
The motion of the paraglider can be described in terms of its 

position, velocity, and acceleration. When landing, the pilot of the 

paraglider needs to consider the wind velocity and the relative 

motion of the glider with respect to the wind. The study of 

motion is known as kinematics and is the subject of this chapter.

Kinematics of Particles

11
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Objectives
• Describe the basic kinematic relationships between 

position, velocity, acceleration, and time.

• Solve problems using these basic kinematic 
 relationships and calculus or graphical methods.

• Define position, velocity, and acceleration in terms of 
Cartesian, tangential and normal, and radial and 
 transverse coordinates.

• Analyze the relative motion of multiple particles by 
using a translating coordinate system.

• Determine the motion of a particle that depends on 
the motion of another particle.

• Determine which coordinate system is most appropri-
ate for solving a curvilinear kinematics problem.

• Calculate the position, velocity, and acceleration of a 
particle undergoing curvilinear motion using  Cartesian, 
tangential and normal, and radial and  transverse 
coordinates.

Introduction
Chapters 1 to 10 were devoted to statics, i.e., to the analysis of bodies at 
rest. We now begin the study of dynamics, which is the part of mechanics 
that deals with the analysis of bodies in motion.

Although the study of statics goes back to the time of the Greek 
philosophers, the first significant contribution to dynamics was made by 
Galileo (1564–1642). Galileo’s experiments on uniformly accelerated bod-
ies led Newton (1642–1727) to formulate his fundamental laws of motion.

Dynamics includes two broad areas of study:

 1. Kinematics, which is the study of the geometry of motion. The  principles 
of kinematics relate the displacement, velocity, acceleration, and time 
of a body’s motion, without reference to the cause of the motion.

 2. Kinetics, which is the study of the relation between the forces acting 
on a body, the mass of the body, and the motion of the body. We use 
kinetics to predict the motion caused by given forces or to determine 
the forces required to produce a given motion.

Chapters 11 through 14 describe the dynamics of particles; in 
Chap. 11, we consider the kinematics of particles. The use of the word 
particles does not mean that our study is restricted to small objects; rather, 
it indicates that in these first chapters we study the motion of bodies— 
possibly as large as cars, rockets, or airplanes—without regard to their size 
or shape. By saying that we analyze the bodies as particles, we mean that 
we consider only their motion as an entire unit; we neglect any rotation 
about their own centers of mass. In some cases, however, such a rotation is 
not negligible, and we cannot treat the bodies as particles. Such motions are 
analyzed in later chapters dealing with the dynamics of rigid bodies.
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11.1 Rectilinear Motion of Particles 617

In the first part of Chap. 11, we describe the rectilinear motion of 
a particle; that is, we determine the position, velocity, and acceleration of 
a particle at every instant as it moves along a straight line. We first use 
general methods of analysis to study the motion of a particle; we then 
consider two important particular cases, namely, the uniform motion and 
the uniformly accelerated motion of a particle (Sec. 11.2). We then discuss 
the simultaneous motion of several particles and introduce the concept 
of the relative motion of one particle with respect to another. The first part 
of this chapter concludes with a study of graphical methods of analysis 
and their application to the solution of problems involving the rectilinear 
motion of particles.

In the second part of this chapter, we analyze the motion of a par-
ticle as it moves along a curved path. We define the position, velocity, and 
acceleration of a particle as vector quantities and introduce the derivative 
of a vector function to add to our mathematical tools. We consider applica-
tions in which we define the motion of a particle by the rectangular com-
ponents of its velocity and acceleration; at this point, we analyze the 
motion of a projectile (Sec. 11.4C). Then we examine the motion of a 
particle relative to a reference frame in translation. Finally, we analyze 
the curvilinear motion of a particle in terms of components other than 
rectangular. In Sec. 11.5, we introduce the tangential and normal compo-
nents of an object’s velocity and acceleration and then examine the radial 
and transverse components.

11.1  RECTILINEAR MOTION 
OF PARTICLES

A particle moving along a straight line is said to be in rectilinear motion. 
The only variables we need to describe this motion are the time, t, and 
the distance along the line, x, as a function of time. With these variables, 
we can define the particle’s position, velocity, and acceleration, which 
completely describe the particle’s motion. When we study the motion of 
a particle moving in a plane (two dimensions) or in space (three  dimensions), 
we will use a more general position vector rather than simply the distance 
along a line.

11.1A  Position, Velocity, and 
Acceleration

At any given instant t, a particle in rectilinear motion occupies some 
 position on the straight line. To define the particle’s position P, we choose 
a fixed origin O on the straight line and a positive direction along the line. 
We measure the distance x from O to P and record it with a plus or minus 
sign, according to whether we reach P from O by moving along the line 
in the positive or negative direction. The distance x, with the appropriate 
sign, completely defines the position of the particle; it is called the  position 
coordinate of the particle. For example, the position coordinate 
 corresponding to P in Fig. 11.1a is x 5 15 m; the coordinate corresponding 
to P9 in Fig. 11.1b is x9 5 22 m.

Fig. 11.1 Position is measured from a fixed 
origin. (a) A positive position coordinate; 
(b) a negative position coordinate.
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618 Kinematics of Particles

When we know the position coordinate x of a particle for every value 
of time t, we say that the motion of the particle is known. We can provide 
a “timetable” of the motion in the form of an equation in x and t, such as 
x 5 6t2 2 t3, or in the form of a graph of x versus t, as shown in Fig. 11.6. 
The units most often used to measure the position coordinate x are the 
meter (m) in the SI system of units† and the foot (ft) in the U.S. customary 
system of units. Time t is usually measured in seconds (s).

Now consider the position P occupied by the particle at time t and 
the corresponding coordinate x (Fig. 11.2). Consider also the position P9 
occupied by the particle at a later time t 1 Dt. We can obtain the position 
coordinate of P9 by adding the small displacement Dx to the coordinate x 
of P. This displacement is positive or negative according to whether P9 is 
to the right or to the left of P. We define the average velocity of the 
 particle over the time interval Dt as the quotient of the displacement Dx 
and the time interval Dt as

Average velocity 5
Dx

Dt

If we use SI units, Dx is expressed in meters and Dt in seconds; the 
 average velocity is then expressed in meters per second (m/s). If we use 
U.S. customary units, Dx is expressed in feet and Dt in seconds; the 
 average velocity is then expressed in feet per second (ft/s).

We can determine the instantaneous velocity v of a particle at the 
instant t by allowing the time interval Dt to become infinitesimally small. Thus, 

Instantaneous velocity 5 v 5 lim
Dty0

 
Dx

Dt

The instantaneous velocity is also expressed in m/s or ft/s. Observing that 
the limit of the quotient is equal, by definition, to the derivative of x with 
respect to t, we have

Velocity of a particle 
along a line

 
v 5

dx

dt  
(11.1)

We represent the velocity v by an algebraic number that can be positive or 
negative.‡ A positive value of v indicates that x increases, i.e., that the  particle 
moves in the positive direction (Fig. 11.3a). A negative value of v indicates 
that x decreases, i.e., that the particle moves in the negative direction 
(Fig. 11.3b). The magnitude of v is known as the speed of the particle.

Consider the velocity v of the particle at time t and also its velocity 
v 1 Dv at a later time t 1 Dt (Fig. 11.4). We define the average  acceleration 
of the particle over the time interval Dt as the quotient of Dv and Dt as

Average acceleration 5
Dv

Dt

v 5
dxdxd

dt

†See Sec. 1.3. 
‡As you will see in Sec. 11.4A, velocity is actually a vector quantity. However, since we are 
considering here the rectilinear motion of a particle where the velocity has a known and fixed 
direction, we need only specify its sense and magnitude. We can do this conveniently by using 
a scalar quantity with a plus or minus sign. This is also true of the acceleration of a particle 
in rectilinear motion. 

Fig. 11.2 A small displacement Dx from 
time t to time t 1 Dt.
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Photo 11.1 The motion of this solar car can 
be described by its position, velocity, and 
acceleration.

Fig. 11.3 In rectilinear motion, velocity can 
be only (a) positive or (b) negative along the 
line.
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Fig. 11.4 A change in velocity from v to 
v 1 Dv corresponding to a change in time 
from t to t 1 Dt.
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11.1 Rectilinear Motion of Particles  619

If we use SI units, Dv is expressed in m/s and Dt in seconds; the average 
acceleration is then expressed in m/s2. If we use U.S. customary units, Dv 
is expressed in ft/s and Dt in seconds; the average acceleration is then 
expressed in ft/s2.

We obtain the instantaneous acceleration a of the particle at the 
instant t by again allowing the time interval Dt to approach zero. Thus,

Instantaneous acceleration 5 a 5 lim
Dty0

 
Dv

Dt

The instantaneous acceleration is also expressed in m/s2 or ft/s2. The limit 
of the quotient, which is by definition the derivative of v with respect to t, 
measures the rate of change of the velocity. We have

Acceleration of a 
particle along a line

 
a 5

dv

dt  
(11.2)

or substituting for v from Eq. (11.1),

 a 5
d2x

dt2  (11.3)

We represent the acceleration a by an algebraic number that can be posi-
tive or negative (see the footnote on the preceding page). A positive value 
of a indicates that the velocity (i.e., the algebraic number v) increases. 
This may mean that the particle is moving faster in the positive direction 
(Fig. 11.5a) or that it is moving more slowly in the negative direction 
(Fig. 11.5b); in both cases, Dv is positive. A negative value of a indicates 
that the velocity decreases; either the particle is moving more slowly in 
the positive direction (Fig. 11.5c), or it is moving faster in the negative 
direction (Fig. 11.5d).

