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The tallest skyscraper in the Western Hemisphere, One World Trade 

Center is a prominent feature of the New York City skyline. From its 

foundation to its structural components and mechanical systems, 

the design and operation of the tower is based on the fundamentals 

of engineering mechanics.

Introduction
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Objectives
•	 Define  the science of mechanics and examine its 

fundamental principles.

•	 Discuss  and compare the International System of Units 
and U.S. Customary Units.

•	 Discuss  how to approach the solution of mechanics 
problems, and introduce the SMART problem-solving 
methodology.

•	 Examine  factors that govern numerical accuracy in the 
solution of a mechanics problem.

1.1  What Is Mechanics?
Mechanics is defined as the science that describes and predicts the condi-
tions of rest or motion of bodies under the action of forces. It consists of 
the mechanics of rigid bodies, mechanics of deformable bodies, and mechan-
ics of fluids.

The mechanics of rigid bodies is subdivided into statics and 
dynamics. Statics deals with bodies at rest; dynamics deals with bodies in 
motion. In this text, we assume bodies are perfectly rigid. In fact, actual 
structures and machines are never absolutely rigid; they deform under the 
loads to which they are subjected. However, because these deformations 
are usually small, they do not appreciably affect the conditions of equilib-
rium or the motion of the structure under consideration. They are impor-
tant, though, as far as the resistance of the structure to failure is concerned. 
Deformations are studied in a course in mechanics of materials, which is 
part of the mechanics of deformable bodies. The third division of mechan-
ics, the mechanics of fluids, is subdivided into the study of incompressible 
fluids and of compressible fluids. An important subdivision of the study of 
incompressible fluids is hydraulics, which deals with applications involv-
ing water.

Mechanics is a physical science, since it deals with the study of physi-
cal phenomena. However, some teachers associate mechanics with math-
ematics, whereas many others consider it as an engineering subject. Both 
these views are justified in part. Mechanics is the foundation of most engi-
neering sciences and is an indispensable prerequisite to their study. How-
ever, it does not have the empiricism found in some engineering sciences, 
i.e., it does not rely on experience or observation alone. The rigor of 
mechanics and the emphasis it places on deductive reasoning makes it 
resemble mathematics. However, mechanics is not an abstract or even a 
pure science; it is an applied science. 

The purpose of mechanics is to explain and predict physical phe-
nomena and thus to lay the foundations for engineering applications. You 
need to know statics to determine how much force will be exerted on a 
point in a bridge design and whether the structure can withstand that 
force. Determining the force a dam needs to withstand from the water in 
a river requires statics. You need statics to calculate how much weight a 
crane can lift, how much force a locomotive needs to pull a freight train, 
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or how much force a circuit board in a computer can withstand. The con-
cepts of dynamics enable you to analyze the flight characteristics of a jet, 
design a building to resist earthquakes, and mitigate shock and vibration 
to passengers inside a vehicle. The concepts of dynamics enable you to 
calculate how much force you need to send a satellite into orbit, accelerate 
a 200,000-ton cruise ship, or design a toy truck that doesn’t break. You will 
not learn how to do these things in this course, but the ideas and methods 
you learn here will be the underlying basis for the engineering applications 
you will learn in your work.

1.2 � Fundamental Concepts and Principles
Although the study of mechanics goes back to the time of Aristotle  
(384–322 B.C.) and Archimedes (287–212 B.C.), not until Newton  
(1642–1727) did anyone develop a satisfactory formulation of its funda-
mental principles. These principles were later modified by d’Alembert, 
Lagrange, and Hamilton. Their validity remained unchallenged until 
Einstein formulated his theory of relativity (1905). Although its limita-
tions have now been recognized, newtonian mechanics still remains the 
basis of today’s engineering sciences.

The basic concepts used in mechanics are space, time, mass, and force. 
These concepts cannot be truly defined; they should be accepted on the 
basis of our intuition and experience and used as a mental frame of refer-
ence for our study of mechanics.

The concept of space is associated with the position of a point P. We 
can define the position of P by providing three lengths measured from a 
certain reference point, or origin, in three given directions. These lengths 
are known as the coordinates of P.

To define an event, it is not sufficient to indicate its position in space. 
We also need to specify the time of the event.

