
B LibreOffice Basic

A P P E N D I X

INTRODUCTION

LibreOffice BASIC (or LO Basic in short) is the accompanying programming interface that
is coupled with LO Calc to perform more advanced automation. It has as its backbone
the BASIC programming language and added elements to permit it to interact with
the component objects of Calc (and also other LibreOffice suite applications). BASIC
is the name of the programming language, and not that it is easy or elementary. To
access the Integrated Development Environment (IDE), select Tools/Macros/Organize
Macros/LibreOffice Basic or simply key Alt + F11. The LO IDE is an updated version
of the OpenOffice.org IDE. Other than BASIC, the LO IDE supports other programming
languages such as BeanShell, JavaScript, and Python. We will only focus on LO Basic here.

Once you invoked the IDE, a separate LO Basic Macros dialog as shown in
Figure B-1 will appear.

Figure B-1

LO Basic
Macros Dialog

A P P E N D I X B LIBREOFFICE BASIC 255254

LO organizes the macros as follows:

•	 The highest level is the Library Container. Each library container holds at least one
Library and each library holds Modules, if there are any. Each module contains
macros, which can be viewed and edited in the spreadsheet software’s IDE (also
referred to as the LO Basic Editor), as shown in Figure B-2.

•	 The Calc application itself has two library containers: the LibreOffice Macros
container holds all the macros that come with Calc, and the My Macros container
has the macros that you have placed there. These macros are of course organized
into libraries and modules as described above in these containers. The macros in
OpenOffice.org Macros are utilities that you can use as study reference.

•	 My Macros library container comes by default with an empty Standard library. The
macros in the My Macros modules stay with the LO application on your computer
and are available whenever you open Calc. The LibreOffice Macros container goes a
bit further in that the macros there are available to anyone using Calc on his or her
computer.

•	 Every spreadsheet document is a library container. It contains by default a Standard
library each. You can add more libraries. To do this, click Organizer in the Basic
Macros dialog. In the Organizer dialog that now appears, select the Library tab and
choose the library container you want to locate your library. Click New, provide
the name of your library, and click OK. You can also similarly delete your created
libraries. If you want to return to the Basic Macros dialog, click Close.

•	 In the Organizer dialog, you can add a module or dialog. Yes, you can make dialogs
like those that you have been using thus far. To add a module, select the Module
tab, click the library you want to locate your module, and click New. Enter next
your module name into the dialog and click OK. To delete the module, click on the
module and click Delete. You can similarly add or delete a dialog. Click Close to
return to the Basic Macros dialog.

•	 In the Basic Macros dialog, select a library and click New. This will create a new
macro in the first module of that library and Basic Editor will automatically open
for you to edit this and other macros in the module. You can also move to other
modules in the same library by clicking on the module tabs in the bottom-left corner
of the IDE. To get back to the Basic Macros dialog from Basic Editor, select Tools/
Macros/Organize Macros from its menu.

•	 Another way to get to Basic Editor from the Basic Macros dialog is to select the
module instead and click Edit. All this sounds rather confusing. The main thing to
remember is that the Basic Macros dialog only allows you to interact with the macros
while Organizer lets you interact with modules, dialogs, and libraries.

A P P E N D I X B LIBREOFFICE BASIC 255254

•	 Putting macros in the spreadsheet document’s library container, as oppose to the
LibreOffice Macros and My Macros containers of the application, means that your
macros there are available with the spreadsheet document wherever it goes. This is
particularly important if you intend to pass your spreadsheet document to another
person or want to be able to work on it on another computer.

Figure B-2

LO Basic Editor
and Integrated
Development
Environment

Let us now review the controls in the Basic Editor:
•	 In the top panel, you will see the Code Window. This displays the macro codes in

the active module. Basic Editor would display at least a Main subroutine. This is
to show you the format of a subroutine. You can rename this subroutine and write
codes in it. We will discuss more about writing codes later.

•	 Just below the main menu, there is a row of buttons that you can use to support
your macro development work. The first button is the Compile button. As you amend
your code, you may make syntax or “grammatical” mistakes in using LO Basic and
Calc objects. Click Compile to request the IDE to compile your code and surface the
syntax errors.

•	 The IDE provides an Object Catalog as a reference for programmers. Click Object
Catalog to list all the objects at your disposal. As you review or type your macro
codes, you can select a key word and key F1 to get help on it.

•	 To	 run	your	macro,	 click Run. This will run the first macro in your module. If you
are writing a few macros in the module, you can shift each in turn to the top and test
them one at a time. After you are done, you can rearrange them to the final order.

•	 Before	you	run	the	macro	you	have	written	or	edited,	 it	will	be	wise	 to	step	 through	 it	
first. This is to run the macro one line at a time, as if in slow motion. To do this, just
click Step Into. A marker on the left of the code indicates which code line it is at.

•	 A	macro	may	call	another	macro.	If	you	step	into	a	line	with	a	macro	call,	it	will	take	
you into the called macro. You can skip this line when you come to it by clicking Step
Over to stay in your current macro. After you are satisfied with your code review
and testing, you can click Step Out to run the remaining lines of code and finish the
test run.

A P P E N D I X B LIBREOFFICE BASIC 257256

•	 To	 run	 multiple	 lines	 of	 code,	 faster	 than	 one	 step	 at	 a	 time,	 you	 can	 introduce	
breakpoints to it. Move your cursor to a critical line of code and click BreakPoint
On/Off. You can continue to mark as many breakpoints as you desire. You can switch
each of them off by repeating the same steps. With breakpoints introduced, when you
run your code, it will pause at the next breakpoint.

•	 The	values	of	variables	in	your	macro	change	as	they	are	processed	through	the	code.	
To better understand what is happening in your macro, you would want to watch the
variable values during each stage of the processing. Select a variable that you want
to watch and click Enable Watch. You can keep doing this for as many variables as
you like, one at a time.

•	 In	 the	 bottom-left	 corner	 of	 the	 IDE,	 you	will	 find	 the	Watch Window. As you run
or step through your macro, the variables and their current values will be displayed
there. The window in the bottom-right corner shows which macro is currently running
and the hierarchy of macros being called.

•	 When	you	edit	and	test	your	macro,	 remember	 to	use	 the	Save button often to save
your work. Sometimes, for example, when the macro runs into an infinite loop and
crashes the IDE, all of your work may be irrecoverably lost.