Sometimes we use the term deceleration to refer to a when the speed 
of the particle (i.e., the magnitude of v) decreases; the particle is then  moving 
more slowly. For example, the particle of Fig. 11.5 is decelerating in parts 
b and c; it is truly accelerating (i.e., moving faster) in parts a and d.

a 5
dvdvd

dt

a 5
d2x

dt2

Fig. 11.5 Velocity and acceleration can be in the same or different directions. 
(a, d) When a and v are in the same direction, the particle speeds up; 
(b, c) when a and v are in opposite directions, the particle slows down.
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620 Kinematics of Particles

We can obtain another expression for the acceleration by eliminating 
the differential dt in Eqs. (11.1) and (11.2). Solving Eq. (11.1) for dt, we 
have dt 5 dx/v; substituting into Eq. (11.2) gives us

 
a 5 v

 

dv

dx 
(11.4)a 5 v

dvdvd

dxdxd

Concept Application 11.1

Consider a particle moving in a straight line, and assume that its position 
is defined by 

x 5 6t2 2 t3

where t is in seconds and x in meters. We can obtain the velocity v at any 
time t by differentiating x with respect to t as

v 5
dx

dt
5 12t 2 3t2

We can obtain the acceleration a by differentiating again with respect to t. 
Hence,

a 5
dv

dt
5 12 2 6t

In Fig. 11.6, we have plotted the position coordinate, the velocity, and the 
acceleration. These curves are known as motion curves. Keep in mind, 
however, that the particle does not move along any of these curves; the 
particle moves in a straight line. 
 Since the derivative of a function measures the slope of the corre-
sponding curve, the slope of the x–t curve at any given time is equal to 
the value of v at that time. Similarly, the slope of the v–t curve is equal 
to the value of a. Since a 5 0 at t 5 2 s, the slope of the v–t curve must 
be zero at t 5 2 s; the velocity reaches a maximum at this instant. Also, 
since v 5 0 at t 5 0 and at t 5 4 s, the tangent to the x–t curve must be 
horizontal for both of these values of t.
 A study of the three motion curves of Fig. 11.6 shows that the motion 
of the particle from t 5 0 to t 5 ∞ can be divided into four phases:

 1. The particle starts from the origin, x 5 0, with no velocity but with 
a positive acceleration. Under this acceleration, the particle gains a 
positive velocity and moves in the positive direction. From t 5 0 to 
t 5 2 s, x, v, and a are all positive.

 2. At t 5 2 s, the acceleration is zero; the velocity has reached its 
maximum value. From t 5 2 s to t 5 4 s, v is positive, but a is 
negative. The particle still moves in the positive direction but more 
slowly; the particle is decelerating.

 3. At t 5 4 s, the velocity is zero; the position coordinate x has reached 
its maximum value (32 m). From then on, both v and a are negative; 
the particle is accelerating and moves in the negative direction with 
increasing speed.

 4. At t 5 6 s, the particle passes through the origin; its coordinate x is 
then zero, while the total distance traveled since the beginning of the 
motion is 64 m (i.e., twice its maximum value). For values of t larger 
than 6 s, x, v, and a are all negative. The particle keeps moving in 
the negative direction—away from O—faster and faster. �

Fig. 11.6 Graphs of position, 
velocity, and acceleration as 
functions of time for Concept 
Application 11.1.
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11.1 Rectilinear Motion of Particles  621

11.1B  Determining the Motion of a 
Particle

We have just seen that the motion of a particle is said to be known if we 
know its position for every value of the time t. In practice, however, a 
motion is seldom defined by a relation between x and t. More often, the 
conditions of the motion are specified by the type of acceleration that the 
particle possesses. For example, a freely falling body has a constant 
acceleration that is directed downward and equal to 9.81 m/s2 or 32.2 ft/
s2, a mass attached to a stretched spring has an acceleration proportional 
to the instantaneous elongation of the spring measured from its equilibrium 
position, etc. In general, we can express the acceleration of the particle 
as a function of one or more of the variables x, v, and t. Thus, in order 
to determine the position coordinate x in terms of t, we need to perform 
two successive integrations.

Let us consider three common classes of motion.

 1. a 5 f(t). The Acceleration Is a Given Function of t. Solving Eq. (11.2) 
for dv and substituting f(t) for a, we have

 dv 5 a dt
dv 5 f(t) dt

  Integrating both sides of the equation, we obtain

e dv 5 e f(t) dt

  This equation defines v in terms of t. Note, however, that an arbitrary 
constant is introduced after the integration is performed. This is due to 
the fact that many motions correspond to the given acceleration a 5 f(t). 
In order to define the motion of the particle uniquely, it is necessary to 
specify the initial conditions of the motion, i.e., the value v0 of the 
 velocity and the value x0 of the position coordinate at t 5 0. Rather 
than use an arbitrary constant that is determined by the initial conditions, 
it is often more convenient to replace the indefinite integrals with 
definite  integrals. Definite integrals have lower limits corresponding to 
the initial conditions t 5 0 and v 5 v0 and upper limits corresponding 
to t 5 t and v 5 v. This gives us

 #
v

v0

 

dv 5#
t

0
 

f(t) dt

  v 2 v0 5#
t

0
 

f(t) dt

  which yields v in terms of t.
   We can now solve Eq. (11.1) for dx as

dx 5 v dt

  and substitute for v the expression obtained from the first integration. 
Then we integrate both sides of this equation via the left-hand side with 
respect to x from x 5 x0 to x 5 x and the right-hand side with respect 
to t from t 5 0 to t 5 t. In this way, we obtain the position coordinate 
x in terms of t; the motion is completely determined.
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622 Kinematics of Particles

   We will study two important cases in greater detail in Sec. 11.2: the 
case when a 5 0, corresponding to a uniform motion, and the case when 
a 5 constant, corresponding to a uniformly accelerated motion.

 2. a 5 f(x). The Acceleration Is a Given Function of x. Rearranging 
Eq. (11.4) and substituting f(x) for a, we have

 v dv 5 a dx
 v dv 5 f(x) dx

  Since each side contains only one variable, we can integrate the  equation. 
Denoting again the initial values of the velocity and of the position 
coordinate by v0 and x0, respectively, we obtain

 #
v

v0

 

v dv 5#
x

x0

 

f(x) dx

 12v2 2 1
2 v2

0 5#
x

x0

 

f(x) dx

  which yields v in terms of x. We now solve Eq. (11.1) for dt, giving

dt 5
dx
v

  and substitute for v the expression just obtained. We can then integrate 
both sides to obtain the desired relation between x and t. However, in 
most cases, this last integration cannot be performed analytically, and 
we must resort to a numerical method of integration.

 3. a 5 f(v). The Acceleration Is a Given Function of v. We can now 
 substitute f(v) for a in either Eqs. (11.2) or (11.4) to obtain either 

  f(v) 5
dv

dt
    f(v) 5 v 

dv

dx

 dt 5
dv

f(v)
    dx 5

v dv

f(v)

  Integration of the first equation yields a relation between v and t; 
 integration of the second equation yields a relation between v and x. 
Either of these relations can be used in conjunction with Eq. (11.1) to 
obtain the relation between x and t that characterizes the motion of the 
particle.
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11.1 Rectilinear Motion of Particles  623

Sample Problem 11.1

The position of a particle moving along a straight line is defined by the 
relation x 5 t3 2 6t2 2 15t 1 40, where x is expressed in meters and t 
in seconds. Determine (a) the time at which the velocity is zero, (b) the 
position and distance traveled by the particle at that time, (c) the accelera-
tion of the particle at that time, (d) the distance traveled by the particle 
from t 5 4 s to t 5 6 s.

STRATEGY: You need to use the basic kinematic relationships between 
position, velocity, and acceleration. Because the position is given as a 
function of time, you can differentiate it to find equations for the velocity 
and acceleration. Once you have these equations, you can solve the problem.

MODELING and ANALYSIS: Taking the derivative of position, you obtain

 x 5 t3 2 6t2 2 15t 1 40 (1)

  v 5
dx

dt
5 3t2 2 12t 2 15 (2)

  a 5
dv

dt
5 6 t 2 12  (3)

These equations are graphed in Fig. 1.

a. Time at Which v 5 0. Set v 5 0 in Eq. (2) for

 3t2 2 12t 2 15 5 0  t 5 21 s  and t 5 15 s b

Only the root t 5 15 s corresponds to a time after the motion has begun: 
for t , 5 s, v , 0 and the particle moves in the negative direction; for 
t . 5 s, v . 0 and the particle moves in the positive direction.

b. Position and Distance Traveled When v 5 0. Substitute 
t 5 15 s into Eq. (1), yielding

 x5 5 (5)3 2 6(5)2 2 15(5) 1 40 x5 5 260 m b

The initial position at t 5 0 was x0 5 140 m. Since v Þ 0 during the 
interval t 5 0 to t 5 5 s, you have

Distance traveled 5 x5 2 x0 5 260 m 2 40 m 5 2100 m

Distance traveled 5 100 m in the negative direction b

c. Acceleration When v 5 0.  Substitute t 5 15 s into Eq. (3) for

 a5 5 6(5) 2 12 a5 5 118 m/s2 b

d. Distance Traveled from t 5 4 s to t 5 6 s. The particle 
moves in the negative direction from t 5 4 s to t 5 5 s and in the positive 
direction from t 5 5 s to t 5 6 s; therefore, the distance traveled during 
each of these time intervals must be computed separately.

From t 5 4 s to t 5 5 s:    x5 5 260 m

 x4 5 (4)3 2 6(4)2 2 15(4) 1 40 5 252 m

x (m)

v (m/s)

t (s)

t (s)

t (s)

18

0

0

0

a (m/s2)

40

60–

+5

+5

+2 +5

Fig. 1 Motion curves for the particle.

(continued)
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624 Kinematics of Particles

Sample Problem 11.2

You throw a ball vertically upward with a velocity of 10 m/s from a 
 window located 20 m above the ground. Knowing that the acceleration of 
the ball is constant and equal to 9.81 m/s2 downward, determine (a) the 
velocity v and elevation y of the ball above the ground at any time t, 
(b) the highest elevation reached by the ball and the corresponding value 
of t, (c) the time when the ball hits the ground and the corresponding 
velocity. Draw the v−t and y−t curves.

STRATEGY: The acceleration is constant, so you can integrate the 
defining kinematic equation for acceleration once to find the velocity 
equation and a second time to find the position relationship. Once you 
have these equations, you can solve the problem.

MODELING and ANALYSIS: Model the ball as a particle with 
 negligible drag.

 a. Velocity and Elevation. Choose the y axis measuring the  position 
coordinate (or elevation) with its origin O on the ground and its positive 
sense upward. The value of the acceleration and the initial values of v 
and y are as indicated in Fig. 1. Substituting for a in a 5 dv/dt and noting 
that, when t 5 0, v0 5 110 m/s, you have

 
dv

dt
5 a 5 29.81 m/s2

 #
v

v0510
 dv 5 2#

t

0
 9.81 dt

 [v]v
10 5 2[9.81t]t

0

 v 2 10 5 29.81t
v 5 10 2 9.81t  (1) b

 Distance traveled 5 x5 2 x4 5 260 m 2 (252 m) 5 28 m 
 5 8 m in the negative direction

From t 5 5 s to t 5 6 s: x5 5 260 m

 x6 5 (6)3 2 6(6)2 2 15(6) 1 40 5 250 m
  Distance traveled 5 x6 2 x5 5 250 m 2 (260 m) 5 110 m 
 5 10 m in the positive direction

Total distance traveled from t 5 4 s to t 5 6 s is 8 m 1 10 m  5 18 m

REFLECT and THINK: The total distance traveled by the particle in 
the 2-second interval is 18 m, but because one distance is positive and 
one is negative, the net change in position is only 2 m (in the positive 
direction). This illustrates the difference between total distance traveled 
and net change in position. Note that the maximum displacement occurs at 
t 5 5 s, when the velocity is zero.