We use the concept of mass to characterize and compare bodies on 
the basis of certain fundamental mechanical experiments. Two bodies of the 
same mass, for example, are attracted by the earth in the same manner; they 
also offer the same resistance to a change in translational motion.

A force represents the action of one body on another. A force can 
be exerted by actual contact, like a push or a pull, or at a distance, as in 
the case of gravitational or magnetic forces. A force is characterized by its 
point of application, its magnitude, and its direction; a force is represented 
by a vector (Sec. 2.1B).

In newtonian mechanics, space, time, and mass are absolute con-
cepts that are independent of each other. (This is not true in relativistic 
mechanics, where the duration of an event depends upon its position and 
the mass of a body varies with its velocity.) On the other hand, the concept 
of force is not independent of the other three. Indeed, one of the funda-
mental principles of newtonian mechanics listed below is that the resul-
tant force acting on a body is related to the mass of the body and to the 
manner in which its velocity varies with time.

In this text, you will study the conditions of rest or motion of par-
ticles and rigid bodies in terms of the four basic concepts we have intro-
duced. By particle, we mean a very small amount of matter, which we 
assume occupies a single point in space. A rigid body consists of a large 
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number of particles occupying fixed positions with respect to one another. 
The study of the mechanics of particles is clearly a prerequisite to that of 
rigid bodies. Besides, we can use the results obtained for a particle directly 
in a large number of problems dealing with the conditions of rest or 
motion of actual bodies.

The study of elementary mechanics rests on six fundamental prin-
ciples, based on experimental evidence.

•	 The Parallelogram Law for the Addition of Forces.  Two forces 
acting on a particle may be replaced by a single force, called their 
resultant, obtained by drawing the diagonal of the parallelogram with 
sides equal to the given forces (Sec. 2.1A).

•	 The Principle of Transmissibility.  The conditions of equilib-
rium or of motion of a rigid body remain unchanged if a force 
acting at a given point of the rigid body is replaced by a force of 
the same magnitude and same direction, but acting at a different 
point, provided that the two forces have the same line of action 
(Sec. 3.1B).

•	 Newton’s Three Laws of Motion.  Formulated by Sir Isaac Newton 
in the late seventeenth century, these laws can be stated as follows:

	 FIRST LAW.  If the resultant force acting on a particle is zero, the 
particle remains at rest (if originally at rest) or moves with constant 
speed in a straight line (if originally in motion) (Sec. 2.3B).

	 SECOND LAW.  If the resultant force acting on a particle is not 
zero, the particle has an acceleration proportional to the magnitude 
of the resultant and in the direction of this resultant force.

As you will see in Sec. 12.1, this law can be stated as

	 F = ma	 (1.1)

�where F, m, and a represent, respectively, the resultant force acting 
on the particle, the mass of the particle, and the acceleration of the 
particle expressed in a consistent system of units.

	 THIRD LAW.  The forces of action and reaction between bodies in 
contact have the same magnitude, same line of action, and opposite 
sense (Chap. 6, Introduction).

•	 Newton’s Law of Gravitation.  Two particles of mass M and m are 
mutually attracted with equal and opposite forces F and -F of mag-
nitude F (Fig. 1.1), given by the formula

	 F = G 

Mm
r2 	 (1.2)

	 where r = the distance between the two particles and G = a univer-
sal constant called the constant of gravitation. Newton’s law of gravi-
tation introduces the idea of an action exerted at a distance and 
extends the range of application of Newton’s third law: the action F 
and the reaction -F in Fig. 1.1 are equal and opposite, and they have 
the same line of action.

A particular case of great importance is that of the attraction of the 
earth on a particle located on its surface. The force F exerted by the earth 
on the particle is defined as the weight W of the particle. Suppose we set 

M

–F

F

m

r

Fig. 1.1  From Newton’s law of gravitation, two 
particles of masses M and m exert forces upon 
each other of equal magnitude, opposite 
direction, and the same line of action. This also 
illustrates Newton’s third law of motion.
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M equal to the mass of the earth, m equal to the mass of the particle, and 
r equal to the earth’s radius R. Then introducing the constant

	 g =
GM
R2 	 (1.3)

we can express the magnitude W of the weight of a particle of mass m as†

	 W = mg	 (1.4)

The value of R in formula (1.3) depends upon the elevation of the point 
considered; it also depends upon its latitude, since the earth is not truly 
spherical. The value of g therefore varies with the position of the point 
considered. However, as long as the point actually remains on the earth’s 
surface, it is sufficiently accurate in most engineering computations to 
assume that g equals 9.81 m/s2.