FURTHER REFERENCES

•	 Leong,	 2014.	LibreOffice	and	OpenOffice	Basic	Web	Resources
 http://isotope.unisim.edu.sg/users/tyleong/SpreadsheetModeling.

htm#OOBasic
	 http://dl.dropboxusercontent.com/u/19228704/SpreadsheetModeling.

htm#OOBasic

A P P E N D I X B LIBREOFFICE BASIC 257256

LO BASIC PRIMER

For non-BASIC programmers, macro recording is the fastest way to perform simple
automation within Calc. It is the simplest form of programming in that you do not need
to know how to write a single line of code. The codes will be automatically created.
All you have to do is to record your keyboard and mouse actions as you work on a
spreadsheet. The saved sequence of commands representing the executed keystrokes and
mouse movement is a macro. It is also alternatively called a program, though this is
generally codes that are directly written by a programmer. The recorded macro will be
coded as a Sub procedure (or better known as subroutine) in a module. The actions, once
recorded, can be repeated by running the macro.

However, in many cases, superfluous garbage codes are recorded as well. There are
also some actions that cannot be coded by recording alone. Therefore, simple editing is
sometimes needed to make the recorded macro work better. We will cover more on LO
Basic programming in later sections when we discuss editing and writing the codes. For
now, it is sufficient to know that macro recording is an extremely convenient way to
capture macro codes that interact with Calc, saving users the need to think hard about
how to code these spreadsheet actions.

Excel/VBA macro codes can also be similarly recorded. The code captures the
resultant manipulations of Excel objects and therefore can be generalized with manual
editing and addition of new lines of codes. The code recorded in LO Calc/Basic is however
of a different nature. It records instead the user’s interactions with the spreadsheet
application (also known as the Dispatch Framework) and not the resultant manipulations
of spreadsheet objects. The recorded LO macro codes, not quite in the LO Basic language,
are as such not really easy to generalize and edit by programmers.

If you are an experienced Excel/VBA user, open your spreadsheet document (which
can	 be	 in	 either	Excel	 or	 LO	 format)	 in	Excel	 and	 record	 your	macros	 there.	Remember	
to save it as an xls or xlsm file and close it. Open this Excel file in LO Calc and save the
file in ods format. In the conversion, the LO spreadsheet software adds a ThisWorkbook
module and also one module for every worksheet, among a few other such things as well.
You will find an Option VBASupport 1 statement at the top line of every module.
This enables your VBA codes to work in the LO Basic environment. You may want to
test if your macros still work since the VBA support for Calc, now progressively being
implemented in their version releases, is not complete, and may not yet cover the more
advanced features you are using.

Nothing beats learning from interesting and practical examples. There are many
examples	 in	 the	 exercises	 and	 tools	 in	 this	 book.	 Look	 out	 for	 those	 Excel	 2007	 format	
workbooks with the xlsm extension in their file names and find their corresponding ods
Calc files. Particularly worth an extra mention are the completed projects and tools in
Chapter	9,	 especially	 the	Useful Macros tool.

A P P E N D I X B LIBREOFFICE BASIC 259258

NOTES

 Note 16: MACRO RECORDING Let us now do a simple macro recording and
then attempt to read and understand the codes created. To enable macro recording, select
Tools/Options/LibreOffice/Advanced in Microsoft Windows or LibreOffice Preferences/
LibreOffice/Advanced in MacOS.

Example:	Record	a	macro	 to	do	automatic	 copying	and	pasting	of	values

1.	 	 In	 a	 new	 spreadsheet	 document,	 select	 Tools/Macros/Record Macro. Once selected,
whatever actions you do with your mouse or keyboard, such as selecting a cell or
scrolling up and down the worksheet, will be recorded as codes. A Record M ... dialog
will appear when macro recording starts. It has a sole Stop Recording button. Unlike
Excel, there is no Relative Reference button on this or in the main menu. How two
different referencing effects are achieved will be discussed in the next step. Should you
accidentally click the dialog-close (X) button in the upper right-hand corner, the dialog
box will disappear and the recording process terminates without any negative effect.

2.	 	 Click	 cell	 B2	 and	 then	 select	 cells	 B2:B5.	 Right-click	 and	 select	Copy in the pop-up
side menu (as shown in Figure B-3). This move is an absolute referenced move. If
you	 use	 the	 keyboard	 arrows	 to	 reach	 cell	 B2,	 the	 recorded	moves	 in	 the	 LO	 Calc	
macro will be relative referenced moves.

3.	 Select	 cell	C2	by	 clicking	 the	mouse	on	 the	 cell,	 right-click,	 and	 then	 select Paste.
4.	 Click	Stop Recording to end the process and the Basic Macros dialog as shown in

Figure B-4 will appear. Select the library you want your macro to be in, enter the
macro name as Macro1, and click Save. Finally, click Close to close the Basic Macros
dialog and end the process.

Once recorded, the macro can be used over and over again. To run the macro, select
Tools/Macros/Run Macro, select the macro to run, and click Run.

Next, let us review and understand the codes you have recorded.

1.	 	 Key	Alt + F11 to launch the Basic Editor window.
2.	 	 Select	Module1 to show the codes in the code window, as shown in Figure B-5.
3. The macro begins with Sub Macro1 and ends with End Sub. These mark the

beginning and the end of the subroutine.
4.	 	 Within	 the	 subroutine,

a.	 	 Lines	2	 to	10	=	Setup	 the	macro	and	declare	 the	variables.
b.	 	 Lines	11	 to	24	=	Cell	 range	B2:B5	 is	 selected.
c.	 	 Lines	25	 to	27	=	The	 selection	 is	 copied.
d.	 	 Lines	28	 to	34	=	Cell	C2	 is	 selected.
e.	 	 Lines	 35	 to	 37	=	The	 copied	 selection	 is	pasted	with	 its	upper-left	 corner	 in	 the	

selected cell in the active sheet.

A P P E N D I X B LIBREOFFICE BASIC 259258

Figure B-3

Step 2
of Macro
Recording

Figure B-4

Basic Macros
Dialog

It is not easy to understand the codes generated. One way to speed up your learning
of recorded macro code is to create mental connections between the mouse and keystroke
actions you made and the recorded lines of code. As an additional check, you can reverse
the process and Step Into the code, making it run one line at a time. To do this, ensure
that your macro is the first in the module and select from the Basic Editor main menu
Debug/Step Into (or key F8).	 Keep	 keying	 F8	 to	 see	 how	 the	marker	moves	 from	 one	
line code to another, while watching the actions played out in the worksheet.