Fig. 1 Acceleration, initial 
velocity, and initial position of 
the ball.
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11.1 Rectilinear Motion of Particles  625

Substituting for v in v 5 dy/dt and noting that when t 5 0, y0 5 20 m, 
you have

 
dy

dt
5 v 5 10 2 9.81t

 #
y

y0520

dy 5#
t

0
 (10 2 9.81t) dt

 [y ]y
20 5 [10t 2 4.905t2]t

0

 y 2 20 5 10t 2 4.905t2

y 5 20 1 10t 2 4.905t2  (2) b

Graphs of these equations are shown in Figs. 2 and 3.

b. Highest Elevation. The ball reaches its highest elevation when 
v 5 0. Substituting into Eq. (1), you obtain

 10 2 9.81t 5 0 t 5 1.019 s b

Substituting t 5 1.019 s into Eq. (2), you find

 y 5 20 1 10(1.019) 2 4.905(1.019)2 y 5 25.1 m b

c. Ball Hits the Ground. The ball hits the ground when y 5 0. 
Substituting into Eq. (2), you obtain

20 1 10t 2 4.905t2 5 0    t 5 21.243 s    and    t 5 13.28 s b

Only the root t 5 13.28 s corresponds to a time after the motion has 
begun. Carrying this value of t into Eq. (1), you find

 v 5 10 2 9.81(3.28) 5 222.2 m/s  v 5 22.2 m/s w b

REFLECT and THINK: When the acceleration is constant, the  velocity 
changes linearly, and the position is a quadratic function of time. You will 
see in Sec. 11.2 that the motion in this problem is an example of free fall, 
where the acceleration in the vertical direction is constant and equal to 2g.

Sample Problem 11.3

Many mountain bike shocks utilize a piston that travels in an oil-filled 
cylinder to provide shock absorption; this system is shown schematically. 
When the front tire goes over a bump, the cylinder is given an initial 
velocity v0. The piston, which is attached to the fork, then moves with 
respect to the cylinder, and oil is forced through orifices in the piston. 
This causes the piston to decelerate at a rate proportional to the velocity 
at a 5 2kv. At time t 5 0, the position of the piston is x 5 0. Express 
(a) the velocity v in terms of t, (b) the position x in terms of t, (c) the 
velocity v in terms of x. Draw the corresponding motion curves.

(continued)
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Fig. 2 Velocity of the ball as a 
function of time.
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Fig. 3 Height of the ball as a 
function of time.
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626 Kinematics of Particles

STRATEGY: Because the acceleration is given as a function of velocity, 
you need to use either a 5 dv/dt or a 5 v dv/dx and then separate variables 
and integrate. Which one you use depends on what you are asked to find. 
Since part a asks for v in terms of t, use a 5 dv/dt. You can integrate this 
again using v 5 dx/dt for part b. Since part c asked for v(x), you should 
use a 5 v dv/dx and then separate the variables and integrate.

MODELING and ANALYSIS: Rotation of the piston is not relevant, 
so you can model it as a particle undergoing rectilinear motion.

a. v in Terms of t. Substitute 2kv for a in the fundamental formula 
defining acceleration, a 5 dv/dt. You obtain

2kv 5
dv

dt
    dv

v
5 2k dt    #

v

v0

 
dv
v

5 2k#
t

0
 dt

 ln 

v
v0

5 2kt  v 5 v0e2kt b

b. x in Terms of t. Substitute the expression just obtained for v into 
v 5 dx/dt. You get

 v0e2kt 5
dx

dt

 #
x

0
 

dx 5 v0#
t

0
 

e2kt dt

 x 5 2
v0

k
 [e2kt]t

0 5 2
v0

k
 (e2kt 2 1)

x 5
v0

k
 (1 2 e2kt) b

c. v in Terms of x. Substitute 2kv for a in a 5 v dv/dx. You have

 2kv 5 v
dv

dx

 dv 5 2k dx

 #
v

v0

 

dv 5 2k#
x

0
 

dx

  v 2 v0 5 2kx  v 5 v0 2 kx b

The motion curves are shown in Fig. 1.

REFLECT and THINK: You could have solved part c by eliminating t 
from the answers obtained for parts a and b. You could use this alternative 
method as a check. From part a, you obtain e2kt 5 v/v0; substituting into 
the answer of part b, you have

x 5
v0

k
 (1 2 e2kt) 5

v0

k
 a1 2

v
v0
b    v 5 v0 2 kx    (checks)

v

O t

x

O t

v0

v0

k

v

O x

v0

v0

k

Fig. 1 Motion curves for the 
piston
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11.1 Rectilinear Motion of Particles  627

Sample Problem 11.4 

An uncontrolled automobile traveling at 72 km/h strikes a highway crash 
barrier square on. After initially hitting the barrier, the automobile deceler-
ates at a rate proportional to the distance x the automobile has moved into 
the barrier; specifically, a 5 2302x,  where a and x are expressed in m/s2 
and m, respectively. Determine the distance the automobile will move into 
the barrier before it comes to rest.

v0

y

x

z

–a (m/s2)

x (m)

STRATEGY: Since you are given the deceleration as a function of 
 displacement, you should start with the basic kinematic relationship 
a 5 v dv/dx.

MODELING and ANALYSIS: Model the car as a particle. First find 
the initial speed in ft/s,

v0 5 a72  

km

hr
b a

1 hr

3600 s
b a

1000 m

km
b 5 20  

m
s

Substituting a 5 2302x into a 5 v dv/dx gives

a 5 2302x 5
v dv

dx
Separating variables and integrating gives 

v dv 5 2302x dx y #
0

v0

v dv 5 2#
x

0

302x dx

 
1

2
 v2 2

1

2
 v2

0 5 220x3/2 y x 5 a 1

40
(v2

0 2 v2)b
2/3

  (1)

Substituting v 5 0, v0 5 20 m/s gives 

d 5 4.64 m b

REFLECT and THINK: A distance of 4.64 m seems reasonable for a 
barrier of this type. If you substitute d into the equation for a, you find a 
maximum deceleration of about 7 g’s. Note that this problem would have 
been much harder to solve if you had been asked to find the time for the 
automobile to stop. In this case, you would need to determine v(t) from 
Eq. (1). This gives v 5 2v2

0 2 40x3/2. Using the basic kinematic relation-
ship v 5 dx/dt, you can easily show that

#
t

0

dt 5 #
x

0

dx

2v2
0 2 40x3/2

Unfortunately, there is no closed-form solution to this integral, so you 
would need to solve it numerically. 
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In the problems for this section, you will be asked to determine the position, 
velocity, and/or acceleration of a particle in rectilinear motion. As you read each 

problem, it is important to identify both the independent variable (typically t or x) 
and what is required (for example, the need to express v as a function of x). You may 
find it helpful to start each problem by writing down both the given information and 
a simple statement of what is to be determined.

1. Determining v(t) and a(t) for a given x(t). As explained in Sec. 11.1A, the first 
and second derivatives of x with respect to t are equal to the velocity and the accel-
eration, respectively, of the particle [Eqs. (11.1) and (11.2)]. If the velocity and accel-
eration have opposite signs, the particle can come to rest and then move in the opposite 
direction [Sample Prob. 11.1]. Thus, when computing the total distance traveled by a 
particle, you should first determine if the particle comes to rest during the specified 
interval of time. Constructing a diagram similar to that of Sample Prob. 11.1, which 
shows the position and the velocity of the particle at each critical instant (v 5 vmax, 
v 5 0, etc.), will help you to visualize the motion.

2. Determining v(t) and x(t) for a given a(t). We discussed the solution of problems 
of this type in the first part of Sec. 11.1B. We used the initial conditions, t 5 0 and 
v 5 v0, for the lower limits of the integrals in t and v, but any other known state (for 
example, t 5 t1 and v 5 v1) could be used instead. Also, if the given function a(t) 
contains an unknown constant (for example, the constant k if a 5 kt), you will first 
have to determine that constant by substituting a set of known values of t and a in 
the equation defining a(t).

3. Determining v(x) and x(t) for a given a(x). This is the second case considered 
in Sec. 11.1B. We again note that the lower limits of integration can be any known 
state (for example, x 5 x1 and v 5 v1). In addition, since v 5 vmax when a 5 0, you 
can determine the positions where the maximum or minimum values of the velocity 
occur by  setting a(x) 5 0 and solving for x.

4. Determining v(x), v(t), and x(t) for a given a(v). This is the last case treated in 
Sec. 11.1B; the appropriate solution techniques for problems of this type are illustrated 
in Sample Probs. 11.3 and 11.4. All of the general comments for the preceding cases 
once again apply. Note that Sample Prob. 11.3 provides a summary of how and when 
to use the equations v 5 dx/dt, a 5 dv/dt, and a 5 v dv/dx.

SOLVING PROBLEMS
ON YOUR OWN
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We can summarize these relationships in Table 11.1.

Table 11.1

  If.... Kinematic relationship Integrate

 a 5 a(t) 
dv

dt
5 a(t) #

v

v0

dv 5 #
t

0

a(t)dt

 a 5 a(x) v 
dv

dx
5 a(x) #

v

v0

v dv 5 #
x

x0

a(x)dx

 
dv

dt
5 a(v) #

v

v0

dv

a(v)
5 #

t

0

dt

 a 5 a(v)

 v 

dv

dx
5 a(v) #

x

x0

dx 5 #
v

v0

v dv

a(v)
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Problems†

CONCEPT QUESTIONS

 11.CQ1 A bus travels the 100 km between A and B at 50 km/h and then 
another 100 km between B and C at 70 km/h. The average speed 
of the bus for the entire 200 km trip is:

   a. More than 60 km/h.
   b. Equal to 60 km/h.
   c. Less than 60 km/h.

 11.CQ2 Two cars A and B race each other down a straight road. The posi-
tion of each car as a function of time is shown. Which of the fol-
lowing statements are true (more than one answer can be correct)?

   a. At time t2 both cars have traveled the same distance.
   b. At time t1 both cars have the same speed.
   c. Both cars have the same speed at some time t , t1.
   d. Both cars have the same acceleration at some time t , t1.
   e. Both cars have the same acceleration at some time t1 , t , t2.

t2t1

A

BPosition

time

Fig. P11.CQ2

END-OF-SECTION PROBLEMS

 11.1 A snowboarder starts from rest at the top of a double black diamond 
hill. As she rides down the slope, GPS coordinates are used to deter-
mine her displacement as a function of time: x 5 0.5t3 1 t2 1 2t, 
where x and t are expressed in meters and seconds, respectively. 
 Determine the position, velocity, and acceleration of the boarder 
when t 5 5 seconds. 