The principles we have just listed will be introduced in the course 
of our study of mechanics as they are needed. The statics of particles car-
ried out in Chap. 2 will be based on the parallelogram law of addition and 
on Newton’s first law alone. We introduce the principle of transmissibility 
in Chap. 3 as we begin the study of the statics of rigid bodies, and we bring 
in Newton’s third law in Chap. 6 as we analyze the forces exerted on each 
other by the various members forming a structure. We introduce Newton’s 
second law and Newton’s law of gravitation in dynamics. We will then show 
that Newton’s first law is a particular case of Newton’s second law (Sec. 12.1) 
and that the principle of transmissibility could be derived from the other 
principles and thus eliminated (Sec. 16.1D). In the meantime, however, 
Newton’s first and third laws, the parallelogram law of addition, and the 
principle of transmissibility will provide us with the necessary and suffi-
cient foundation for the entire study of the statics of particles, rigid bodies, 
and systems of rigid bodies.

As noted earlier, the six fundamental principles listed previously are 
based on experimental evidence. Except for Newton’s first law and the prin-
ciple of transmissibility, they are independent principles that cannot be derived 
mathematically from each other or from any other elementary physical prin-
ciple. On these principles rests most of the intricate structure of newtonian 
mechanics. For more than two centuries, engineers have solved a tremendous 
number of problems dealing with the conditions of rest and motion of rigid 
bodies, deformable bodies, and fluids by applying these fundamental princi-
ples. Many of the solutions obtained could be checked experimentally, thus 
providing a further verification of the principles from which they were derived. 
Only in the twentieth century has Newton’s mechanics found to be at fault, in 
the study of the motion of atoms and the motion of the planets, where it must 
be supplemented by the theory of relativity. On the human or engineering 
scale, however, where velocities are small compared with the speed of light, 
Newton’s mechanics have yet to be disproved.

1.3  Systems of Units
Associated with the four fundamental concepts just discussed are the 
so-called kinetic units, i.e., the units of length, time, mass, and force. 
These units cannot be chosen independently if Eq. (1.1) is to be satisfied. 

†A more accurate definition of the weight W should take into account the earth’s rotation.

Photo 1.1  When in orbit of the earth, people 
and objects are said to be weightless even 
though the gravitational force acting 
is approximately 90% of that experienced 
on the surface of the earth. This apparent 
contradiction will be resolved in Chap. 12 when 
we apply Newton’s second law to the motion of 
particles.
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Three of the units may be defined arbitrarily; we refer to them as basic 
units. The fourth unit, however, must be chosen in accordance with 
Eq. (1.1) and is referred to as a derived unit. Kinetic units selected in this 
way are said to form a consistent system of units.

International System of Units (SI Units).†  In this system, which 
will be in universal use after the United States has completed its conversion 
to SI units, the base units are the units of length, mass, and time, and they 
are called, respectively, the meter (m), the kilogram (kg), and the second 
(s). All three are arbitrarily defined. The second was originally chosen to 
represent 1/86 400 of the mean solar day, but it is now defined as the dura-
tion of 9 192 631 770 cycles of the radiation corresponding to the transi-
tion between two levels of the fundamental state of the cesium-133 atom. 
The meter, originally defined as one ten-millionth of the distance from the 
equator to either pole, is now defined as 1 650 763.73 wavelengths of the 
orange-red light corresponding to a certain transition in an atom of  
krypton-86. (The newer definitions are much more precise and with today’s 
modern instrumentation, are easier to verify as a standard.) The kilogram, 
which is approximately equal to the mass of 0.001 m3 of water, is defined 
as the mass of a platinum-iridium standard kept at the International 
Bureau of Weights and Measures at Sèvres, near Paris, France. The unit of 
force is a derived unit. It is called the newton (N) and is defined as the 
force that gives an acceleration of 1 m/s2 to a body of mass 1 kg (Fig. 1.2). 
From Eq. (1.1), we have

	 1 N = (1 kg)(1 m/s2) = 1 kg.m/s2	 (1.5)

The SI units are said to form an absolute system of units. This means that 
the three base units chosen are independent of the location where mea-
surements are made. The meter, the kilogram, and the second may be used 
anywhere on the earth; they may even be used on another planet and still 
have the same significance.