A P P E N D I X B LIBREOFFICE BASIC 261260

Absolute and Relative Referencing

We have covered absolute and relative cell referencing in Note 3 of Appendix A. When
you copy and paste a spreadsheet formula from one cell to another, it automatically
adjusts the cell references in the formula unless they have been made Absolute using
the $ sign. There is a similar concept in macro recording. Whenever you select a cell
directly with your mouse, that selection would refer to that cell and is not interpreted as
some relative movement from the last active cell. If you use the keyboard arrows instead,
the moves recorded will be relative to the last position your cursor was at. You can
record	 the	 same	 macro	 as	 in	 the	 earlier	 example,	 but	 this	 time,	 select	 cell	 B2	 before	
recording the macro and use the keyboard arrows instead of mouse click to move the
cursor. Study the difference between the two approaches.

1.	 	 Select	Tools/Macros/Record Macro.
2.	 	 Select	 cells	 B2:B5	 by	 holding	 down	 the	 Shift key and then using the down-arrow

key.	Right-click	and	 select	Copy.

Figure B-5

Codes for
Macro1

A P P E N D I X B LIBREOFFICE BASIC 261260

3.	 	 Key	the	up-arrow	a	few	times	to	get	from	cell	B5	to	B2,	key	the	right-arrow	to	select	
cell	C2,	 right-click,	 and	 then	 select	Paste.

4.	 	 Click	Stop Recording to end the process and the Basic Macros dialog will appear.
Select the library you want your macro to be in, enter the macro name as Macro2, and
click OK. Finally, click Close to close the Basic Macros dialog and end the process.

Let us get back to Basic Editor	 and	 read	 the	 codes	 for	Macro2:

sub Macro2

rem ---

rem define variables

dim document as object

dim dispatcher as object

rem ---

rem get access to the document

document = ThisComponent.CurrentController.Frame

dispatcher =

createUnoService("com.sun.star.frame.DispatchHelper")

rem ---

dim args1(1) as new com.sun.star.beans.PropertyValue

args1(0).Name = "By"

args1(0).Value = 1

args1(1).Name = "Sel"

args1(1).Value = true

dispatcher.executeDispatch(document, ".uno:GoDown", "", 0,

args1())

rem ---

dim args2(1) as new com.sun.star.beans.PropertyValue

args2(0).Name = "By"

args2(0).Value = 1

args2(1).Name = "Sel"

args2(1).Value = true

dispatcher.executeDispatch(document, ".uno:GoDown", "", 0,

args2())

A P P E N D I X B LIBREOFFICE BASIC 263262

rem ---

dim args3(1) as new com.sun.star.beans.PropertyValue

args3(0).Name = "By"

args3(0).Value = 1

args3(1).Name = "Sel"

args3(1).Value = true

dispatcher.executeDispatch(document, ".uno:GoDown", "", 0,

args3())

rem ---

dim args4(1) as new com.sun.star.beans.PropertyValue

args4(0).Name = "By"

args4(0).Value = 1

args4(1).Name = "Sel"

args4(1).Value = true

dispatcher.executeDispatch(document, ".uno:GoDown", "", 0, args4())

rem ---

dispatcher.executeDispatch(document, ".uno:Copy", "", 0,

Array())

rem ---

dim args6(1) as new com.sun.star.beans.PropertyValue

args6(0).Name = "By"

args6(0).Value = 1

args6(1).Name = "Sel"

args6(1).Value = false

dispatcher.executeDispatch(document, ".uno:GoUp", "", 0,

args6())

 rem ---

 dim args7(1) as new com.sun.star.beans.PropertyValue

 args7(0).Name = "By"

 args7(0).Value = 1

 args7(1).Name = "Sel"

 args7(1).Value = false

A P P E N D I X B LIBREOFFICE BASIC 263262

dispatcher.executeDispatch(document, ".uno:GoUp", "", 0,

args7())

rem ---

dim args8(1) as new com.sun.star.beans.PropertyValue

args8(0).Name = "By"

args8(0).Value = 1

args8(1).Name = "Sel"

args8(1).Value = false

dispatcher.executeDispatch(document, ".uno:GoUp", "", 0, args8())

rem ---

dim args9(1) as new com.sun.star.beans.PropertyValue

args9(0).Name = "By"

args9(0).Value = 1

args9(1).Name = "Sel"

args9(1).Value = false

dispatcher.executeDispatch(document, ".uno:GoUp", "", 0,

args9())

rem ---

dim args10(1) as new com.sun.star.beans.PropertyValue

args10(0).Name = "By"

args10(0).Value = 1

args10(1).Name = "Sel"

args10(1).Value = false

dispatcher.executeDispatch(document, ".uno:GoRight", "",

0, args10())

rem ---

dispatcher.executeDispatch(document, ".uno:Paste", "", 0,

Array())

end sub

•	 Lines	11	 to	46	=	A	column	of	 four	cells	 from	the	current	active	cell	 is	 selected.	Since	
cell	B2	was	selected	before	the	macro	was	recorded,	this	means	cells	B2:B5	is	selected.

•	 Lines	47	 to	49	=	The	 selection	 is	 copied.

A P P E N D I X B LIBREOFFICE BASIC 265264

•	 Lines	 50	 to	 95	=	A	 relative	offset	 of	 three	 rows	up	 and	one	 column	 to	 the	 right	
from	 the	 last	 active	 cell	 B5	 is	 selected.	 	 In	 Excel,	 the	 active	 cell	 after	 the	 last	
selection	would	be	 cell	B2	and	not	B5.	

•	 Lines	96	 to	98	=	The	 copied	 selection	 is	pasted	 into	 the	 selected	 cell.

Relative	 referencing	 provides	 greater	 flexibility	 as	 new	 active	 cells	 (to	 be	 selected	
before the macro is run) can be any cell in any worksheet. For this demonstrated macro,
it means that we can copy and paste any column of four cells to its immediate right.

The similar macro codes for the two (absolute and relative referenced) cases in Excel
VBA would read:

Sub Macro1()

 Range(“B2:B5”).Select

 Selection.Copy

 Range(“C2”).Select

 ActiveSheet.Paste

End Sub

Sub Macro2()

 ActiveCell.Range(“A1:A4”).Select

 Selection.Copy

 ActiveCell.Offset(0,1).Range(“A1”).Select

 ActiveSheet.Paste

End Sub

These codes will also run in LO Basic if the additional Option VBASupport 1

statement is added to the top of the module.