 11.2 The motion of a particle is defined by the relation x 5 2t3 2 9t2 1 
12t 1 10, where x and t are expressed in meters and seconds, respec-
tively. Determine the time, the position, and the acceleration of the 
particle when v 5 0.

 11.3 The vertical motion of mass A is defined by the relation x 5 
10 sin 2t 1 15 cos 2t 1 100, where x and t are expressed in 
 millimeters and seconds, respectively. Determine (a) the position, 
velocity, and acceleration of A when t 5 1 s, (b) the maximum 
velocity and acceleration of A.

†Answers to all problems set in straight type (such as 11.1) are given at the end of the book. 
Answers to problems with a number set in italic type (such as 11.6) are not given.

A
C

B

Fig. P11.CQ1

A

Fig. P11.3
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 11.4 A loaded railroad car is rolling at a constant velocity when it couples 
with a spring and dashpot bumper system. After the coupling, the 
motion of the car is defined by the relation x 5 60e24.8t sin 16t, where 
x and t are expressed in millimeters and seconds, respectively. Deter-
mine the position, the velocity, and the acceleration of the railroad 
car when (a) t 5 0, (b) t 5 0.3 s.

 Fig. P11.4

v0

k

c

 11.5 The motion of a particle is defined by the relation x 5 6t4 2 2t3 2 12t2 1 
3t 1 3, where x and t are expressed in meters and seconds, 
 respectively. Determine the time, the position, and the velocity when 
a 5 0.

 11.6 The motion of a particle is defined by the relation x 5 t3 2 9t2 1 
24t 2 8, where x and t are expressed in meters and seconds, respec-
tively. Determine (a) when the velocity is zero, (b) the position and 
the total distance traveled when the acceleration is zero.

 11.7 A girl operates a radio-controlled model car in a vacant parking lot. 
The girl’s position is at the origin of the xy coordinate axes, and the 
surface of the parking lot lies in the x-y plane. She drives the car in a 
straight line so that the x coordinate is defined by the relation 
x(t) 5 0.5t3 2 3t2 1 3t 1 2, where x and t are expressed in meters 
and seconds, respectively. Determine (a) when the velocity is zero, 
(b) the position and total distance travelled when the acceleration is zero.

 Fig. P11.7

0

6

2

y (m)

x (m)

 11.8 The motion of a particle is defined by the relation x 5 t2 2 (t 2 2)3,
where x and t are expressed in meters and seconds, respectively. 
 Determine (a) the two positions at which the velocity is zero (b) the 
total distance traveled by the particle from t 5 0 to t 5 4 s.
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 11.9 The brakes of a car are applied, causing it to slow down at a rate of 
3 m/s2. Knowing that the car stops in 100 m, determine (a) how fast 
the car was traveling immediately before the brakes were applied, 
(b) the time required for the car to stop.

 11.10 The acceleration of a particle is defined by the relation a 5 3e20.2t, 
where a and t are expressed in m/s2 and seconds, respectively. 
 Knowing that x 5 0 and v 5 0 at t 5 0, determine the velocity and 
position of the particle when t 5 0.5 s.

 11.11 The acceleration of a particle is directly proportional to the square of 
the time t. When t 5 0, the particle is at x 5 24 m. Knowing that at 
t 5 6 s, x 5 96 m and v 5 18 m/s, express x and v in terms of t.

 11.12 The acceleration of a particle is defined by the relation a 5 kt2. 
(a) Knowing that v 5 28 m/s when t 5 0 and that v 5 18 m/s when 
t 5 2 s, determine the constant k. (b) Write the equations of motion, 
knowing also that x 5 0 when t 5 2 s.

 11.13 A Scotch yoke is a mechanism that transforms the circular motion 
of a crank into the reciprocating motion of a shaft (or vice versa). 
It has been used in a number of different internal combustion engines 
and in control valves. In the Scotch yoke shown, the acceleration of 
point A is defined by the relation a 5 21.8 sin kt, where a and t 
are expressed in m/s2 and seconds, respectively, and k 5 3 rad/s. 
 Knowing that x 5 0 and v 5 0.6 m/s when t 5 0, determine the 
velocity and position of point A when t 5 0.5 s.

 11.14 For the Scotch yoke mechanism shown, the acceleration of point A 
is defined by the relation a 521.08 sin kt 2 1.44 cos kt, where a 
and t are expressed in m/s2 and seconds, respectively, and 
k 5 3 rad/s. Knowing that x 5 0.16 m and v 5 0.36 m/s when 
t 5 0, determine the velocity and position of point A when t 5 0.5 s. 

 11.15 A piece of electronic equipment that is surrounded by packing material 
is dropped so that it hits the ground with a speed of 4 m/s. After 
contact the equipment experiences an acceleration of a 5 2kx, where 
k is a constant and x is the compression of the packing material. If the 
packing material experiences a maximum compression of 20 mm, 
determine the maximum acceleration of the equipment.

v

 Fig. P11.15  

 11.16 A projectile enters a resisting medium at x 5 0 with an initial velocity 
v0 5 270 m/s and travels 100 mm. before coming to rest. 
Assuming that the velocity of the projectile is defined by the relation 
v 5 v0 2 kx, where v is expressed in m/s and x is in meters, determine 
(a) the initial acceleration of the projectile, (b) the time required for 
the projectile to penetrate 97.5 mm into the resisting medium.

A

x

v = 0

100 m

v0

Fig. P11.9

A

C

B

D

x

 Fig. P11.13 and P11.14

x

v

Fig. P11.16 
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 11.17 The acceleration of a particle is defined by the relation a 5 2k/x. 
It has been experimentally determined that v 5 5 m/s when 
x 5 0.2 m and that v 5 3 m/s when x 5 0.4 m. Determine 
(a) the velocity of the particle when x 5 0.5 m, (b) the position of 
the particle at which its velocity is zero.

 11.18 A brass (nonmagnetic) block A and a steel magnet B are in equilib-
rium in a brass tube under the magnetic repelling force of another 
steel magnet C located at a distance x 5 0.004 m from B. The force 
is inversely proportional to the square of the distance between B and 
C. If block A is suddenly removed, the acceleration of block B is 
a 5 29.81 1 k/x2, where a and x are expressed in m/s2 and meters, 
respectively, and k 5 4 3 1024 m3/s2. Determine the maximum 
velocity and acceleration of B.

 11.19 Based on experimental observations, the acceleration of a particle is 
defined by the relation a 5 2(0.1 1 sin x/b), where a and x are 
expressed in m/s2 and meters, respectively. Knowing that b 5 0.8 m 
and that v 5 1 m/s when x 5 0, determine (a) the velocity of the 
particle when x 5 21 m, (b) the position where the velocity is 
maximum, (c) the maximum velocity.

 11.20 A spring AB is attached to a support at A and to a collar. The 
unstretched length of the spring is l. Knowing that the collar is 
released from rest at x 5 x0 and has an acceleration defined by the 
relation a 5 2100(x 2 lx/2l2 1 x2), determine the velocity of the 
collar as it passes through point C.

 11.21 The acceleration of a particle is defined by the relation a 5 k(1 2 e2x), 
where k is a constant. Knowing that the velocity of the particle is 
v 5 19 m/s when x 5 23 m and that the particle comes to rest at 
the origin, determine (a) the value of k, (b) the velocity of the 
particle when x 5 22 m.

 11.22 Starting from x 5 0 with no initial velocity, a particle is given an 
acceleration a 5 0.12v2 1 49,  where a and v are expressed in m/s2 
and m/s, respectively. Determine (a) the position of the particle when 
v 5 24 m/s, (b) the speed and acceleration of the particle when 
x 5 40 m.

 11.23 A bowling ball is dropped from a boat so that it strikes the surface of 
a lake with a speed of 8 m/s. Assuming the ball experiences a down-
ward acceleration of a 5 3 2 0.1v2 (where a and v are expressed in 
m/s2 and m/s, respectively) when in the water, determine the velocity 
of the ball when it strikes the bottom of the lake.

 11.24 The acceleration of a particle is defined by the relation a 5 2k1v, 
where k is a constant. Knowing that x 5 0 and v 5 81 m/s at 
t 5 0 and that v 5 36 m/s when x 5 18 m, determine (a) the  velocity 
of the particle when x 5 20 m, (b) the time required for the particle 
to come to rest.

 11.25 The acceleration of a particle is defined by the relation a 5 2kv2.5, 
where k is a constant. The particle starts at x 5 0 with a velocity of 
16 mm/s, and when x 5 6 mm, the velocity is observed to be 4 mm/s. 
Determine (a) the velocity of the particle when x 5 5 mm, (b) the 
time at which the velocity of the particle is 9 mm/s.

A

B

C

x

Fig. P11.18

A

BC
l

x0

Fig. P11.20

10 m

Fig. P11.23
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 11.26 A human-powered vehicle (HPV) team wants to model the accelera-
tion during the 260-m sprint race (the first 60 m is called a flying 
start) using a 5 A 2 Cv2, where a is acceleration in m/s2 and v is 
the velocity in m/s. From wind tunnel testing, they found that 
C 5 0.0012 m21. Knowing that the cyclist is going 100 km/h at the 
260-meter mark, what is the value of A?

 11.27 Experimental data indicate that in a region downstream of a given 
louvered supply vent the velocity of the emitted air is defined by 
v 5 0.18v0/x, where v and x are expressed in m/s and meters, 
 respectively, and v0 is the initial discharge velocity of the air. For 
v0 5 3.6 m/s, determine (a) the acceleration of the air at x 5 2 m, 
(b) the time required for the air to flow from x 5 1 to x 5 3 m.

 11.28 Based on observations, the speed of a jogger can be approximated by 
the relation v 5 12(1 2 0.06x)0.3, where v and x are expressed in 
km/h and km, respectively. Knowing that x 5 0 at t 5 0, determine 
(a) the distance the jogger has run when t 5 1 h, (b) the jogger’s 
acceleration in m/s2 at t 5 0, (c) the time required for the jogger to 
run 9 Km.

 11.29 The acceleration due to gravity at an altitude y above the surface of 
the earth can be expressed as

a 5
29.81

1 1

  where a and y are expressed in m/s2 and metre, respectively. Using 
this expression, compute the height reached by a projectile fired 
vertically upward from the surface of the earth if its initial velocity 
is (a) 540 m/s, (b) 900 m/s, (c) 11,180 m/s.

