CHAPTER 30

Cryptography

Solutions to Odd-Numbered Review Questions and Exercises

Review Questions

1. Only one key (the shared secret key) is needed for two-way communication. However, for more security, it is recommended that a different key be used for each direction.
2. Each person in the first group needs to have $\mathbf{1 0}$ keys to communicate with all people in the second group. This means we need at least $10 \times 10=\mathbf{1 0 0}$ keys. Note that the same keys can be used for communication in the reverse direction. However, note that we are not considering the communication between the people in the same group. For this purpose, we would need more keys.
3. For two-way communication, 4 keys are needed. Alice needs a private key and a public key; Bob needs a private key and a public key.
4. For two-way communication, the people in the first group need 10 pairs of keys, and the people in the second group need a separate 10 pairs of keys. In other words, for two-way communication 40 keys are needed.

Exercises

9. If the two persons have two pairs of asymmetric keys, then they can send messages using these keys to create a session symmetric key, a key which is valid for one session and should not be used again. Another solution is to use a trusted center that creates and send symmetric keys to both of them using the symmetric key or asymmetric key that has been already established between each person and the trusted center. We will discuss this mechanism in Chapter 31.
10.

a. We can show the encryption character by character. We encode characters A to Z as 0 to 25 . To wrap, we subtract 26 .

$$
\begin{array}{llll}
\text { T } & 19+20=39-26=13 & & \rightarrow \\
\text { H } & 07+20=27-26=01 & \rightarrow & B \\
\text { I } & 08+20=28-26=02 & & \text { C }
\end{array}
$$

S	$18+20=38-26=12$	\rightarrow	M
I	08+20=28-26=02	\rightarrow	C
S	$18+20=38-26=12$	\rightarrow	M
A	00+20=20	\rightarrow	U
N	$13+20=33-26=07$	\rightarrow	H
E	04+20=24	\rightarrow	Y
X	$23+20=43-26=17$	\rightarrow	R
E	04+20 $=24$	\rightarrow	Y
R	$17+20=37-26=11$	\rightarrow	L
C	02+20 = 22	\rightarrow	W
I	$08+20=28-26=02$	\rightarrow	C
S	$18+20=38-26=12$	\rightarrow	M
E	04+20=24	\rightarrow	Y

The encrypted message is NBCM CM UH YRYLWCMY.
b. We can show the decryption character by character. We encode characters A to Z as 0 to 25 . To wrap the negative numbers, we add 26 .

N	$13-20=-07+26=19$	\rightarrow	T
B	01-20 $=-19+26=07$	\rightarrow	H
C	02-20 $=-18+26=08$	\rightarrow	I
M	12-20=-08+26=18	\rightarrow	S
C	02-20 = - $18+26=08$	\rightarrow	I
M	12-20=-08+26=18	\rightarrow	S
U	20-20 $=00$	\rightarrow	A
H	07-20=-13+26=13	\rightarrow	N
Y	24-20=04	\rightarrow	E
R	$17-20=-03+26=23$	\rightarrow	X
Y	24-20=04	\rightarrow	E
L	$11-20=-09+26=17$	\rightarrow	R
W	22-20=02	\rightarrow	C
C	02-20 $=-18+26=08$	\rightarrow	I
M	$12-20=-08+26=18$	\rightarrow	S
Y	24-20=04	\rightarrow	E

The decrypted message is THIS IS AN EXERCISE.
13. We can, but it is not safe at all. The best we can do is to change a 0 sometimes to 0 and sometimes to 1 and to change a 1 sometimes to 0 and sometimes to 1 . It can be easily broken using trial and error.
15. Input: $111001 \rightarrow$ output: 001111
17.
a. Input: $110010 \rightarrow$ output: $\mathbf{0 1}$
b. Input: $101101 \rightarrow$ output: 00
19.
a. Input: 1011 (the leftmost bit is 1), the output is: $\mathbf{1 1 0}$
b. Input: 0110 (the leftmost bit is 0), the output is: $\mathbf{0 1 1}$
21. We can follow the process until we find the value of d. For the last step, we need to use an algorithm defined in abstract algebra. We don't expect students know how to do it unless they have taken a course in abstract algebra or cryptography.
a. $n=p \times q=19 \times 23=437$
b. $\phi=(p-1) \times(q-1)=18 \times 22=396$
c. $e=5 \quad d=317$

We can check that $e \times d=5 \times 317=1 \bmod 396$
23. Bob knows p and q, so he can calculate $\phi=(p-1) \times(q-1)$ and find d such that d $\times e=1 \bmod \phi$. Eve does not know the value of p or q. She just knows that $n=p \times$ q. If n is very large (hundreds of digits), it is very hard to factor it to p and q. Without knowing one of these values, she cannot calculate ϕ. Without ϕ, it is impossible to find d given e. The whole idea of RSA is that n should be so large that it is impossible to factor it.
25. The value of $e=1$ means no encryption at all because $\mathbf{C}=\mathbf{P}^{\mathbf{e}}=\mathbf{P}$. The ciphertext is the same as plaintext. Eve can intercept the ciphertext and use it as plaintext.
27. Although Eve can use what is called the ciphertext attack to find Bob's key, she could have done it by intercepting the message. In the ciphertext attack, the intruder can get several different ciphertexts (using the same pair of keys) and find the private key of the receiver. If the value of the public key and n are very large, this is a very time-consuming and difficult task.
29. Nothing happens in particular. Assume both Alice and Bob choose $x=y=9$. We have the following situation with $g=7$ and $p=23$:
$\mathrm{R} 1=7^{9} \bmod 23=15$
$\mathrm{R} 2=7^{9} \bmod 23=15$
Alice calculates $\mathrm{K}=(\mathrm{R} 2)^{9} \bmod 23=15^{9} \bmod 23=\mathbf{1 4}$
Bob calculates $\mathrm{K}=(\mathrm{R} 1)^{9} \bmod 23=15^{9} \bmod 23=\mathbf{1 4}$