Quick Tip

 After each copy and paste sequence of operations, Calc leaves behind highlighted
cell range selections in the worksheet. It is a good housekeeping practice to end
your macro with the cursor placed in the appropriate cell and clear away all such
unwarranted distractions. In the worksheet, just point your mouse to the end cell
location and key Esc.

 The corresponding macro statements at the end of your Sub are as follows:

dispatcher=createUnoService("com.sun.star.frame.DispatchHelper")

oDoc = ThisComponent.CurrentController.Frame

dim args(0) as new com.sun.star.beans.PropertyValue

args(0).Name = "ToPoint"

args(0).Value = "A1"

dispatcher.executeDispatch(oDoc,".uno:GoToCell","",0,args())

A P P E N D I X B LIBREOFFICE BASIC 265264

 Alternatively, without using the Dispatch Framework, the macro statements to signal
the end of your Sub are as follows:

oSheet = ThisComponent.Sheets.getByName("Home")

ThisComponent.CurrentController.setActiveSheet(oSheet)

oCell = oSheet.getCellRangeByName("A1")

ThisComponent.CurrentController.select(oCell)

 Note 17: LO BASIC GRAMMAR So far all the programming we have attempted
is by macro recording, letting Calc automatically generate the codes. In order to perform
more complex automation, we need to understand the LO Basic language and Calc objects
a little more so that we can directly work with spreadsheet objects and not just the
Dispatch Framework employed in the recorded codes.

LO Basic is an object-oriented programming language. Thus, it is useful to first
understand the hierarchy of objects to better use the properties, methods, and events of
the objects. The hierarchy of Calc objects is given as follows:

Applications Spreadsheet Function
 Add-in
 Spreadsheet Charts
	 Document	 Sheets	 Range
 Cells

Properties

Each object has its own set of Properties that describes it. Some of the properties of the
Sheet object include row height, column width, and font.

You can set the width of columns A to C to the respective dimensions using the
code below:

oSheet = ThisComponent.CurrentController.ActiveSheet

oSheet.Columns(0).width = 1000 'Sets column A width = 1.0 cm

oSheet.Columns(1).width = 1500 'Sets column B width = 1.5 cm

oSheet.Columns(2).width = 2000 'Sets column C width = 2.0 cm

In general, any property can be set using the syntax below:

Object.Property = Value

Methods

Each object also has its own associated set of Methods, which are actions that can be
performed on it. For example, one of the methods for the range object is ClearContents.
You	can	 clear	 the	 contents	of	 a	 selected	 range	E4:G7	using	 the	 code	below:

A P P E N D I X B LIBREOFFICE BASIC 267266

oSheet = ThisComponent.CurrentController.ActiveSheet

oSheet.getCellByName(“E4:G7”).clearContents(_

 com.sun.star.sheet.CellFlags.VALUE _

 +com.sun.star.sheet.CellFlags.STRING _

 +com.sun.star.sheet.CellFlags.DATETIME)

In general, any method can be activated using the syntax below:

Object.Method

If you have been working with Excel VBA, here is a general difference between that
and LO Basic which you should note. When an Excel object (e.g., cell range) is referenced
in VBA, this object, unless explicitly coded, is assumed to be in the currently active Excel
container (e.g., the active workbook and active worksheet). In LO Basic, each reference
to a Calc object must be fully qualified; you have to specify the spreadsheet document
and sheet explicitly as shown below:

oDoc = ThisComponent

oSheet = oDoc.CurrentController.ActiveSheet

numCars = oSheet.getCellRangeByName(“C7”).Value

If you want to get to another spreadsheet document and sheet, this can be done as
shown below:

‘Open your spreadsheet document ----

oSheet = ThisComponent.Sheets.getByName("Sheet1")

ThisComponent.CurrentController.setActiveSheet(oSheet)

numCars = oSheet.getCellRangeByName(“C7”).Value

‘Close your spreadsheet document ----

You may need to remember first the active spreadsheet document, sheet, and cell,
and return there after you are done so that it would not affect other macros. This is done
as follows:

oActiveSheet = ThisComponent.CurrentController.ActiveSheet

oActiveCell = ThisComponent.CurrentSelection

‘The earlier four lines of code here. ----

ThisComponent.CurrentController.setActiveSheet(oActiveSheet)

ThisComponent.CurrentController.select(oActiveCell)

A P P E N D I X B LIBREOFFICE BASIC 267266

It may be more efficient not to have to move the cursor around the spreadsheet
documents and sheets and directly work with Calc objects as follows:

numCars =

ThisComponent.Sheets(“Sheet1”).getCellRangeByName(“C7”).Value

Quick Tip 1

The ’ sign is the shorthand for REM, the remark or comment key word. All statements that
appear after the sign or the keyword will be regarded as mere comments and not code.
You can sprinkle your macro with comments to make it easier to understand and read.
The other best practice is to indent lines when they are part of another programming
structure. In this case, you can see that all statements between Sub and End Sub are
indented to show that they are part of the subroutine. You can observe how they are
used in other examples later in the chapter.

Similarly, when you record macros, values can only be transferred from one set of
cells to another using Copy and PasteSpecial as shown in Note 16. When you edit the
macro, rewrite it in LO Basic to work directly with Calc objects as shown below.

oSheet = ThisComponent.CurrentController.ActiveSheet

oRange1 = oSheet.getCellRangeByName("B2:B5")

oRange2 = oSheet.getCellRangeByName("C2:C5")

oRange2.DataArray = oRange1.DataArray

The above transfers values between two cell ranges. When there are only single cells
involved, the code is even simpler:

oSheet.getCellRangeByName("C2").Value = _

 oSheet.getCellRangeByName("B2").Value

The underscore (_) is used to break a long code statement into separate rows for easier reading.
Other than transferring data values between cells, you can set formulas in any cell

in the spreadsheet as demonstrated below:

oSheet.getCellRangeByName(“A12”).Formula = “=SUM(A2:A11)”

When the choice of cell uses depends on other values, use the getCellByPosition function
as follows:

Example	1

r = 2 : c = 1

oSheet.getCellRangeByName(“C3”).Value = _

 oSheet.getCellByPosition(c,r).Value ‘Referring to cell B3

A P P E N D I X B LIBREOFFICE BASIC 269268

Example	2
r = 4 : c = 3

oRange = oSheet.getCellRangeByName("L10:P20")

result = oRange.getCellByPosition(c,r).Value ‘Referring to cell O14

The colon (:) is used to separate two statements so that they can be put on a single
line. Conversely, the underscore (_) had been used to break a long code statement into
separate rows for easier reading. You should be reminded that Calc uses (c, r) and
not	 the	 more	 conventional	 (r,	 c)	 scheme	 and	 it	 starts	 counting	 from	 0.	 Therefore	 in	
Example 1	 where	 the	 referenced	 context	 is	 the	 whole	 sheet,	 r	 =	 0	 refers	 to	 row	 1,	 r	 =	
1	 refers	 to	 row	 2,	 ...	 and	 c	 =	 0	 refers	 to	 column	 A,	 c	 =	 1	 refers	 to	 column	 B,	 etc.	 In
Example 2, the	context	is	the	given	range	L10:P20.	Here,	r	=	0	refers	to	row	10,	r	=	1	refers	
to	 row	11,	 ...	 and	c	=	0	 refers	 to	 column	L,	 c	=	1	 refers	 to	 column	M,	etc.

Sub and Function Procedures

A Sub procedure (or subroutine) is a set of codes which when executed performs a series
of spreadsheet actions. Each recorded macro is a Sub. You will now learn how to write
one. Insert a new Module by selecting Tools/Macros/Organize Macro/OpenOffice Basic
in Calc or the Basic Editor to get to the Basic Macros. In this dialog, click Organizer.
In the Organizer dialog, select the Module tab, select the library you want to locate the
module, click New, provide the name of the module and click OK. Back in the Basic
Macros dialog, select the module and click Edit. In the code window, clear away all other
codes and type the following:

Sub SayHi

 MsgBox(“Hi!”)

End Sub

This is a simple Sub to prompt a greeting. To run it in the Basic Editor, click Run
BASIC. Having fun yet?

A Function procedure is also a set of codes. However, its primary purpose is to return
a result computed with the inputs offered to it. You may have used some of the given
spreadsheet functions like AVERAGE and SUM, and soon you will be able to create more
useful functions of your own. Let us begin by writing a simple function to compute the
cube root of a number. In order for the function to return the computed value when the
function is used, the result variable must bear the function’s name, which in this case is
CubeRoot.

In an empty space in the module you have just inserted, type in the following:

Function CubeRoot(number)

 CubeRoot = number^(1/3)

End Function

A P P E N D I X B LIBREOFFICE BASIC 269268

With	this	done,	you	can	use	it	in	the	worksheet.	Key	in	formula	=CubeRoot(8)	into	a	cell	
and	see	the	number	2	appearing	in	it.	All	worksheets	in	the	same	spreadsheet	document	
can use this function. The function you have created can also be used by other Sub and
Function procedures in your spreadsheet document.

Though a Sub procedure does not directly return computed results, data values can
be passed indirectly to and from it through the variable arguments specified within the
brackets next to its name, or cells in the worksheets. A subroutine with arguments can
only be called by another subroutine and not run from Calc directly as a macro since
there is no way to pass the argument values to it that way. We will leave this as a future
topic for you to explore on your own.

Variables and Declaration

In many programming software languages, variables to hold values, whether entered or
computed, need to be defined first. Each variable must be of a data type, namely integer,
real, text, Boolean, array, or object. Calc does not force us to declare all variables before
use. Instead, it automatically creates a Variant variable type for each variable with type
not declared. Although convenient, this implies that more memory storage is set aside
for such variables. This bad programming practice is strongly discouraged.

To declare a variable to be of a certain data type, you use the following syntax:

Dim variableName As dataType

The full list of various data types and their details are given below:

Data Type Storage Size Range Values

Byte 1	byte 0	 to	255

Boolean 2	bytes True or False

Integer 2	bytes	 –32,768	 to	32,767

Long 4	bytes –2,147,483,648	 to	2,147,483,647

Single 4	bytes –3.402823E38	 to	–1.401298E-45	 for	negative	values;
1.401298E-45	 to	3.402823E38	 for	positive	values

Double 8	bytes –1.79769313486231E308	 to
–4.94065645841247E-324	 for	negative	values;
4.94065645841247E-324	 to	1.79769313486232E308	 for	
positive values

A P P E N D I X B LIBREOFFICE BASIC 271270

Currency 8	bytes –922,337,203,685,477.5808	 to	922,337,203,685,477.5807

Decimal 14	bytes +/–79,228,162,514,264,337,593,543,950,335	with	no
decimal	point;	+/–7.9228162514264337593543950335
with	28	places	 to	 the	 right	of	 the	decimal;	
smallest nonzero number is
+/–0.0000000000000000000000000001

Date 8	bytes 1	 January	0100	 to	31	December	9999

Object 4	bytes Any object reference

String
(fixed length)

Length of
string

1	 to	approximately	65,535	 characters

String
(variable length)

10	bytes	+
string length

0	 to	approximately	2	billion

Variant
(with numbers)

16	bytes Any numerical value up to the range of a double

Variant
(with characters)

22	bytes	+
string length

Same range as a variable string length

Source: Table adapted from Calc Help.

Here are some general rules you should follow when declaring variables.

•	 A	 variable	 declared	 in	 a	 procedure	 is	 only	meaningful	 for	 that	 procedure	 (i.e.,	 as	 a	
Local variable). Another variable of the same name declared within another procedure
will be recognized as a different local variable applicable to that procedure only.

•	 Variables	that	are	to	be	shared	by	all	procedures	within	a	module	should	be	declared	
before the first procedure in the module.

•	 Variables	that	are	shared	by	procedures	in	all	modules	and	sheets	in	a	project	should	
be declared using Public in place of Dim. The declaration should be made before
the first procedure in any module in the project. Sometimes, the Const keyword is
also added after Public to declare the variable as unchanging and permit a value to
be assigned to it at the declaration.

Quick Tip 2

 To force yourself to declare all variables used, put Option Explicit as the first
statement at the very top of your module. With this, VBE will prompt an error
whenever an undeclared variable is present.

A P P E N D I X B LIBREOFFICE BASIC 271270

 Always choose the most suitable data type, one that uses the smallest number of
bytes for the variable.

Here is a simple example to help you understand better.

Public x as Integer

Public Const gravity as Single = 9.8

Dim y as Long

Sub Mysub()

Dim z as Single

Static k as Integer

k = k + 1

...

End Sub

•	 x is declared as an integer variable using the Public keyword and can therefore be
used by procedures in all modules.