 11.30 The acceleration due to gravity of a particle falling toward the 
earth is a 5 2gR2/r2, where r is the distance from the center of 
the earth to the particle, R is the radius of the earth, and g is the 
acceleration due to gravity at the surface of the earth. If 
R 5 6370 km,  calculate the escape velocity, that is, the minimum 
velocity with which a particle must be projected vertically upward 
from the surface of the earth if it is not to return to the earth. 
(Hint: v 5 0 for r 5 `.)

 11.31 The velocity of a particle is v 5 v0[1 2 sin(πt/T)]. Knowing that 
the particle starts from the origin with an initial velocity v0, deter-
mine (a) its position and its acceleration at t 5 3T, (b) its average 
velocity during the interval t 5 0 to t 5 T.

 11.32 An eccentric circular cam, which serves a similar function as the 
Scotch yoke mechanism in Problem 11.13, is used in conjunction 
with a flat face follower to control motion in pumps and in steam 
engine valves. Knowing that the eccentricity is denoted by e, the 
maximum range of the displacement of the follower is dmax and the 
maximum velocity of the follower is vmax, determine the displace-
ment, velocity, and acceleration of the follower.

y

O
r

e

Aθ

 Fig. P11.32

P

y

 Fig. P11.29

R

P

r

 Fig. P11.30

Fig. P11.26 

v

x

Fig. P11.27 
v

 Fig. P11.28  
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11.2 Special Cases and Relative Motion 635

11.2  SPECIAL CASES AND 
RELATIVE MOTION

In this section, we derive the equations that describe uniform rectilinear 
motion and uniformly accelerated rectilinear motion. We also introduce 
the concept of relative motion, which is of fundamental importance when-
ever we consider the motion of more than one particle at the same time.

11.2A Uniform Rectilinear Motion
Uniform rectilinear motion is a type of straight-line motion that is fre-
quently encountered in practical applications. In this motion, the accelera-
tion a of the particle is zero for every value of t. The velocity v is therefore 
constant, and Eq. (11.1) becomes

dx

dt
5 v 5 constant

We can obtain the position coordinate x by integrating this equation. 
Denoting the initial value of x by x0, we have

Distance in uniform 
rectilinear motion

#
x

x0

dx 5 v#
t

0

dt

x 2 x0 5 vt

  x 5 x0 1 vt (11.5)

This equation can be used only if the velocity of the particle is known to 
be constant. For example, this would be true for an airplane in steady 
flight or a car cruising along a highway at a constant speed.

11.2B  Uniformly Accelerated 
Rectilinear Motion

Uniformly accelerated rectilinear motion is another common type of 
motion. In this case, the acceleration a of the particle is constant, and 
Eq. (11.2) becomes

dv

dt
5 a 5 constant

We obtain the velocity v of the particle by integrating this equation as

#
v

v0

dv 5 a#
t

0

dt

v 2 v0 5 at

  v 5 v0 1 at (11.6)

where v0 is the initial velocity. Substituting for v in Eq, (11.1), we have

dx

dt
5 v0 1 at

x 5 x0 1 vt

v 5 v0 1 at
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636 Kinematics of Particles

Denoting by x0 the initial value of x and integrating, we have

#
x

x0

dx  5 #
t

0

(v
0

1 at)dt

x 2 x0 5 v0 t 1 1
2 at2

  x 5 x0 1 v0 t 1 1
2 at2 (11.7)

We can also use Eq. (11.4) and write

v 

dv

dx
5 a 5 constant

 v dv 5 a dx

Integrating both sides, we obtain

#
v

v0

v dv 5 a#
x

x0

dx

1
2 (v2 2 v2

0) 5 a(x 2 x0)

  v2 5 v2
0 1 2a(x 2 x0) (11.8)

The three equations we have derived provide useful relations among 
position, velocity, and time in the case of constant acceleration, once you have 
provided appropriate values for a, v0, and x0. You first need to define the origin 
O of the x axis and choose a positive direction along the axis; this direction 
determines the signs of a, v0, and x0. Equation (11.6) relates v and t and should 
be used when the value of v corresponding to a given value of t is desired, 
or inversely. Equation (11.7) relates x and t; Eq. (11.8) relates v and x. An 
important application of uniformly accelerated motion is the motion of a body 
in free fall. The acceleration of a body in free fall (usually denoted by g) is 
equal to 9.81 m/s2 or 32.2 ft/s2 (we ignore air resistance in this case).

It is important to keep in mind that the three equations can be used 
only when the acceleration of the particle is known to be constant. If the 
acceleration of the particle is variable, you need to determine its motion 
from the fundamental Eqs. (11.1) through (11.4) according to the methods 
outlined in Sec. 11.1B.

11.2C Motion of Several Particles
When several particles move independently along the same line, you can 
write independent equations of motion for each particle. Whenever 
 possible, you should record time from the same initial instant for all 
 particles and measure displacements from the same origin and in the same 
direction. In other words, use a single clock and a single measuring tape.

Relative Motion of Two Particles. Consider two particles A and 
B moving along the same straight line (Fig. 11.7). If we measure the 
 position coordinates xA and xB from the same origin, the difference xB 2 xA 
defines the relative position coordinate of B with respect to A, which 
is denoted by xB/A. We have

Relative position 
of two particles

 xB/A 5 xB 2 xA  or   xB 5 xA 1 xB/A (11.9)

Regardless of the positions of A and B with respect to the origin, a  positive 
sign for xB/A means that B is to the right of A, and a negative sign means 
that B is to the left of A.

x 5 x0 1 v0 t 1 1
2 at2

v2 5 v2
0 1 2a(x 2 x0)

xBxBx 5 xAxAx 1 xB/AxB/Ax

Fig. 11.7 Two particles A and B in motion 
along the same straight line.

x
 xA

AO B

 xB/A

 xB
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11.2 Special Cases and Relative Motion 637

The rate of change of xB/A is known as the relative velocity of B with 
respect to A and is denoted by vB/A. Differentiating Eq. (11.9), we obtain

Relative velocity 
of two particles vB/A 5 vB 2 vA  or   vB 5 vA 1 vB/A (11.10)

A positive sign for vB/A means that B is observed from A to move in the 
positive direction; a negative sign means that it is observed to move in 
the negative direction.

The rate of change of vB/A is known as the relative acceleration of B 
with respect to A and is denoted by aB/A. Differentiating Eq. (11.10), we obtain†

Relative acceleration 
of two particles aB/A 5 aB 2 aA  or   aB 5 aA 1 aB/A (11.11)

Dependent Motion of Particles. Sometimes, the position of a 
particle depends upon the position of another particle or of several other 
particles. These motions are called dependent. For example, the position 
of block B in Fig. 11.8 depends upon the position of block A. Since the 
rope ACDEFG is of constant length, and since the lengths of the portions 
of rope CD and EF wrapped around the pulleys remain constant, it follows 
that the sum of the lengths of the segments AC, DE, and FG is constant. 
Observing that the length of the segment AC differs from xA only by a 
constant and that, similarly, the lengths of the segments DE and FG differ 
from xB only by a constant, we have

xA 1 2xB 5 constant

Since only one of the two coordinates xA and xB can be chosen arbitrarily, we 
say that the system shown in Fig. 11.8 has one degree of freedom. From the 
relation between the position coordinates xA and xB, it follows that if xA is 
given an increment DxA––that is, if block A is lowered by an amount DxA––the 
coordinate xB receives an increment DxB 5 21

2DxA. In other words, block B 
rises by half the same amount. You can check this directly from Fig. 11.8.

In the case of the three blocks of Fig. 11.9, we can again observe 
that the length of the rope that passes over the pulleys is constant. 
Thus, the following relation must be satisfied by the position coordinates 
of the three blocks:

2xA 1 2xB 1 xC 5 constant

Since two of the coordinates can be chosen arbitrarily, we say that the 
system shown in Fig. 11.9 has two degrees of freedom.

When the relation existing between the position coordinates of several 
particles is linear, a similar relation holds between the velocities and between 
the accelerations of the particles. In the case of the blocks of Fig. 11.9, for 
instance, we can differentiate the position equation twice and obtain

 2 

dxA

dt
1 2 

dxB

dt
1

dxC

dt
5 0   or   2vA 1 2vB 1 vC 5 0

 2 

dvA

dt
1 2 

dvB

dt
1

dvC

dt
5 0    or    2aA 1 2aB 1 aC 5 0

vB 5 vAvAv 1 vB/A

aB 5 aAaAa 1 aB/B/B A/A/

†Note that the product of the subscripts A and B/A used in the right-hand sides of Eqs. (11.9), 
(11.10), and (11.11) is equal to the subscript B that appears in the left-hand sides. This may 
help you remember the correct order of subscripts in various situations.

Fig. 11.8 A system of blocks and pulleys 
with one degree of freedom.

 xA

 xB

A

B

C D

E F

G

Fig. 11.9 A system of blocks and pulleys 
with two degrees of freedom.

A

B

C  xB

 xC xA

Photo 11.2 Multiple cables and pulleys are 
used by this shipyard crane.
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638 Kinematics of Particles

Sample Problem 11.5

In an elevator shaft, a ball is thrown vertically upward with an initial 
velocity of 18 m/s from a height of 12 m above ground. At the same 
instant, an open-platform elevator passes the 5-m level, moving upward 
with a constant velocity of 2 m/s. Determine (a) when and where the ball 
hits the elevator (b) the relative velocity of the ball with respect to the 
elevator when the ball hits the elevator.

STRATEGY: The ball has a constant acceleration, so its motion is uni-
formly accelerated. The elevator has a constant velocity, so its motion is 
uniform. You can write equations to describe each motion and then set the 
position coordinates equal to each other to find when the particles meet. The 
relative velocity is determined from the calculated motion of each particle.