The weight of a body, or the force of gravity exerted on that body, 
like any other force, should be expressed in newtons. From Eq. (1.4), it 
follows that the weight of a body of mass 1 kg (Fig. 1.3) is

W = mg
   = (1 kg)(9.81 m/s2)
   = 9.81 N

Multiples and submultiples of the fundamental SI units are denoted 
through the use of the prefixes defined in Table 1.1. The multiples and 
submultiples of the units of length, mass, and force most frequently used in 
engineering are, respectively, the kilometer (km) and the millimeter (mm); 
the megagram‡ (Mg) and the gram (g); and the kilonewton (kN). According 
to Table 1.1, we have

1 km = 1000 m  1 mm = 0.001 m
1 Mg = 1000 kg   1 g = 0.001 kg
1 kN = 1000 N

The conversion of these units into meters, kilograms, and newtons, respec-
tively, can be effected by simply moving the decimal point three places to 

†SI stands for Système International d’Unités (French)
‡Also known as a metric ton.

a = 1 m/s2

m = 1 kg F = 1 N

Fig. 1.2  A force of 1 newton applied to a body 
of mass 1 kg provides an acceleration of 1 m/s2.

a = 9.81 m/s2

m = 1 kg

W = 9.81 N

Fig. 1.3  A body of mass 1 kg experiencing an 
acceleration due to gravity of 9.81 m/s2 has a 
weight of 9.81 N.
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the right or to the left. For example, to convert 3.82 km into meters, move 
the decimal point three places to the right:

3.82 km = 3820 m

Similarly, to convert 47.2 mm into meters, move the decimal point three 
places to the left:

47.2 mm = 0.0472 m

Using engineering notation, you can also write

 3.82 km = 3.82 × 103 m
47.2 mm = 47.2 × 10-3 m

The multiples of the unit of time are the minute (min) and the hour (h). 
Since 1 min = 60 s and 1 h = 60 min = 3600 s, these multiples cannot be 
converted as readily as the others.

By using the appropriate multiple or submultiple of a given unit, you 
can avoid writing very large or very small numbers. For example, it is usu-
ally simpler to write 427.2 km rather than 427 200 m and 2.16 mm rather 
than 0.002 16 m.†

Units of Area and Volume.  The unit of area is the square meter (m2), 
which represents the area of a square of side 1 m; the unit of volume is 
the cubic meter (m3), which is equal to the volume of a cube of side 1 m. 
In order to avoid exceedingly small or large numerical values when com-
puting areas and volumes, we use systems of subunits obtained by respec-
tively squaring and cubing not only the millimeter, but also two intermediate 

†Note that when more than four digits appear on either side of the decimal point to express 
a quantity in SI units—as in 427 000 m or 0.002 16 m—use spaces, never commas, to sepa-
rate the digits into groups of three. This practice avoids confusion with the comma used in 
place of a decimal point, which is the convention in many countries.

Table 1.1  Sl Prefixes

Multiplication Factor		  Prefix†	 Symbol

	 1 000 000 000 000 = 1012	 tera	 T
	 1 000 000 000 = 109	 giga	 G
	 1 000 000 = 106	 mega	 M
	 1 000 = 103	 kilo	 k
	 100 = 102	 hecto‡	 h
	 10 = 101	 deka‡	 da
	 0.1 = 10-1	 deci‡	 d
	 0.01 = 10-2	 centi‡	 c
	 0.001 = 10-3	 milli	 m
	 0.000 001 = 10-6	 micro	 µ
	 0.000 000 001 = 10-9	 nano	 n
	 0.000 000 000 001 = 10-12	 pico	 p
	 0.000 000 000 000 001 = 10-15	 femto	 f
	0.000 000 000 000 000 001 = 10-18	 atto	 a
†The first syllable of every prefix is accented, so that the prefix retains its identity. Thus, the 
preferred pronunciation of kilometer places the accent on the first syllable, not the second.
‡The use of these prefixes should be avoided, except for the measurement of areas and volumes 
and for the nontechnical use of centimeter, as for body and clothing measurements.
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submultiples of the meter: the decimeter (dm) and the centimeter (cm). By 
definition,