•	 gravity is declared using the Public Const keywords as a constant parameter, with
the	value	of	 9.8	 and	can	be	used	by	procedures	 in	all	modules.

•	 y can be used by all procedures within this module because y is declared before the
first procedure in the module.

•	 z can only be used within procedure Mysub.
•	 k is a static variable declared within the procedure, which means that it will retain

its value even when current call of the procedure ends. This value is then used by
the same procedure the next time it is called. This is useful, for example, when you
need to track the number of times the procedure is run.

Quick Tip 3

For a typical declaration statement like Dim p, q, r As Integer, only r is
declared as an integer, while p and q are variants. This is a common mistake among
BASIC programmers.

Declaring Arrays

An array, more commonly known as a matrix, is a group of variables sharing a common
name.	Arrays	 can	be	1-dimensional	or	multi-dimensional.

A P P E N D I X B LIBREOFFICE BASIC 273272

An	example	 of	 a	 1-dimensional	 array	declared	 to	 store	 the	 identification	number	 of	
200	 compact	disks	 is:

Dim CD_ID(1 to 200) As Integer

An	example	 of	 a	 2-dimensional	 array	declared	 to	 store	 the	 identification	number	 of	
1,000	 compact	disks	 is:

Dim CD_ID(1 to 10, 1 to 100) As integer

An array may be declared as a dynamic array which does not have a preset size.
Its size can be set later in the procedure using the ReDim statement. A simple example
is given below:

Dim MyArray() As Single

Dim ASize As Integer

ASize = oSheet.getCellRangeByName("A1").Value

ReDim MyArray(ASize)

In the above, MyArray is first declared with no size specified. Its size is read from
cell	A1.	This	 array	 is	 then	 sized	according	 to	 the	value	 in	 cell	A1.

 Note 18: MORE PROGRAMMING Up until this point, you can write simple
LO Basic programs in which all the lines of code are sequentially executed. However,
there will be many instances where we would like the program to skip some steps or
go directly to one set of steps or another, on satisfying or not satisfying a test condition,
respectively. Here are some examples of the most useful ones.

The GoTo statement is used when you wish the program to go directly to the start
of another block of codes. An example is given below:

Sub GotoDemo()

 Rating = InputBox(“Enter rating (1 or 2): ”)

 If Rating = 1 Then GoTo Ans1
 MsgBox(’’You have entered 2.”)

 Exit Sub

Ans1:
 MsgBox (“You have entered 1.”)

End Sub

Ans1 here is the label of a line location and it must be suffixed by the : sign. Serious
programmers	dislike	using	the	GoTo	statement	because	it	makes	the	program	unstructured	
and therefore difficult to follow.

A P P E N D I X B LIBREOFFICE BASIC 273272

If-Then-Else is one of the most useful statements, which allows the program to
execute	 alternative	 codes	depending	on	whether	 the	 test	 condition	 results	 in	 a	TRUE	or	
FALSE.	 If	 the	 result	 is	 TRUE,	 the	 codes	 following	 Then (up to the line containing the
Else keyword if it exists, or up to End If if it does not) will be executed. Otherwise, the
codes in the lines following Else (up to End If) will be executed.

If testCondition Then

 doSomethingWhenTrue

Else

 doSomethingWhenFalse

End If

An example is given below:

Sub IfThenElseDemo()

 Rating = InputBox("Enter rating (1 or 2): ")

 If rating = 1 Then
 MsgBox ("You have entered 1.")

 Else
 MsgBox ("You have entered 2.")

 End If
End Sub

Select-Case is useful when the test condition can result in more than two alternatives,
thus requiring more paths for the codes to continue the operation.

Select Case variableName

 Case value1

 Statement set 1

 Case value2

 Statement set 2

 Case value3

 Statement set 3

End Select

An example is given below:

Sub SelectCaseDemo()

 Rating = InputBox("Enter rating 1, 2 or 3:")

 Select Case Rating
 Case 1
 MsgBox ("You have entered 1.")

 etc …

A P P E N D I X B LIBREOFFICE BASIC 275274

 Case 2
 MsgBox ("You have entered 2.")

 etc …

 Case 3
 MsgBox ("You have entered 3.")

 etc …

 End Select
End Sub

When you need the program to loop through a set of codes for some number of
times, the For-Next statement will be very handy. The looping is controlled by a counter
that will go from a start number to an end number, increasing by a stepSize after each
execution	of	 the	 loop.	When	not	declared,	 the	default	 step	 size	 is	 1.

For counter = start to end [Step stepSize]

 statements …

Next counter

An example is given below:

Sub ForNextDemo()

 Dim j As Integer

 For j = 1 to 10
 MsgBox("Hi")

 Next j
End Sub

The	program	above	displays	 the	message	“Hi”	10	 times,	using	 j as the counter.
A Do-While statement is useful when you need the program to loop through a set

of codes until a test condition returns a FALSE. Do-While can be used in two slightly
different methods.

Method	 1:	 This	 method	 tests	 the	 condition	 first	 and	 executes	 the	 statement	 when	
the	 condition	 is	 tested	 TRUE.	 The	 program	 ends	 immediately	 when	 the	 test	 condition	
results in a FALSE.

Do While testCondition
 statements …

Loop

Method	 2:	 This	 alternative	 method	 executes	 the	 statement	 first	 and	 then	 tests	 the	
condition.	 Only	when	 the	 condition	 is	 tested	 TRUE	will	 the	 next	 iteration	 be	 executed.	
Similarly, the program ends when the test condition returns a FALSE. The main difference
is	that	the	codes	in	the	loop	in	method	2	will	be	executed	at	least	once,	whereas	this	may	
be	by-passed	completely	 in	method	1.

A P P E N D I X B LIBREOFFICE BASIC 275274

Do

 statements …

Loop While testCondition

The corresponding examples are as follows:

Sub DoWhileDemoMethod1()

 Dim j As Integer

 j = 1

 Do While j < 10

 MsgBox ("Hi")

 j = j + 1

 Loop

End Sub

Method	2:

Sub DoWhileDemoMethod2()

 Dim j As Integer

 j = 1

 Do

 MsgBox ("Hi")

 j = j + 1

 Loop While j < 10

End Sub

A Do-Until statement is similar to a Do-While statement except the former executes
the	codes	until	the	test	condition	becomes	TRUE.	Again,	there	are	two	methods	to	program	
a Do-Until statement.

