the order of 100 m in diameter. Expansion 

is so quick that a compressible flow feature occurs: an expanding spherical 

shock wave. The image shown in Fig. 1–54a is an everyday innocuous event: 

an inverted image of a dye-stained water drop after it has fallen into a pool of 

water, looking from below the pool surface. It could have fallen from your spoon 

into a cup of coffee, or been a secondary splash after a raindrop hit a lake. Why 

is there such a strong similarity between these two vastly different events? The 

application of fundamental principles of fluid mechanics learned in this book 

will help you understand much of the answer, although one can go much deeper.

 The water has higher density (Chap. 2) than air, so the drop has experienced 

negative buoyancy (Chap. 3) as it has fallen through the air before impact. The 

fireball of hot gas is less dense than the cool air surrounding it, so it has posi-

tive buoyancy and rises. The shock wave (Chap. 12) reflecting from the ground 

also imparts a positive upward force to the fireball. The primary structure at 

the top of each image is called a vortex ring. This ring is a mini-tornado of 

concentrated vorticity (Chap. 4) with the ends of the tornado looping around 

to close on itself. The laws of kinematics (Chap. 4) tell us that this vortex ring 

will carry the fluid in a direction toward the top of the page. This is expected in 

both cases from the forces applied and the law of conservation of momentum 

applied through a control volume analysis (Chap. 5). One could also analyze 

this problem with differential analysis (Chaps. 9 and 10) or with computational 
fluid dynamics (Chap. 15). But why does the shape of the tracer material look 

so similar? This occurs if there is approximate geometric and kinematic simi-
larity (Chap. 7), and if the flow visualization (Chap. 4) technique is similar. 

The passive tracers of heat and dust for the bomb, and fluorescent dye for the 

drop, were introduced in a similar manner as noted in the figure caption.

 Further knowledge of kinematics and vortex dynamics can help explain 

the similarity of the vortex structure in the images to much greater detail, as 

discussed by Sigurdson (1997) and Peck and Sigurdson (1994). Look at the 

lobes dangling beneath the primary vortex ring, the striations in the “stalk,” 

and the ring at the base of each structure. There is also topological similarity 

of this structure to other vortex structures occurring in turbulence. Compari-

son of the drop and bomb has given us a better understanding of how turbu-

lent structures are created and evolve. What other secrets of fluid mechanics 

are left to be revealed in explaining the similarity between these two flows?

References
Peck, B., and Sigurdson, L.W., “The Three-Dimensional Vortex Structure of an 

Impacting Water Drop,” Phys. Fluids, 6(2) (Part 1), p. 564, 1994.

Peck, B., Sigurdson, L.W., Faulkner, B., and Buttar, I., “An Apparatus to Study 

Drop-Formed Vortex Rings,” Meas. Sci. Tech., 6, p. 1538, 1995.

Sigurdson, L.W., “Flow Visualization in Turbulent Large-Scale Structure 

Research,” Chapter 6 in Atlas of Visualization, Vol. III, Flow Visualization 

Society of Japan, eds., CRC Press, pp. 99–113, 1997.

FIGURE 1–54
Comparison of the vortex structure 

created by: (a) a water drop after 

impacting a pool of water (inverted, 

from Peck and Sigurdson, 1994), and 

(b) an above-ground nuclear test in 

Nevada in 1957 (U.S. Department of 

Energy). The 2.6 mm drop was dyed 

with fluorescent tracer and illuminated 

by a strobe flash 50 ms after it had 

fallen 35 mm and impacted the clear 

pool. The drop was approximately 

spherical at the time of impact with 

the clear pool of water. Interruption of 

a laser beam by the falling drop was 

used to trigger a timer that controlled 

the time of the strobe flash after impact 

of the drop. Details of the careful 

experimental procedure necessary to 

create the drop photograph are given by 

Peck and Sigurdson (1994) and Peck 

et al. (1995). The tracers added to the 

flow in the bomb case were primarily 

heat and dust. The heat is from the orig-

inal fireball which for this particular 

test (the “Priscilla” event of Operation 

Plumbob) was large enough to reach 

the ground from where the bomb was 

initially suspended. Therefore, the 

tracer’s initial geometric condition 

was a sphere intersecting the ground.

(a) From Peck, B., and Sigurdson, L. W., 
Phys. Fluids, 6(2)(Part 1), 564, 1994. 
Used by permission of the author.