MODELING and ANALYSIS:

Motion of Ball. Place the origin O of the y axis at ground level and 
choose its positive direction upward (Fig. 1). Then the initial position of 
the ball is y0 5 112 m, its initial velocity is v0 5 118 m/s, and its accel-
eration is a 5 29.81 m/s2. Substituting these values in the equations for 
uniformly accelerated motion, you get

 vB 5 v0 1 at vB 5 18 2 9.81t (1)

 yB 5 y0 1 v0 t 1
1
2

 at2   yB 5 12 1 18t 2 4.905t2 (2)

Motion of Elevator.  Again place the origin O at ground level and 
choose the positive direction upward (Fig. 2). Noting that y0 5 15 m, 
you have

 vE 5 12 m/s (3)
 yE 5 y0 1 vE t  yE 5 5 1 2t (4)

Ball Hits Elevator. First note that you used the same time t and the 
same origin O in writing the equations of motion for both the ball and 
the elevator. From Fig. 3, when the ball hits the elevator,

 yE 5 yB (5)

Substituting for yE and yB from Eqs. (2) and (4) into Eq. (5), you have

5 1 2t 5 12 1 18t 2 4.905t2

 t 5 20.39 s  and t 5 3.65 s b

Only the root t 5 3.65 s corresponds to a time after the motion has begun. 
Substituting this value into Eq. (4), you obtain

yE 5 5 1 2(3.65) 5 12.30 m

Elevation from ground 5 12.30 m b

t = t

t = 0

yB
a = –9.81 m/s2

v0 = 18 m/s

vE = 2 m/s

y0 = 12 m

O

t = t

yE

y0 = 5 m
O

yB yE

O

t = 0

Fig. 1 Acceleration, initial 
velocity, and initial position of 
the ball.

t = t

t = 0

yB
a = –9.81 m/s2

v0 = 18 m/s

vE = 2 m/s

y0 = 12 m

O

t = t

yE

y0 = 5 m
O

yB yE

O

t = 0

Fig. 2 Initial velocity and initial 
position of the elevator.

Fig. 3 Position of ball and 
elevator at time t.

t = t

t = 0

yB
a = –9.81 m/s2

v0 = 18 m/s

vE = 2 m/s

y0 = 12 m

O

t = t

yE

y0 = 5 m
O

yB yE

O

t = 0
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11.2 Special Cases and Relative Motion 639

Relative Velocity. The relative velocity of the ball with respect to the 
elevator is

vB/E 5 vB 2 vE 5 (18 2 9.81t) 2 2 5 16 2 9.81t

When the ball hits the elevator at time t 5 3.65 s, you have

vB/E 5 16 2 9.81(3.65)  vB/E 5 219.81 m/s b

The negative sign means that if you are riding on the elevator, it will 
appear as if the ball is moving downward.

REFLECT and THINK: The key insight is that, when two particles 
collide, their position coordinates must be equal. Also, although you can 
use the basic kinematic relationships in this problem, you may find it 
easier to use the equations relating a, v, x, and t when the acceleration is 
constant or zero.

Sample Problem 11.6 

Car A is travelling at a constant 135 km/h when she passes a parked police 
officer B, who gives chase when the car passes her. The officer accelerates 
at a constant rate until she reaches the speed of 150 km/h. Thereafter, her 
speed remains constant. The police officer catches the car 4.5 km from 
her starting point. Determine the initial acceleration of the police 
officer.

STRATEGY: One car is traveling at a constant speed and the other has 
a constant acceleration, so you can start with the algebraic relationships 
found in Sec. 11.2 rather than separating and integrating the basic kine-
matic relationships.

MODELING and ANALYSIS: A clearly labeled picture will help you 
understand the  problem better (Fig. 1). The position, x, is defined from 
the point the car passes the officer.

Fig. 1 Velocities and accelerations of the cars at various times.

Time when police
of�cer reaches max
 speed (vB)f = 150 km/h

t1

4.5 km
x1

x

(vA)0  = 135 km/h
aA  = 0

(vA)f  = 135 km/h

(vB)0 = 0
aB = constant

(continued)
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640 Kinematics of Particles

Unit Conversions. First you should convert everything to units of feet 
and seconds. Use the subscript A for the car and B for the officer

vA 5 a135  

km

hr
ba

1 hr

3600 s
ba

1000 m

km
b 5 37.5  

m
s

vB 5 a150   

km

hr
ba

1 hr

3600 s
ba

1000 m

km
b 5   

m
s

125
3

Motion of the Speeding Car A. Since the car has a constant speed, 

 xA 5 vAt 5 37.5 t (1)

Motion of the Officer B. The officer has a constant acceleration 
until she reaches a final speed of 105 mph. This time is labeled t1 in Fig. 1. 
Therefore, from time 0 , t , t1, the officer has a velocity of

vB 5 aB t for 0 , t , t1

or at time t 5 t1, it is

 125
3

 5 aBt1 (2)

The distance the officer travels is going to be the distance from 0 to t1 
and then from t1 to tf. Hence,

 xB 5
1
2

 aBt2
1 1 vB(t 2 t1)  for t . t1 (3)

The officer catches the speeder when xA 5 xB 5 4.5 km 5 4,500 m. From 
Eq. (1), you can solve for the time tf 5 (4500 m)/(37.5 m/s) 5 120 s. 
Therefore, you have two equations: Eq. (2) and 

 45005
1

2

125

3
 aBt

2
1 1 (120 2 t1)  (4)

Substituting Eq. (2) into Eq. (4) allows you to solve for t1: 

t1 5 24.0 s

Substituting this into Eq. (2) gives 

aB 5 1.736 m/s2 b

REFLECT and THINK: It is important to use the same origin for the 
position of both vehicles. The time to accelerate from 0 to 150 km/h seems 
reasonable, although it is perhaps longer than you would expect. A high-
performance sports car can go from 0 to 90 km/h in less than 5 seconds. 
It is very likely that the officer could have accelerated to 150 km/h in less 
time if she had wanted to, but perhaps she had to consider the safety of 
other motorists.
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11.2 Special Cases and Relative Motion 641

Sample Problem 11.7

Collar A and block B are connected by a cable passing over three pulleys 
C, D, and E as shown. Pulleys C and E are fixed, while D is attached to 
a collar which is pulled downward with a constant velocity of 75 mm/s. At 
t 5 0, collar A starts moving downward from position K with a constant 
acceleration and no initial velocity. Knowing that the velocity of collar A 
is 300 mm/s as it passes through point L, determine the change in elevation, 
the velocity, and the acceleration of block B when collar A passes through 
L.

STRATEGY: You have multiple objects connected by cables, so this is 
a problem in dependent motion. Use the given data to write a single equa-
tion relating the changes in position coordinates of collar A, pulley D, and 
block B. Based on the given information, you will also need to use the 
algebraic relationships we found for uniformly accelerated motion.

MODELING and ANALYSIS: 
Motion of Collar A. Place the origin O at the upper horizontal 
 surface and choose the positive direction downward. Then when t 5 0, 
collar A is at position K and (vA)0 5 0 (Fig. 1). Since vA 5 300 mm/s and 
xA 2 (xA)0 5 200 mm when the collar passes through L, you have

v2
A 5 (vA)2

0 1 2aA[xA 2 (xA)0]    (300)2 5 0 1 2aA(200)
aA 5 225 mm/s2

To find the time at which collar A reaches point L, use the equation for 
velocity as a function of time with uniform acceleration. Thus,

vA 5 (vA)0 1 aAt  300 5 0 1 225t  t 5 1.333 s

Motion of Pulley D. Since the positive direction is downward, you 
have (Fig. 2)

aD 5 0  vD 5 75 mm/s  xD 5 (xD)0 1 vD t 5 (xD)0 1 75t

When collar A reaches L at t 5 1.333 s, the position of pulley D is

xD 5 (xD)0 1 75(1.333) 5 (xD)0 1 100

Thus, xD 2 (xD)0 5 100 mm

Motion of Block B. Note that the total length of cable ACDEB differs 
from the quantity (xA 1 2xD 1 xB) only by a constant. Since the cable 
length is constant during the motion, this quantity must also remain con-
stant. Thus, considering the times t 5 0 and t 5 1.333 s, you can write

 xA 1 2xD 1 xB 5 (xA)0 1 2(xD)0 1 (xB)0 (1)

 [xA 2 (xA)0] 1 2[xD 2 (xD)0] 1 [xB 2 (xB)0] 5 0 (2)

But you know that xA 2 (xA)0 5 200 mm and xD 2 (xD)0 5 100 mm 
Substituting these values in Eq. (2), you find

200 1 2(100) 1 [xB 2 (xB)0] 5 0  xB 2 (xB)0 5 2400 mm

Thus, Change in elevation of B 5 400 mmx  b

A

O

L

K

C E

A
B

D

D

8 in.

xA
aA

(xA)0

xA xB

xD

vA = 300 mm/s

O

(xD)0

xD

vD = 75 mm/s

OFig. 2 Position and velocity of pulley D.

A

O

L

K

C E

A
B

D

D

8 in.

xA
aA

(xA)0

xA xB

xD

vA = 300 mm/s

O

(xD)0

xD

vD = 75 mm/s

O

Fig. 3 Position of A, B, and D.

(continued)

C E

K

L

A

B

D
200 mm

A

O

L

K

C E

A
B

D

D

8 in.

xA
aA

(xA)0

xA xB

xD

vA = 300 mm/s

O

(xD)0

xD

vD = 75 mm/s

O

Fig. 1 Position, velocity, and 
acceleration of collar A.
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642 Kinematics of Particles

Differentiating Eq. (1) twice, you obtain equations relating the velocities 
and the accelerations of A, B, and D. Substituting for the velocities and 
accelerations of A and D at t 5 1.333 s, you have

vA 1 2vD 1 vB 5 0:  300 1 2(75) 1 vB 5 0 

 vB 5 2450 mm/s  vB 5 450 mm/sx b

aA 1 2aD 1 aB 5 0:  225 1 2(0) 1 aB 5 0 
 aB 5 2225 mm/s2  aB 5 225 mm/s2x b

REFLECT and THINK: In this case, the relationship we needed was 
not between position coordinates, but between changes in position 
 coordinates at two different times. The key step is to clearly define your 
position  vectors. This is a two-degree-of-freedom system, because two 
coordinates are required to completely describe it.

Sample Problem 11.8

Block C starts from rest and moves down with a constant acceleration. 
Knowing that after block A has moved 450 mm its velocity is 180 mm/s, 
determine (a) the acceleration of A and C, (b) the change in velocity and 
the change in position of block B after 2.5 seconds.

STRATEGY: Since you have blocks connected by cables, this is a 
dependent-motion problem. You should define coordinates for each mass 
and write constraint equations for both cables. 

MODELING and ANALYSIS: Define position vectors as shown in 
Fig. 1, where positive is defined to be down. 

A

C
B

Cable 1

Cable 2

 xA

 xB  xC

Fig. 1 Position of A, B, and C.

A

C
B
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11.2 Special Cases and Relative Motion 643

Constraint Equations. Assuming the cables are inextensible, you can 
write the lengths in terms of the defined coordinates and then 
differentiate.