 1 dm = 0.1 m = 10-1 m
  1 cm = 0.01 m = 10-2 m
1 mm = 0.001 m = 10-3 m

Therefore, the submultiples of the unit of area are

  1 dm2 = (1 dm)2 = (10-1 m)2 = 10-2 m2

   1 cm2 = (1 cm)2 = (10-2 m)2 = 10-4 m2

 1 mm2 = (1 mm)2 = (10-3 m)2 = 10-6 m2

Similarly, the submultiples of the unit of volume are

 1 dm3 = (1 dm)3 = (10-1 m)3 = 10-3 m3

 1 cm3 = (1 cm)3 = (10-2 m)3 = 10-6 m3

1 mm3 = (1 mm)3 = (10-3 m)3 = 10-9 m3
 

Note that when measuring the volume of a liquid, the cubic decimeter (dm3) 
is usually referred to as a liter (L).

Table 1.2 shows other derived SI units used to measure the moment 
of a force, the work of a force, etc. Although we will introduce these units 
in later chapters as they are needed, we should note an important rule at 

Table 1.2  Principal SI Units Used in Mechanics

Quantity	 Unit	 Symbol	 Formula

Acceleration	 Meter per second squared	 . . .	 m/s2

Angle	 Radian	 rad	 †
Angular acceleration	 Radian per second squared	 . . .	 rad/s2

Angular velocity	 Radian per second	 . . .	 rad/s
Area	 Square meter	 . . .	 m2

Density	 Kilogram per cubic meter	 . . .	 kg/m3

Energy	 Joule	 J	 N.m
Force	 Newton	 N	 kg.m/s2

Frequency	 Hertz	 Hz	 s–1

Impulse	 Newton-second	 . . .	 kg.m/s
Length	 Meter	 m	 ‡
Mass	 Kilogram	 kg	 ‡
Moment of a force	 Newton-meter	 . . .	 N.m
Power	 Watt	 W	 J/s
Pressure	 Pascal	 Pa	 N/m2

Stress	 Pascal	 Pa	 N/m2

Time	 Second	 s	 ‡
Velocity	 Meter per second	 . . .	 m/s
Volume
  Solids	 Cubic meter	 . . .	 m3

  Liquids	 Liter	 L	 10–3 m3

Work	 Joule	 J	 N.m
†Supplementary unit (1 revolution = 2π rad = 360°).
‡Base unit.
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this time: When a derived unit is obtained by dividing a base unit by 
another base unit, you may use a prefix in the numerator of the derived 
unit, but not in its denominator. For example, the constant k of a spring 
that stretches 20 mm under a load of 100 N is expressed as

k =
100 N
20 mm

=
100 N

0.020 m
= 5000 N/m or k = 5 kN/m

but never as k = 5 N/mm.

U.S. Customary Units.  Most practicing American engineers still 
commonly use a system in which the base units are those of length, force, 
and time. These units are, respectively, the foot (ft), the pound (lb), and the 
second (s). The second is the same as the corresponding SI unit. The foot 
is defined as 0.3048 m. The pound is defined as the weight of a platinum 
standard, called the standard pound, which is kept at the National Institute 
of Standards and Technology outside Washington D.C., the mass of which 
is 0.453 592 43 kg. Since the weight of a body depends upon the earth’s 
gravitational attraction, which varies with location, the standard pound 
should be placed at sea level and at a latitude of 45° to properly define a 
force of 1 lb. Clearly the U.S. customary units do not form an absolute 
system of units. Because they depend upon the gravitational attraction of 
the earth, they form a gravitational system of units.

Although the standard pound also serves as the unit of mass in com-
mercial transactions in the United States, it cannot be used that way in 
engineering computations, because such a unit would not be consistent 
with the base units defined in the preceding paragraph. Indeed, when acted 
upon by a force of 1 lb—that is, when subjected to the force of gravity—the 
standard pound has the acceleration due to gravity, g = 32.2 ft/s2 (Fig. 1.4), 
not the unit acceleration required by Eq. (1.1). The unit of mass consistent 
with the foot, the pound, and the second is the mass that receives an accel-
eration of 1 ft/s2 when a force of 1 lb is applied to it (Fig. 1.5). This unit, 
sometimes called a slug, can be derived from the equation F = ma after 
substituting 1 lb for F and 1 ft/s2 for a. We have

F = ma  1 lb = (1 slug)(1 ft/s2)

This gives us

	 1 slug =
1 lb

1 ft/s2 = 1 lb.s2/ft	 (1.6)

Comparing Figs. 1.4 and 1.5, we conclude that the slug is a mass 32.2 times 
larger than the mass of the standard pound.