Method	1:	This	method	tests	the	condition	first	and	executes	the	codes	when	the	test	
condition	returns	a	FALSE.	The	program	ends	when	the	test	condition	returns	a	TRUE.

Do Until testCondition

 statements …

Loop

Method	 2:	 This	 method	 executes	 the	 codes	 once	 and	 then	 tests	 the	 condition.	 The	
program continues to loop as long as the condition returns a FALSE, and ends when it
returns	a	TRUE.

Do

 statements …

Loop Until testCondition

A P P E N D I X B LIBREOFFICE BASIC 277276

Their corresponding examples are given below.

Sub DoUntilDemoMethod1()
 Dim j As Integer
 j = 1
 Do Until j = 10
 MsgBox ("Hi")
 j = j + 1
 Loop
End Sub

Sub DoUntilDemoMethod2()
 Dim j As Integer
 j = 1
 Do
 MsgBox ("Hi")
 j = j + 1
 Loop Until j = 10
End Sub

Quick Tip

 Your computer screen may flicker during the running of a macro by virtue of its
speed.

 To reduce the flicker and also to speed up the macro, stop Calc from updating the
screen by putting ThisComponent.LockControllers as one of the first statements
in your Sub.

 You can reinstate the default option by putting ThisComponent.

UnlockControllers as one of the last statements in your Sub. Do not forget to
put this in your macro to reinstate the default option if it has been changed. Your
worksheet cells may otherwise not refresh so dynamically in Calc.

 It is very important to reinstate ThisComponent.UnlockControllers at some
point before the macro stop running and you are back in the spreadsheet. In Calc
4	 and	 later	 versions	 especially,	 it	 will	most	 likely	 affect	 the	 responsiveness	 of	 your	
spreadsheet. Calculations and Conditional Formatting in particular will not be
updated with new inputs.

 Note 19: EXTENSION AND ADD-INS Add-in functions and operations are
extensions that can be included in Calc. There are also other kinds of extensions that
will extend the LO Basic environment to give you extra features.

Solver and Analysis Toolpak are add-ins in Excel. You no longer really need the tool
pack and Calc has a built-in Solver.

A P P E N D I X B LIBREOFFICE BASIC 277276

Quick Tip

 Some spreadsheet operations will prompt dialog boxes for you to select your response.
To avoid such incidences during a macro run, choose the default option and add the
following statement to your Sub before the statement that causes the pop-up:

 ThisComponent.addActionLock

 It is a good practice to set it back to the default option by putting, at the next earliest
possibility, the next statement:

 ThisComponent.removeActionLock

 Note 20: AUTOMATIC PROCEDURES AND EVENTS Event handler pro-
cedures are programs that are activated by interactive actions or events. Every object
should have their associated events, such as Change, Activate, BeforeRightClick, and
SelectionChange. In LO Basic, it appears that these can only be accessed using the UNO
(Universal Network Objects), a topic beyond the scope of this book. The Calc application
and spreadsheet documents’ actions such as Start Application, Close Application, Open
Document, Close Document, Activate Document, and Deactivate Document, on the
other hand, can be assigned to macros in Calc itself.

To automatically execute a macro when an Excel workbook is opened, you include
Sub Workbook_Open in ThisWorkbook in the VBA macros. An example of the macro codes
that you can put in the procedure is shown below:

Private Sub Workbook_Open()

Sheets("Home").Select

Range("A1").Select

End Sub

The equivalent Sub procedure in LO Basic would be

Sub SpreadsheetDocumentOpen

 oSheet = ThisComponent.Sheets.getByName("Home")

 ThisComponent.CurrentController.setActiveSheet(oSheet)

 oCell = oSheet.getCellRangeByName("A1")

 ThisComponent.CurrentController.select(oCell)

End Sub

In LO Calc Basic, you must assign a macro (Sub of any name such as the one above)
to the Open Document event by selecting Tools/Customize/Events. This is a spreadsheet

A P P E N D I X B LIBREOFFICE BASIC 279278

document event. To do the same as an application event, which means the macro will run
no matter what document is being opened, you select Tools/Macros/Organize Macros/
OpenOffice Basic/Assign.... In the Customize dialog as shown in Figure B-7, select the
Event tab and then the Open Document event. Click Assign: Macro, select the macro, and
click OK. Since this an LO application level event, the macros you select can only come
from the My Macros or OpenOffice.org Macros library containers. The dialog will only
show these two library containers. Similarly, to remove the event assignment, click Assign:
Remove in the Customize dialog. There are also other events listed in the Customize
dialog that you can use.

Figure B-7

Customize
Dialog

Whereas Excel/VBA has built-in events also for worksheets and other lower level
actions, there is none given in LO Basic. For example, Excel's Worksheet_Activate event
subroutine automatically runs each time the worksheet that has this subroutine is activated.
To do the same in Calc, you will have to use the more general LO Listener event activation
feature. That is, you must create your own Worksheet_Activate event subroutine.

A P P E N D I X B LIBREOFFICE BASIC 279278

An LO Listener is a process that runs in the background, waiting for a particular
event to happen. To create an LO listener, you must
•	 Define	a	global	 listener	object.
•	 Write	a	 subroutine	 that	 starts	 the	 listener	 (if	 required,	 another	 subroutine	 to	end	 it).
•	 Write	a	 subroutine	 that	 the	 listener	will	 run	when	 the	event	 is	 activated.

The specific code examples are shown below:

Example	1	 (similar	 to	Excel/VBA’s	Worksheet_Activate	 event	 subroutine)

Global oListener As Object

Sub AddListener

 listenerName = "com.sun.star.beans.XPropertyChangeListener"

 oListener = createUnoListener("OOo_", listenerName)

 oCurControl = ThisComponent.CurrentController

 oCurControl.addPropertyChangeListener("ActiveSheet",oListener)

End Sub

Sub RemoveListener

 oCurControl = ThisComponent.CurrentController

 oCurControl.removePropertyChangeListener("ActiveSheet",oListener)

End Sub

Sub OOo_PropertyChange(oEvent)

Msgbox ("Property Change Listener is working.")