Cable 1: xA 1 (xA 2 xB) 5 constant

Differentiating this, you find 

 2vA 5 vB and 2aA 5 aB (1)

Cable 2: 2xB 1 xC 5 constant

Differentiating this, you find 

 vC 5 22vB and aC 5 22aB (2)

Substituting Eq. (1) into Eq. (2) gives 

 vC 5 24vA and aC 5 24aA (3)

Motion of A. You can use the constant-acceleration equations for 
block A:, as

 v2
A 2 v2

A0
5 2aA [xA 2 (xA)

0
]  or  aA 5

v2
A 2 (vA)2

0

2[xA 2 (xA)
0
]
 (4)

a. Acceleration of A and C. You know vC and aC are down, so from 
Eq. (3), you also know vA and aA are up. Substituting the given values 
into Eq. (4), you find

 aA 5
(180 mm/s)2 2 0

2(2450 mm)
5 236 mm/s2  aA 5 36 mm/s2x b

Substituting this value into aC 5 24aA, you obtain

aC 5 144 mm/s2w b

b. Velocity and change in position of B after 2.5 s. Substituting 
aA in aB 5 2aA gives

aB 5 2(236 mm/s2) 5 272 mm/s2

You can use the equations of constant acceleration to find

DvB 5 aBt 5 (272 mm/s2)(2.5 s) 5 2180 mm/s DvB 5 180 mm/sx b

 DxB 5 1
2 aBt 5 1

2 (272 mm/s2)(2.5 s)2 5 2225 mm DxB 5 225 mmx b

REFLECT and THINK: One of the keys to solving this problem is 
recognizing that since there are two cables, you need to write two 
 constraint equations. The directions of the answers also make sense. If 
block C is accelerating downward, you would expect A and B to accelerate 
upward.
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SOLVING PROBLEMS
ON YOUR OWN

In this section, we derived the equations that describe uniform rectilinear motion 
(constant velocity) and uniformly accelerated rectilinear motion (constant 

 acceleration). We also introduced the concept of relative motion. We can apply the 
equations for relative motion [Eqs. (11.9) through (11.11)] to the independent or 
dependent motions of any two particles moving along the same straight line.

A. Independent motion of one or more particles. Organize the solution of  problems 
of this type as follows.

1. Begin your solution by listing the given information, sketching the system, and 
selecting the origin and the positive direction of the coordinate axis [Sample Prob. 11.5]. 
It is always advantageous to have a visual representation of problems of this type.

2. Write the equations that describe the motions of the various particles as well as 
those that describe how these motions are related [Eq. (5) of Sample Prob. 11.5].

3. Define the initial conditions, i.e., specify the state of the system  corresponding 
to t 5 0. This is especially important if the motions of the particles begin at different 
times. In such cases, either of two approaches can be used.
 a. Let t 5 0 be the time when the last particle begins to move. You must then 
determine the initial position x0 and the initial velocity v0 of each of the other 
particles.
 b. Let t 5 0 be the time when the first particle begins to move. You must then, 
in each of the equations describing the motion of another  particle, replace t with 
t 2 t0, where t0 is the time at which that specific particle begins to move. It is 
 important to recognize that the equations obtained in this way are valid only for t $ t0.
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B. Dependent motion of two or more particles. In problems of this type, the 
 particles of the system are connected to each other, typically by ropes or cables. The 
method of solution of these problems is similar to that of the preceding group of 
problems, except that it is now necessary to describe the physical connections between 
the particles. In the following problems, the connection is provided by one or more 
cables. For each cable, you will have to write equations similar to the last three 
 equations of Sec. 11.2C. We suggest that you use the following procedure.

1. Draw a sketch of the system and select a coordinate system, indicating clearly a 
positive sense for each of the coordinate axes. For example, in Sample Probs. 11.7 
and 11.8, we measured lengths downward from the upper horizontal support. It thus 
follows that those displacements, velocities, and accelerations that have positive values 
are directed downward.

2. Write the equation describing the constraint imposed by each cable on the 
motion of the particles involved. Differentiating this equation twice, you obtain the 
corresponding relations among velocities and accelerations.

3. If several directions of motion are involved, you must select a coordinate axis 
and a positive sense for each of these directions. You should also try to locate the 
origins of your coordinate axes so that the equations of constraints are as simple as 
possible. For example, in Sample Prob. 11.7, it is easier to define the various coordi-
nates by measuring them downward from the upper support than by measuring them 
upward from the bottom support.

Finally, keep in mind that the method of analysis described in this section and the 
corresponding equations can be used only for particles moving with uniform or 
uniformly accelerated rectilinear motion.
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Problems
 11.33 An airplane begins its take-off run at A with zero velocity and a 

constant acceleration a. Knowing that it becomes airborne 30 s later 
at B and that the distance AB is 900 m, determine (a) the acceleration a 
(b) the take-off velocity vB.

BA

Fig. P11.33

 11.34 A motorist is traveling at 54 km/h when she observes that a traffic 
light 240 m ahead of her turns red. The traffic light is timed to stay 
red for 24 s. If the motorist wishes to pass the light without stopping 
just as it turns green again, determine (a) the required uniform decel-
eration of the car, (b) the speed of the car as it passes the light.

54 km/h

240 m

Fig. P11.34

 11.35 Steep safety ramps are built beside mountain highways to enable 
vehicles with defective brakes to stop safely. A truck enters a 225-m 
ramp at a high speed v0 and travels 160 m in 6 s at constant decel-
eration before its speed is reduced to v0 /2. Assuming the same con-
stant deceleration, determine (a) the additional time required for the 
truck to stop (b) the additional distance traveled by the truck.

v0

CROSS COUNTRY MOVERS

Fig. P11.35

 11.36 A group of students launches a model rocket in the vertical 
 direction. Based on tracking data, they determine that the altitude 
of the rocket was 27 m at the end of the powered portion of the 
flight and that the rocket landed 16 s later. Knowing that the 
descent parachute failed to deploy so that the rocket fell freely to 
the ground after reaching its maximum altitude and assuming that 
g 5 9.81 m/s2, determine (a) the speed v1 of the rocket at the end 
of powered flight, (b) the maximum altitude reached by the rocket.

v1

27 m

Fig. P11.36
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 11.37 A small package is released from rest at A and moves along the skate 
wheel conveyor ABCD. The package has a uniform acceleration of 
4.8 m/s2 as it moves down sections AB and CD, and its velocity is 
constant between B and C. If the velocity of the package at D is 
7.2 m/s, determine (a) the distance d between C and D, (b) the time 
required for the package to reach D.

B

A

C

D

3 m

3 m
d

Fig. P11.37

 11.38 A sprinter in a 100-m race accelerates uniformly for the first 35 m 
and then runs with constant velocity. If the sprinter’s time for the 
first 35 m is 5.4 s, determine (a) his acceleration, (b) his final 
 velocity, (c) his time for the race.

 11.39 Automobile A starts from O and accelerates at the constant rate of 
0.75 m/s2. A short time later it is passed by bus B which is traveling 
in the opposite direction at a constant speed of 6 m/s. Knowing that 
bus B passes point O 20 s after automobile A started from there, 
determine when and where the vehicles passed each other.

A

x
O

BB A

Fig. P11.39

 11.40 In a boat race, boat A is leading boat B by 50 m and both boats are 
traveling at a constant speed of 180 km/h. At t 5 0, the boats 
 accelerate at constant rates. Knowing that when B passes A, t 5 8 s 
and vA 5 225 km/h, determine (a) the acceleration of A, (b) the 
acceleration of B.

A

B

50 m

vB

vA

Fig. P11.40

v

Fig. P11.38
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 11.41 As relay runner A enters the 20-m-long exchange zone with a speed 
of 12.9 m/s, he begins to slow down. He hands the baton to runner 
B 1.82 s later as they leave the exchange zone with the same velocity. 
Determine (a) the uniform acceleration of each of the runners, 
(b) when runner B should begin to run.

 11.42 Automobiles A and B are traveling in adjacent highway lanes and 
at t 5 0 have the positions and speeds shown. Knowing that auto-
mobile A has a constant acceleration of 0.54 m/s2 and that B has 
a constant deceleration of 0.36 m/s2, determine (a) when and 
where A will overtake B, (b) the speed of each automobile at that 
time.

 11.43 Two automobiles A and B are approaching each other in adjacent 
highway lanes. At t 5 0, A and B are 1 km apart, their speeds are 
vA 5 108 km/h and vB 5 63 km/h, and they are at points P and Q, 
respectively. Knowing that A passes point Q 40 s after B was there 
and that B passes point P 42 s after A was there, determine (a) the 
uniform accelerations of A and B, (b) when the vehicles pass each 
other, (c) the speed of B at that time.

A B

P Q

vB = 63 km/hvA = 108 km/h

1 km

Fig. P11.43

 11.44 An elevator is moving upward at a constant speed of 4 m/s. A man 
standing 10 m above the top of the elevator throws a ball upward 
with a speed of 3 m/s. Determine (a) when the ball will hit the 
 elevator, (b) where the ball will hit the elevator with respect to the 
location of the man.

 11.45 Two rockets are launched at a fireworks display. Rocket A is launched 
with an initial velocity v0 5 100 m/s and rocket B is launched 
t1 seconds later with the same initial velocity. The two rockets are 
timed to explode simultaneously at a height of 300 m as A is falling 
and B is rising. Assuming a constant acceleration g 5 9.81 m/s2, 
determine (a) the time t1, (b) the velocity of B relative to A at the time 
of the explosion.

 11.46 Car A is parked along the northbound lane of a highway, and car B is 
traveling in the southbound lane at a constant speed of 90 km/h. At 
t 5 0, A starts and accelerates at a constant rate aA, while at t 5 5 s, 
B begins to slow down with a constant deceleration of magnitude 
aA/6. Knowing that when the cars pass each other x 5 90 m and 
vA 5 vB, determine (a) the acceleration aA, (b) when the vehicles pass 
each other, (c) the distance d between the vehicles at t 5 0.

A B

(vB)0 = 90 km/h(vA)0 = 0

x

d

Fig. P11.46

A B

x

(vA)0 = 36 km/h (vB)0 = 54 km/h

22.5 m

Fig. P11.42

10 m

Fig. P11.44

A B 300 m

v0 v0

Fig. P11.45

A B

(vA)0 = 12.9 m/s

(vB)0 = 0

20 m

Fig. P11.41
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 11.47 The elevator E shown in the figure moves downward with a constant 
velocity of 4 m/s. Determine (a) the velocity of the cable C, (b) the 
velocity of the counterweight W, (c) the relative velocity of the cable 
C with respect to the elevator, (d) the relative velocity of the 
 counterweight W with respect to the elevator.

 11.48 The elevator E shown starts from rest and moves upward with a 
 constant acceleration. If the counterweight W moves through 10 m 
in 5 s, determine (a) the acceleration of the elevator and the cable C, 
(b) the velocity of the elevator after 5 s.