The fact that, in the U.S. customary system of units, bodies are char-
acterized by their weight in pounds rather than by their mass in slugs is 
convenient in the study of statics, where we constantly deal with weights 
and other forces and only seldom deal directly with masses. However, in 
the study of dynamics, where forces, masses, and accelerations are involved, 
the mass m of a body is expressed in slugs when its weight W is given in 
pounds. Recalling Eq. (1.4), we write

	 m =
W
g

	 (1.7)

where g is the acceleration due to gravity (g = 32.2 ft/s2).

a = 32.2 ft /s2

m = 1 lb mass

F = 1 lb

Fig. 1.4  A body of 1 pound mass acted  
upon by a force of 1 pound has an acceleration 
of 32.2 ft/s2.

a = 1 ft /s2

m = 1 slug
(= 1 lb • s2/ft) 

F = 1 lb

Fig. 1.5  A force of 1 pound applied to a  
body of mass 1 slug produces an acceleration 
of 1 ft/s2.
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Other U.S. customary units frequently encountered in engineering 
problems are the mile (mi), equal to 5280 ft; the inch (in.), equal to (1/12) ft; 
and the kilopound (kip), equal to 1000 lb. The ton is often used to represent 
a mass of 2000 lb but, like the pound, must be converted into slugs in 
engineering computations.

The conversion into feet, pounds, and seconds of quantities expressed 
in other U.S. customary units is generally more involved and requires 
greater attention than the corresponding operation in SI units. For exam-
ple, suppose we are given the magnitude of a velocity v = 30 mi/h and 
want to convert it to ft/s. First we write

v = 30 

mi
h

Since we want to get rid of the unit miles and introduce instead the unit 
feet, we should multiply the right-hand member of the equation by an 
expression containing miles in the denominator and feet in the numerator. 
However, since we do not want to change the value of the right-hand side 
of the equation, the expression used should have a value equal to unity. 
The quotient (5280 ft)/(1 mi) is such an expression. Operating in a similar 
way to transform the unit hour into seconds, we have

v = 30
mi
h

 

5280 ft
1 mi

 

1 h
3600 s

Carrying out the numerical computations and canceling out units that 
appear in both the numerator and the denominator, we obtain

v = 44 

ft
s
= 44 ft/s

1.4 � Converting Between Two Systems  
of Units 

In many situations, an engineer might need to convert into SI units a 
numerical result obtained in U.S. customary units or vice versa. Because 
the unit of time is the same in both systems, only two kinetic base units 
need be converted. Thus, since all other kinetic units can be derived from 
these base units, only two conversion factors need be remembered.

Units of Length.  By definition, the U.S. customary unit of length is

	 1 ft = 0.3048 m	 (1.8)

It follows that

1 mi = 5280 ft = 5280(0.3048 m) = 1609 m

or

	 1 mi = 1.609 km	 (1.9)

Also,

1 in. =
1

12
  ft =

1
12

(0.3048 m) = 0.0254 m
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or

	 1 in. = 25.4 mm	 (1.10)

Units of Force.  Recall that the U.S. customary unit of force (pound) 
is defined as the weight of the standard pound (of mass 0.4536 kg) at sea 
level and at a latitude of 45° (where g = 9.807 m/s2). Then, using Eq. (1.4), 
we write

   W = mg
1 lb = (0.4536 kg)(9.807 m/s2) = 4.448 kg.m/s2

From Eq. (1.5), this reduces to

	 1 lb = 4.448 N	 (1.11)

Units of Mass.  The U.S. customary unit of mass (slug) is a derived 
unit. Thus, using Eqs. (1.6), (1.8), and (1.11), we have

1 slug = 1 lb.s2/ft =
1 lb

1 ft/s2 =
4.448 N

0.3048 m/s2 = 14.59 N.s2/m

Again, from Eq. (1.5),

	 1 slug = 1 lb.s2/ft = 14.59 kg	 (1.12)

Although it cannot be used as a consistent unit of mass, recall that the 
mass of the standard pound is, by definition,

	 1 pound mass = 0.4536 kg	 (1.13)

We can use this constant to determine the mass in SI units (kilograms) of 
a body that has been characterized by its weight in U.S. customary units 
(pounds).