(b) United States Department of Energy. 
Photo from Lorenz Sigurdson.

 (a) (b)

APPLICATION SPOTLIGHT ■ What Nuclear Blasts and Raindrops Have in Common
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33

PROBLEMS*

Introduction, Classification, and System

1–1C  Consider the flow of air over the wings of an aircraft. 

Is this flow internal or external? How about the flow of gases 

through a jet engine?

1–2C  Define incompressible flow and incompressible fluid. 

Must the flow of a compressible fluid necessarily be treated 

as compressible?

1–3C  Define internal, external, and open-channel flows.

1–4C  How is the Mach number of a flow defined? What 

does a Mach number of 2 indicate?

1–5C  When an airplane is flying at a constant speed rela-

tive to the ground, is it correct to say that the Mach number 

of this airplane is also constant?

1–6C  Consider the flow of air at a Mach number of 0.12. 

Should this flow be approximated as being incompressible?

1–7C  What is the no-slip condition? What causes it?

1–8C  What is forced flow? How does it differ from natural 

flow? Is flow caused by winds forced or natural flow?

1–9C  What is a boundary layer? What causes a boundary 

layer to develop?

1–10C  What is the difference between the classical and the 

statistical approaches?

1–11C  What is a steady-flow process?

1–12C  Define stress, normal stress, shear stress, and pressure.

1–13C  When analyzing the acceleration of gases as they 

flow through a nozzle, what would you choose as your sys-

tem? What type of system is this?

1–14C  When is a closed system, and when is it a control 

volume?

1–15C  You are trying to understand how a reciprocating air 

compressor (a piston-cylinder device) works. What system 

would you use? What type of system is this?

1–16C  What are system, surroundings, and boundary?

Mass, Force, and Units
1–17C  Explain why the light-year has the dimension of length.

1–18C  What is the difference between kg-mass and kg-force?

1–19C  What is the difference between pound-mass and 

pound-force?

1–20C  In a news article, it is stated that a recently devel-

oped geared turbofan engine produces 15,000 pounds of 

thrust to propel the aircraft forward. Is “pound” mentioned 

here lbm or lbf? Explain.

1–21C  What is the net force acting on a car cruising at a 

constant velocity of 70 km/h (a) on a level road and (b) on 

an uphill road?

1–22  A 6-kg plastic tank that has a volume of 0.18 m3 is 

filled with liquid water. Assuming the density of water is 

1000 kg/m3, determine the weight of the combined system.

1–23  What is the weight, in N, of an object with a mass of 

200 kg at a location where g � 9.6 m/s2?

1–24  What is the weight of a 1-kg substance in N, kN, 

kg∙m/s2, kgf, lbm∙ft/s2, and lbf?

1–25  Determine the mass and the weight of the air contained 

in a room whose dimensions are 6 m � 6 m � 8 m. Assume 

the density of the air is 1.16 kg/m3.  Answers: 334.1 kg, 3277 N

1–26  While solving a problem, a person ends up with the 

equation E � 16 kJ 
 7 kJ/kg at some stage. Here E is the 

total energy and has the unit of kilojoules. Determine how to 

correct the error and discuss what may have caused it.

1–27  The acceleration of high-speed aircraft is sometimes 

expressed in g’s (in multiples of the standard acceleration of 

gravity). Determine the net force, in N, that a 90-kg man would 

experience in an aircraft whose acceleration is 6 g’s.

1–28  A 5-kg rock is thrown upward with a force of 

150 N at a location where the local gravitational 

acceleration is 9.79 m/s2. Determine the acceleration of the 

rock, in m/s2.

1–29  Solve Prob. 1–28 using EES (or other) software. 

Print out the entire solution, including the 

numerical results with proper units.

1–30  The value of the gravitational acceleration g decreases 

with elevation from 9.807 m/s2 at sea level to 9.767 m/s2 at 

an altitude of 13,000 m, where large passenger planes cruise. 

Determine the percent reduction in the weight of an airplane 

cruising at 13,000 m relative to its weight at sea level.