‘More statements to be provided by you

End Sub

Example	 2	 (similar	 to	 Excel/VBA’s	Worksheet_Change and Worksheet_Calculate event
subroutines)

Global oListener As Object

Sub AddListener

 listenerName = "com.sun.star.chart.XChartDataChangeEventListener"

 oListener = CreateUnoListener("OOo_", listenerName)

A P P E N D I X B LIBREOFFICE BASIC 281280

 oSheet = ThisComponent.Sheets.getByName("Sheet1")

 oRange = oSheet.getCellRangeByName("E5")

 oRange.addChartDataChangeEventListener(oListener)

End Sub

Sub OOo_ChartDataChanged

oSheet = ThisComponent.Sheets.getByName("Sheet1")

oCell = oSheet.getCellRangeByName("E5")

 nValue = oCell.Value

Msgbox "Value =" &nValue

Msgbox "Data Change Listener is working”

‘More statements to be provided by you

End Sub

It is most crucial that the first parameter passed (in this case, the string OOo_) to the
createUnoListener method be used as the prefix for the name of the subroutine that
the listener is to run. The subroutine’s name must end with specific listener reserved
names such as PropertyChange and ChartDataChanged. This thus gives us subroutines OOo_
PropertyChange and OOo_ChartDataChanged. The oListener is the listening object and oEvent
(an OOo reserved object name) is the response object to be passed back to triggered
subroutine for it to retrieve any event property.

The AddListener subroutine can be automatically activated by adding into the
SpreadsheetDocumentOpen subroutine, explained earlier, the following line of code:

AddListener

If there are more listeners, their Add subroutines can be named as AddListener1,
AddListener2, and so on. These can then be selectively added to the SpreadsheetDocumentOpen
or WorkbookOpen subroutine as well.

Do not forget to run the RemoveListener subroutine when the Listener is no longer
needed. In our testing, we found that the Remove subroutines generally do not work. The
listeners are however automatically removed when the workbook is closed and are not
found to be listening when the workbook is next opened. This is, of course, unless they
are automatically invoked by the SpreadsheetDocumentOpen subroutine.

The macro code you want to run upon listener event activation may depend on
which worksheet (or cell) is changed, selected, or activated. So you may have to check
if the active sheet (or cell) is indeed the targeted one, as shown by the examples below:

A P P E N D I X B LIBREOFFICE BASIC 281280

Example	1
oActiveSheet = ThisComponent.CurrentController.ActiveSheet

oActiveCell = ThisComponent.getCurrentSelection

If oActiveSheet.Name <> “Model” Then Exit Sub

Example	2
oActiveSheet = ThisComponent.CurrentController.ActiveSheet

oActiveCell = ThisComponent.getCurrentSelection

Select Case oActiveSheet.Name

Case "Sheet1"

 oRange1 = oSheet.getCellRangeByName("C4:F5")

 If Intersect(oActiveCell, oRange1) Is Nothing Then

 Exit Sub

 Else

 Statement set 1

 End If

Case "Sheet2"

 If oActiveCell = oSheet.getCellRangeByName("L9") Then

 Statement set 2

 Else

 Statement set 3

 End If

Case "Sheet3"

 Statement set 4

End Select

Before	you	do	anything	 that	 ambitious,	 try	 testing	with	 simple	1-line	 code	 such	as

Sub OOo_PropertyChange(oEvent)

Msgbox (“This listener is working:” & str(oEvent.Source.Value)

End Sub

There are possibly other types of listeners available. You may want to find out their
names and what they do. Listener events can be difficult to implement and they can do

A P P E N D I X B LIBREOFFICE BASIC 283282

damage to your workbook if not properly done. The two examples above are collated
from what we found in the generally available resources and are by no means well tested.
Do proceed with caution.

 Note 21: RUN-TIME ERROR HANDLING Imagine that you wrote a simple
subroutine to compute the square root of a user-input value. In order to ensure that the
user has entered a positive value, you need to test the input value before executing the
computation. You test by checking if the value is positive and if it is numeric. Alternatively,
you can use a general error handling statement to trap all possible errors whenever they
occur.

Sub SquareRootDemo()

 On Error Goto BadEntry

 Num = InputBox (“Enter a value: ”)

 If Num = ““ Then Exit Sub

 ThisComponent.getCurrentSelection.Value = Sqrt(Num)

 Exit Sub

BadEntry:

 MsgBox (“Make sure you enter a positive numeric value”)

End Sub

This example allows the subroutine to proceed straight to the error message whenever
the user input threatens to trigger a computation error. The Exit Sub statement jumps
to the end of the subroutine when it successfully completes its computation.

 Note 22: SPREADSHEET PROGRAMMING APPROACH There are really
four approaches to programming a spreadsheet. The first is to use only spreadsheet
functions and features (this topic is covered in Appendix A). Since its inception,
spreadsheet application software has come a long way. Features that were once only
available in programming languages are now present and regularly used in spreadsheets.
The basic ones permit one variable (as represented by a cell) to take values from other
variables, use of If-Then-Else logical branching, and multiple-stage computations with
relative cell referencing. More recently, there are random variables, iterative, or recursive
computations, lookups, and automated computation (i.e., loops in the form of Multiple
Operations). Working on a spreadsheet workbook is really programming work, though
many do not see it as such.

The second approach is to record mouse and keyboard actions as macros, and run
these macros as automated steps in the spreadsheet operations. The steps are visible
to the user by default, though it can be masked away to speed up operations. All the

A P P E N D I X B LIBREOFFICE BASIC 283282

calculations are done in the sheets and so the user can vividly review the interactions
between variables.

The third approach is to extend the abilities of macros by adding LO Basic codes
to do what mouse and keyboard actions on the sheets cannot achieve. In addition, the
recorded macros can be tidied up and made more efficient, for example, by removing
sheet selections, cell selections, and copy-paste operations, replacing them with codes that
work directly with Calc objects.

The fourth and final approach is to write subroutines and functions using the LO Basic
language, with minimal use of spreadsheet features, other than to read data and write
results. This is no different than normal computer programming, except now the sheets
become data storage and reporting pages. The computations are all done in the lines of
LO Basic codes and therefore the user must be able to read the computer language to
understand, debug, and maintain the codes.

We prefer the third approach since the “computer program” in spreadsheets plus
macros is already extremely powerful. On top of that, it is transparent and dynamic. This
means that you can build a spreadsheet model with nontechnical people and its results
are immediately responsive to changes in input values. Transparency, dynamism, and ease
of use are the key strengths of spreadsheets; no other analytical software comes close to
matching spreadsheets. No other software would be as readily accessible to novices and
experts alike for situational exploration and problem discovery. And to beat that, the
work done in these first steps can be further extended into user-friendly solutions, data
and solution analyses, and management reports.