To convert a derived U.S. customary unit into SI units, simply 
multiply or divide by the appropriate conversion factors. For example, to 
convert the moment of a force that is measured as M = 47 lb.in. into 
SI units, use formulas (1.10) and (1.11) and write

M = 47 lb.in. = 47(4.448 N)(25.4 mm)
   = 5310 N.mm = 5.31 N.m

You can also use conversion factors to convert a numerical result 
obtained in SI units into U.S. customary units. For example, if the moment 
of a force is measured as M = 40 N.m, follow the procedure at the end of 
Sec. 1.3 to write

M = 40 N.m = (40 N.m)
1ÿ lb

4.448 N
 

1 ft
0.3048 m

Carrying out the numerical computations and canceling out units that 
appear in both the numerator and the denominator, you obtain

M = 29.5 lb.ft

The U.S. customary units most frequently used in mechanics are 
listed in Table 1.3 with their SI equivalents.

Photo 1.2  In 1999, the Mars Climate Orbiter 
entered orbit around Mars at too low an 
altitude and disintegrated. Investigation  
showed that the software on board the probe 
interpreted force instructions in newtons, but 
the software at mission control on the earth 
was generating those instructions in terms  
of pounds.
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1.5  Method of Solving Problems
You should approach a problem in mechanics as you would approach an 
actual engineering situation. By drawing on your own experience and intu-
ition about physical behavior, you will find it easier to understand and 
formulate the problem. Once you have clearly stated and understood the 
problem, however, there is no place in its solution for arbitrary 
methodologies. 

The solution must be based on the six fundamental principles stated 
in Sec. 1.2 or on theorems derived from them. 

Every step you take in the solution must be justified on this basis. Strict 
rules must be followed, which lead to the solution in an almost automatic 
fashion, leaving no room for your intuition or “feeling.” After you have 
obtained an answer, you should check it. Here again, you may call upon 

Table 1.3  U.S. Customary Units and Their SI Equivalents

Quantity	 U.S. Customary Unit	 SI Equivalent

Acceleration	 ft/s2	 0.3048 m/s2

	 in./s2	 0.0254 m/s2

Area	 ft2	 0.0929 m2

	 in2	 645.2 mm2

Energy	 ft.lb	 1.356 J
Force	 kip	 4.448 kN
	 lb	 4.448 N
	 oz	 0.2780 N
Impulse	 lb.s	 4.448 N.s
Length	 ft	 0.3048 m
	 in.	 25.40 mm
	 mi	 1.609 km
Mass	 oz mass	 28.35 g
	 lb mass	 0.4536 kg
	 slug	 14.59 kg
	 ton	 907.2 kg
Moment of a force	 lb.ft	 1.356 N.m
	 lb.in.	 0.1130 N.m
Moment of inertia
  Of an area	 in4	 0.4162 × 106 mm4

  Of a mass	 lb.ft.s2	 1.356 kg.m2

Momentum	 lb.s	 4.448 kg.m/s
Power	 ft.lb/s	 1.356 W
	 hp	 745.7 W
Pressure or stress	 lb/ft2	 47.88 Pa
	 lb/in2 (psi)	 6.895 kPa
Velocity	 ft/s	 0.3048 m/s
	 in./s	 0.0254 m/s
	 mi/h (mph)	 0.4470 m/s
	 mi/h (mph)	 1.609 km/h
Volume	 ft3	 0.02832 m3

	 in3	 16.39 cm3

Liquids	 gal	 3.785 L
	 qt	 0.9464 L
Work	 ft.lb	 1.356 J
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your common sense and personal experience. If you are not completely 
satisfied with the result, you should carefully check your formulation of 
the problem, the validity of the methods used for its solution, and the 
accuracy of your computations.

In general, you can usually solve problems in several different ways; 
there is no one approach that works best for everybody. However, we have 
found that students often find it helpful to have a general set of guidelines 
to use for framing problems and planning solutions. In the Sample Prob-
lems throughout this text, we use a four-step method for approaching prob-
lems, which we refer to as the SMART methodology: Strategy, Modeling, 
Analysis, and Reflect and Think.