1–31  At 45° latitude, the gravitational acceleration as a 

function of elevation z above sea level is given by g � a � bz, 

where a � 9.807 m/s2 and b � 3.32 � 10�6 s�2. Determine 

the height above sea level where the weight of an object will 

decrease by 1 percent.  Answer: 29,500 m

* Problems designated by a “C” are concept questions, and 
students are encouraged to answer them all. Problems with the 

 icon are solved using EES, and complete solutions together 
with parametric studies are included on the text website. Problems 
with the  icon are comprehensive in nature and are intended to 
be solved with an equation solver such as EES.
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1–32  A 4-kW resistance heater in a water heater runs for 2 

hours to raise the water temperature to the desired level. Deter-

mine the amount of electric energy used in both kWh and kJ.

1–33  The gas tank of a car is filled with a nozzle that dis-

charges gasoline at a constant flow rate. Based on unit con-

siderations of quantities, obtain a relation for the filling time 

in terms of the volume V of the tank (in L) and the discharge 

rate of gasoline (V̇ , in L/s).

1–34  A pool of volume V (in m3) is to be filled with water 

using a hose of diameter D (in m). If the average discharge 

velocity is V (in m/s) and the filling time is t (in s), obtain a 

relation for the volume of the pool based on unit consider-

ations of quantities involved.

1–35  Based on unit considerations alone, show that the 

power needed to accelerate a car of mass m (in kg) from rest 

to velocity V (in m/s) in time interval t (in s) is proportional 

to mass and the square of the velocity of the car and inversely 

proportional to the time interval.

1–36  An airplane flies horizontally at 70 m/s. Its propeller 

delivers 1500 N of thrust (forward force) to overcome aero-

dynamic drag (backward force). Using dimensional reasoning 

and unity converstion ratios, calculate the useful power deliv-

ered by the propeller in units of kW and horsepower.

1–37  If the airplane of Problem 1–36 weighs 1450 lbf, esti-

mate the lift force produced by the airplane’s wings (in lbf 

and newtons) when flying at 70.0 m/s.

1–38  The boom of a fire truck raises a fireman (and his 

equipment—total weight 1250 N) 18 m into the air to fight 

a building fire. (a) Showing all your work and using unity 

conversion ratios, calculate the work done by the boom on 

the fireman in units of kJ. (b) If the useful power supplied by 

the boom to lift the fireman is 2.60 kW, estimate how long it 

takes to lift the fireman.

1–39  A man goes to a traditional market to buy a steak for 

dinner. He finds a 12-oz steak (1 lbm = 16 oz) for $3.15. 

He then goes to the adjacent international market and finds a 

320-g steak of identical quality for $3.30. Which steak is the 

better buy?

1–40  Water at 20°C from a garden hose fills a 2.0 L con-

tainer in 2.85 s. Using unity converstion ratios and showing 

all your work, calculate the volume flow rate in liters per 

minute (Lpm) and the mass flow rate in kg/s.

1–41  A forklift raises a 90.5 kg crate 1.80 m. (a) Showing 

all your work and using unity conversion ratios, calculate the 

work done by the forklift on the crane, in units of kJ. (b) If it 

takes 12.3 seconds to lift the crate, calculate the useful power 

supplied to the crate in kilowatts.

Modeling and Solving Engineering Problems

1–42C  When modeling an engineering process, how is the 

right choice made between a simple but crude and a complex 

but accurate model? Is the complex model necessarily a better 

choice since it is more accurate?

1–43C  What is the difference between the analytical and 

experimental approach to engineering problems? Discuss the 

advantages and disadvantages of each approach.

1–44C  What is the importance of modeling in engineering? 

How are the mathematical models for engineering processes 

prepared?

1–45C  What is the difference between precision and accuracy? 

Can a measurement be very precise but inaccurate? Explain.

1–46C  How do the differential equations in the study of a 

physical problem arise?

1–47C  What is the value of the engineering software pack-

ages in (a) engineering education and (b) engineering practice?

1–48  Solve this system of three equations with three 

unknowns using EES:

 2x 2 y 1 z 5 9 

 3x2 1 2y 5 z 1 2 

 xy 1 2z 5 14 

1–49  Solve this system of two equations with two 

unknowns using EES:

 x3 2 y2 5 10.5 

 3xy 1 y 5 4.6 

1–50  Determine a positive real root of this equation 

using EES:

3.5x3 2 10x0.5 2 3x 5 24

1–51  Solve this system of three equations with three 

unknowns using EES:

 x2y 2 z 5 1.5 

 x 2 3y0.5 1 xz 5 22 

 x 1 y 2 z 5 4.2 

Review Problems

1–52  The reactive force developed by a jet engine to push 

an airplane forward is called thrust, and the thrust developed 

by the engine of a Boeing 777 is about 85,000 lbf. Express 

this thrust in N and kgf.

