CHAPTER 4

Digital Transmission

Solutions to Odd-Numbered Review Questions and Exercises

Review Questions

1. The three different techniques described in this chapter are line coding, block coding, and scrambling.
2. The data rate defines the number of data elements (bits) sent in 1s. The unit is bits per second (bps). The signal rate is the number of signal elements sent in 1s. The unit is the baud.
3. When the voltage level in a digital signal is constant for a while, the spectrum creates very low frequencies, called DC components, that present problems for a system that cannot pass low frequencies.
4. In this chapter, we introduced unipolar, polar, bipolar, multilevel, and multitransition coding.
5. Scrambling, as discussed in this chapter, is a technique that substitutes long zerolevel pulses with a combination of other levels without increasing the number of bits.
6. In parallel transmission we send data several bits at a time. In serial transmission we send data one bit at a time.

Exercises

13. We use the formula $\mathbf{s}=\mathbf{c} \times \mathbf{N} \times(\mathbf{1} / \mathbf{r})$ for each case. We let $\mathrm{c}=1 / 2$.
a. $\mathrm{r}=1 \rightarrow \mathrm{~s}=(1 / 2) \times(1 \mathrm{Mbps}) \times 1 / \mathbf{1}=500 \mathrm{kbaud}$
b. $\mathrm{r}=1 / 2 \rightarrow \mathrm{~s}=(1 / 2) \times(1 \mathrm{Mbps}) \times 1 /(\mathbf{1} / \mathbf{2})=\mathbf{1}$ Mbaud
c. $\mathrm{r}=2 \rightarrow \mathrm{~s}=(1 / 2) \times(1 \mathrm{Mbps}) \times 1 / 2=250$ Kbaud
d. $\mathrm{r}=4 / 3 \rightarrow \mathrm{~s}=(1 / 2) \times(1 \mathrm{Mbps}) \times 1 /(4 / 3)=375 \mathrm{Kbaud}$
14. See Figure 4.1 Bandwidth is proportional to (3/8)N which is within the range in Table 4.1 ($\mathrm{B}=0$ to N) for the NRZ-L scheme.
15. See Figure 4.2. Bandwidth is proportional to $(\mathbf{1 2 . 5} / \mathbf{8}) \mathrm{N}$ which is within the range in Table $4.1(\mathrm{~B}=\mathrm{N}$ to $\mathrm{B}=2 \mathrm{~N})$ for the Manchester scheme.

Figure 4.1 Solution to Exercise 15

Figure 4.2 Solution to Exercise 17

19. See Figure 4.3. B is proportional to $(5.25 / 16) \mathbf{N}$ which is inside range in Table 4.1 ($\mathrm{B}=0$ to $\mathrm{N} / 2$) for $2 \mathrm{~B} / 1 \mathrm{Q}$.
21. The data stream can be found as
a. NRZ-I: 10011001.
b. Differential Manchester: $\mathbf{1 1 0 0 0 1 0 0}$.
c. AMI: 01110001.
23. The data rate is 100 Kbps . For each case, we first need to calculate the value f / N. We then use Figure 4.8 in the text to find P (energy per Hz). All calculations are approximations.
a. $\mathrm{f} / \mathrm{N}=0 / 100 \quad=0 \quad \rightarrow \quad \mathbf{P}=\mathbf{0 . 0}$
b. $\mathrm{f} / \mathrm{N}=50 / 100 \quad=1 / 2 \rightarrow \quad \mathbf{P}=0.3$
c. $\mathrm{f} / \mathrm{N}=100 / 100=1 \quad \rightarrow \quad \mathbf{P}=\mathbf{0 . 4}$
d. $\mathrm{f} / \mathrm{N}=150 / 100=1.5 \quad \rightarrow \quad \mathbf{P}=\mathbf{0 . 0}$

Figure 4.3 Solution to Exercise 19

25. In $5 B / 6 B$, we have $2^{5}=32$ data sequences and $2^{6}=64$ code sequences. The number of unused code sequences is $64-32=32$. In $3 \mathrm{~B} / 4 \mathrm{~B}$, we have $2^{3}=8$ data sequences and $2^{4}=16$ code sequences. The number of unused code sequences is $16-8=8$.
27
a. In a low-pass signal, the minimum frequency 0 . Therefore, we have

$$
f_{\max }=0+200=200 \mathrm{KHz} . \quad \rightarrow \mathrm{f}_{\mathrm{s}}=2 \times 200,000=\mathbf{4 0 0 , 0 0 0} \text { samples } / \mathbf{s}
$$

b. In a bandpass signal, the maximum frequency is equal to the minimum frequency plus the bandwidth. Therefore, we have

$$
f_{\max }=100+200=300 \mathrm{KHz} . \rightarrow \mathrm{f}_{\mathrm{s}}=2 \times 300,000=\mathbf{6 0 0 , 0 0 0} \text { samples } / \mathbf{s}
$$

29. The maximum data rate can be calculated as

$$
\mathrm{N}_{\max }=2 \times \mathrm{B} \times \mathrm{n}_{\mathrm{b}}=2 \times 200 \mathrm{KHz} \times \log _{2} 4=\mathbf{8 0 0} \mathbf{~ k b p s}
$$

31. We can calculate the data rate for each scheme:
a. $\mathrm{NRZ} \quad \rightarrow \quad \mathrm{N}=2 \times \mathrm{B}=2 \times 1 \mathrm{MHz}=\mathbf{2} \mathbf{M b p s}$
b. Manchester $\rightarrow \quad \mathrm{N}=1 \times \mathrm{B}=1 \times 1 \mathrm{MHz}=\mathbf{1} \mathbf{~ M b p s}$
c. MLT-3 $\quad \rightarrow \quad \mathrm{N}=3 \times \mathrm{B}=3 \times 1 \mathrm{MHz}=\mathbf{3} \mathbf{M b p s}$
d. 2B1Q $\quad \rightarrow \quad \mathrm{N}=4 \times \mathrm{B}=4 \times 1 \mathrm{MHz}=4 \mathrm{Mbps}$