	 1.	 Strategy. The statement of a problem should be clear and precise, and 
it should contain the given data and indicate what information is 
required. The first step in solving the problem is to decide what concepts 
you have learned that apply to the given situation and to connect the 
data to the required information. It is often useful to work backward 
from the information you are trying to find: Ask yourself what quantities 
you need to know to obtain the answer, and if some of these quantities 
are unknown, how can you find them from the given data.

	 2.	 Modeling. The first step in modeling is to define the system; that is, 
clearly define what you are setting aside for analysis. After you have 
selected a system, draw a neat sketch showing all quantities involved 
with a separate diagram for each body in the problem. For equilibrium 
problems, indicate clearly the forces acting on each body along with any 
relevant geometrical data, such as lengths and angles. (These diagrams 
are known as free-body diagrams and are described in detail in  
Sec. 2.3C and the beginning of Chap. 4.) 

	 3.	 Analysis. After you have drawn the appropriate diagrams, use the 
fundamental principles of mechanics listed in Sec. 1.2 to write equa-
tions expressing the conditions of rest or motion of the bodies 
considered. Each equation should be clearly related to one of the free-
body diagrams and should be numbered. If you do not have enough 
equations to solve for the unknowns, try selecting another system, or 
reexamine your strategy to see if you can apply other principles to the 
problem. Once you have obtained enough equations, you can find a 
numerical solution by following the usual rules of algebra, neatly 
recording each step and the intermediate results. Alternatively, you can 
solve the resulting equations with your calculator or a computer. (For 
multipart problems, it is sometimes convenient to present the Modeling 
and Analysis steps together, but they are both essential parts of the 
overall process.)

	 4.	 Reflect and Think. After you have obtained the answer, check it 
carefully. Does it make sense in the context of the original problem? 
For instance, the problem may ask for the force at a given point of a 
structure. If your answer is negative, what does that mean for the force 
at the point? 

You can often detect mistakes in reasoning by checking the units. For 
example, to determine the moment of a force of 50 N about a point 0.60 m  
from its line of action, we write (Sec. 3.3A)

M = Fd = (30 N)(0.60 m) = 30 N.m
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The unit N.m obtained by multiplying newtons by meters is the correct 
unit for the moment of a force; if you had obtained another unit, you 
would know that some mistake had been made.

You can often detect errors in computation by substituting the 
numerical answer into an equation that was not used in the solution and 
verifying that the equation is satisfied. The importance of correct computa-
tions in engineering cannot be overemphasized.

1.6  Numerical Accuracy
The accuracy of the solution to a problem depends upon two items: (1) the 
accuracy of the given data and (2) the accuracy of the computations per-
formed. The solution cannot be more accurate than the less accurate of 
these two items. 

For example, suppose the loading of a bridge is known to be 75 000 N 
with a possible error of 100 N either way. The relative error that measures 
the degree of accuracy of the data is

100 N
75 000 N

= 0.0013 = 0.13%

In computing the reaction at one of the bridge supports, it would be mean-
ingless to record it as 14 322 N. The accuracy of the solution cannot be 
greater than 0.13%, no matter how precise the computations are, and the 
possible error in the answer may be as large as (0.13/100)(14 322 N) ≈ 20 N. 
The answer should be properly recorded as 14 320 ± 20 N.

In engineering problems, the data are seldom known with an accu-
racy greater than 0.2%. It is therefore seldom justified to write answers with 
an accuracy greater than 0.2%. A practical rule is to use four figures to 
record numbers beginning with a “1” and three figures in all other cases. 
Unless otherwise indicated, you should assume the data given in a problem 
are known with a comparable degree of accuracy. A force of 40 lb, for 
example, should be read as 40.0 N, and a force of 15 N should be read as 
15.00 N.

Electronic calculators are widely used by practicing engineers and 
engineering students. The speed and accuracy of these calculators facilitate 
the numerical computations in the solution of many problems. However, 
you should not record more significant figures than can be justified merely 
because you can obtain them easily. As noted previously, an accuracy 
greater than 0.2% is seldom necessary or meaningful in the solution of 
practical engineering problems.