1–53  The weight of bodies may change somewhat from 

one location to another as a result of the variation of the 

gravitational acceleration g with elevation. Accounting for 

this variation using the relation in Prob. 1–33, determine 

the weight of an 80.0-kg person at sea level (z � 0), in 

Denver (z � 1610 m), and on the top of Mount Everest 

(z � 8848 m).
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1–54  For liquids, the dynamic viscosity �, which is a measure 

of resistance against flow is approximated as � � a10b/(T�c), 

where T is the absolute temperature, and a, b and c are experi-

mental constants. Using the data listed in Table A-7 for metha-

nol at 20ºC, 40ºC and 60ºC, determine the constant a, b and c.

1–55  An important design consideration in two-phase pipe 

flow of solid-liquid mixtures is the terminal settling velocity 

below, which the flow becomes unstable and eventually the 

pipe becomes clogged. On the basis of extended transportation 

tests, the terminal settling velocity of a solid particle in the rest 

water given by VL � FL "2gD 1S 2 1 2 , where FL is an experi-

mental coefficient, g the gravitational acceleration, D the pipe 

diameter, and S the specific gravity of solid particle. What is the 

dimension of FL? Is this equation dimensionally homogeneous?

1–56  Consider the flow of air through a wind turbine whose 

blades sweep an area of diameter D (in m). The average air 

velocity through the swept area is V (in m/s). On the bases of 

the units of the quantities involved, show that the mass flow 

rate of air (in kg/s) through the swept area is proportional to 

air density, the wind velocity, and the square of the diameter 

of the swept area.

1–57  The drag force exerted on a car by air depends on 

a dimensionless drag coefficient, the density of air, the car 

velocity, and the frontal area of the car. That is, FD = function 

(CDrag, Afront, �, V ). Based on unit considerations alone, obtain 

a relation for the drag force.

1–61  The weight of a l0-kg mass at sea level is

(a) 9.81 N (b) 32.2 kgf (c) 98.1 N (d) 10 N (e) l00 N

1–62  The weight of a 1-lbm mass is

(a) 1 lbm∙ft/s2 (b) 9.81 lbf (c) 9.81 N (d) 32.2 lbf (e) 1 lbf

1–63  One kJ is not equal to

(a) 1 kPa∙m3 (b) 1 kN∙m (c) 0.001 MJ (d) 1000 J (e) 1 kg∙m2/s2

1–64  Which is a unit for the amount of energy?

(a) Btu/h (b) kWh (c) kcal/h (d) hp (e) kW

1–65  A hydroelectric power plant operates at its rated 

power of 7 MW. If the plant has produced 26 million kWh of 

electricity in a specified year, the number of hours the plant 

has operated that year is

(a) 1125 h (b) 2460 h (c) 2893 h (d) 3714 h (e) 8760 h

Design and Essay Problems

1–66  Write an essay on the various mass- and volume-

measurement devices used throughout history. Also, explain 

the development of the modern units for mass and volume.

1–67  Search the Internet to find out how to properly add 

or subtract numbers while taking into consideration the num-

ber of significant digits. Write a summary of the proper tech-

nique, then use the technique to solve the following cases: (a) 

1.006 
 23.47, (b) 703,200 � 80.4, and (c) 4.6903 � 14.58. 

Be careful to express your final answer to the appropriate 

number of significant digits.

Air
V

Air
V

FIGURE P1–57

Fundamentals of Engineering (FE) Exam Problems

1–58  The speed of an aircraft is given to be 260 m/s in air. 

If the speed of sound at that location is 330 m/s, the flight of 

aircraft is

(a) Sonic (b) Subsonic (c) Supersonic (d) Hypersonic

1–59  The speed of an aircraft is given to be 1250 km/h. 

If the speed of sound at that location is 315 m/s, the Mach 

number is

(a) 0.5 (b) 0.85 (c) 1.0 (d) 1.10 (e) 1.20

1–60  If mass, heat, and work are not allowed to cross the 

boundaries of a system, the system is called

(a) Isolated (b) Isothermal (c) Adiabatic (d) Control mass

(e) Control volume
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