 11.49 An athlete pulls handle A to the left with a constant velocity of 
0.5 m/s. Determine (a) the velocity of the weight B, (b) the relative 
velocity of weight B with respect to the handle A.

A

B

Fig. P11.49

 11.50 An athlete pulls handle A to the left with a constant acceleration. 
Knowing that after the weight B has been lifted 100 mm its velocity 
is 0.6 m/s, determine (a) the accelerations of handle A and weight 
B, (b) the velocity and change in position of handle A after 0.5 sec.

A

B

Fig. P11.50

W

EC

M

Fig. P11.47 and P11.48
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 11.51 Slider block B moves to the right with a constant velocity of 
300 mm/s. Determine (a) the velocity of slider block A, (b) the 
velocity of portion C of the cable, (c) the velocity of portion D 
of the cable, (d) the relative velocity of portion C of the cable with 
respect to slider block A.

BC

DA

Fig. P11.51 and P11.52

 11.52 At the instant shown, slider block B is moving with a constant accel-
eration, and its speed is 150 mm/s. Knowing that after slider block 
A has moved 240 mm to the right its velocity is 60 mm/s, determine 
(a) the accelerations of A and B, (b) the acceleration of portion D 
of the cable, (c) the velocity and the change in position of slider 
block B after 4 s.

 11.53 Slider block A moves to the left with a constant velocity of 6 m/s. 
Determine (a) the velocity of block B, (b) the velocity of portion D 
of the cable, (c) the relative velocity of portion C of the cable with 
respect to portion D.

B

A

C
D

Fig. P11.53

 11.54 The motor M reels in the cable at a constant rate of 100 mm/s. 
Determine (a) the velocity of load L, (b) the velocity of pulley B 
with respect to load L.

L

100 mm/s

M

B

Fig. P11.54
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 11.55 Collar A starts from rest and moves upward with a constant accelera-
tion. Knowing that after 8 s the relative velocity of collar B with respect 
to collar A is 0.6 m/s, determine (a) the accelerations of A and B, 
(b) the velocity and the change in position of B after 6 s.

 11.56 Block A starts from rest at t 5 0 and moves downward with a 
 constant acceleration of 150 mm/s2. Knowing that block B moves up 
with a constant velocity of 75 mm/s, determine (a) the time when 
the  velocity of block C is zero, (b) the corresponding position of 
block C.

C

A

B

Fig. P11.56

 11.57 Block B starts from rest, block A moves with a constant acceleration, 
and slider block C moves to the right with a constant acceleration 
of 75 mm/s2. Knowing that at t 5 2 s the velocities of B and C are 
480 mm/s downward and 280 mm/s to the right, respectively, deter-
mine (a) the accelerations of A and B, (b) the initial velocities of 
A and C, (c) the change in position of slider block C after 3 s.

 11.58 Block B moves downward with a constant velocity of 20 mm/s. At 
t 5 0, block A is moving upward with a constant acceleration, and 
its velocity is 30 mm/s. Knowing that at t 5 3 s slider block C has 
moved 57 mm to the right, determine (a) the velocity of slider block 
C at t 5 0, (b) the accelerations of A and C, (c) the change in posi-
tion of block A after 5 s.

 11.59 The system shown starts from rest, and each component moves with 
a constant acceleration. If the relative acceleration of block C with 
respect to collar B is 60 mm/s2 upward and the relative acceleration 
of block D with respect to block A is 110 mm/s2 downward, deter-
mine (a) the velocity of block C after 3 s, (b) the change in position 
of block D after 5 s.

 *11.60 The system shown starts from rest, and the length of the upper cord 
is adjusted so that A, B, and C are initially at the same level. Each 
component moves with a constant acceleration, and after 2 s the 
 relative change in position of block C with respect to block A is 
280 mm upward. Knowing that when the relative velocity 
of collar B with respect to block A is 80 mm/s downward, the 
 displacements of A and B are 160 mm downward and 320 mm 
downward, respectively, determine (a) the accelerations of A and B 
if aB . 10 mm/s2, (b) the change in position of block D when the 
velocity of block C is 600 mm/s upward.

A

B

C

Fig. P11.55

BA  

C

Fig. P11.57 and P11.58

C

A

D

B

 Fig. P11.59 and P11.60
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652 Kinematics of Particles

*11.3 GRAPHICAL SOLUTIONS 
In analyzing problems in rectilinear motion, it is often useful to draw 
graphs of position, velocity, or acceleration versus time. Sometimes these 
graphs can provide insight into the situation by indicating when quantities 
increase, decrease, or stay the same. In other cases, the graphs can provide 
numerical solutions when analytical methods are not available. In many 
experimental situations, data are collected as a function of time, and the 
methods of this section are very useful for the analysis.

Fig. 11.10 The slope of an x–t curve at time t1 equals the velocity v at that time; the slope 
of the v–t curve at time t1 equals the acceleration a at that time.

Slop
e

Slop
e

dx
dt

 = v

v a

dv
dt

 = a

x v a

ttt t1t1t1

x

We observed in Sec. 11.1 that the fundamental formulas

v 5
dx

dt
   and   a 5

dv

dt

have a geometrical significance. The first formula says that the velocity 
at any instant is equal to the slope of the x–t curve at that instant 
(Fig. 11.10). The second formula states that the acceleration is equal to 
the slope of the v–t curve. We can use these two properties to determine 
graphically the v–t and a–t curves of a motion when the x–t curve is 
known.

Integrating the two fundamental formulas from a time t1 to a time 
t2, we have

 x2 2 x1 5 #
t2

t1

v dt   and   v2 2 v1 5 #
t2

t1

a Êdt (11.12)

The first formula says that the area measured under the v−t curve from t1 
to t2 is equal to the change in x during that time interval (Fig. 11.11). 
Similarly, the second formula states that the area measured under the a–t 
curve from t1 to t2 is equal to the change in v during that time interval. 
We can use these two properties to determine graphically the x–t curve of 
a motion when its v−t curve or its a–t curve is known (see Sample 
Prob. 11.9).

Fig. 11.11 The area under an a–t curve 
equals the change in velocity during that 
time interval; the area under the v–t curve 
equals the change in position during that 
time interval.

t2t1

x1

x2

t

t2t1 t

t2t1 t

x

v2

v1

v

a

Area

Area

v2 − v1 =       �
t1

t2

x2 − x1 =        �
t1

t2

      a dt 

       v dt 
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*11.3 Graphical Solutions  653

Graphical solutions are particularly useful when the motion consid-
ered is defined from experimental data and when x, v, and a are not 
analytical functions of t. They also can be used to advantage when the 
motion consists of distinct parts and when its analysis requires writing a 
different equation for each of its parts. When using a graphical solution, 
however, be careful to note that (1) the area under the v–t curve measures 
the change in x—not x itself—and similarly, that the area under the a–t 
curve measures the change in v; (2) an area above the t axis corresponds 
to an increase in x or v, whereas an area located below the t axis measures 
a decrease in x or v.

In drawing motion curves, it is useful to remember that, if the 
 velocity is constant, it is represented by a horizontal straight line; the 
position coordinate x is then a linear function of t and is represented by 
an oblique straight line. If the acceleration is constant and different from 
zero, it is represented by a horizontal straight line; v is then a linear 
 function of t and is represented by an oblique straight line, and x is a 
second-degree polynomial in t and is represented by a parabola. If the 
acceleration is a linear function of t, the velocity and the position  coordinate 
are equal, respectively, to second-degree and third-degree polynomials; 
a is then represented by an oblique straight line, v by a parabola, and x 
by a cubic. In general, if the acceleration is a polynomial of degree n in t, 
the velocity is a polynomial of degree n 1 1, and the position coordinate 
is a polynomial of degree n 1 2. These polynomials are represented by 
motion curves of a corresponding degree.
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654 Kinematics of Particles

Sample Problem 11.9

A particle moves in a straight line with the acceleration shown in the 
figure. Knowing that it starts from the origin with v0 5 26 m/s, (a) plot 
the v – t and x – t curves for 0 , t , 20 s, (b) determine its velocity, its 
position, and the total distance traveled when t 5 12 s.

STRATEGY: You are given the graph of a versus t. You can calculate 
areas under the curve to determine the v–t curve and calculate areas under 
the v–t curve to determine the x–t curve.

MODELING and ANALYSIS: The particle is moving under rectilin-
ear acceleration.
a Acceleration-Time Curve. 

Initial conditions: t 5 0, v0 5 26 m/s, x0 5 0

Change in v 5 area under a−t curve:

v0 = −6 m / s

0 < t < 4s : v4 − v0 = (1 m /s 2 ) (4s) = + 4 m/s v4 = −2 m / s

4s < t < 10s : v10 − v4 = (2 m /s 2) (6s) = + 12 m/s v10= +10 m / s

10s < t < 12s : v12 − v10 = (− 2m / s 2 )(2s) = − 4 m/s v12 = + 6m / s

12s < t < 20s : v20 − v12 = (−2 m / s 2 )(8s) = −16 m/s v20 = −10 m / s  b

Change in x 5 area under v − t curve: x0 = 0

0 < t < 4s : x 4 − x 0 =
1
2

(−6 − 2)(4) = −16 m x 4 = −16m

4s < t < 5s : x 5 − x 4 =
1
2

(−2)(1) = −1 m x 5 = −17m

5s < t < 10s : x 10 − x 5 =
1
2

(+10)(5) = + 25 m x 10 = 8m

10s < t < 12s : x 12 − x 10 =
1
2

(+10 + 6)(2) = +16 m x 12 = + 24m

12s < t < 15s x 15 − x 12 =
1
2

(+ 6 )(3) = + 9 m x 16 = + 33m

15s < t < 20s x 20 − x 15 =
1
2

(−10)(5) = − 25 m x 20 = + 8 m

b From above curves, you read

For t512 s: v12 5 + 6 m/s, x12 = + 24 m
Distance traveled t 5 0 to t 5 12 s
From t 5 0 s to t 5 5 s: Distance traveled 5 17 m
From t 5 5 s to t 5 12 s: Distance traveled 5 (17 + 24) = 41 m

Total distance traveled 5 58 m b

REFLECT and THINK: This problem also could have been solved 
using the uniform motion equations for each interval of time that has a 
different acceleration, but it would have been much more difficult and 
time consuming. For a real particle, the acceleration does not instanta-
neously change from one value to another.

2
1
0

10
4 t(s)

–2

a(m/s2)

a(m/s2)

2

1210 20
0 4

1

22

t(s)

0

210

26 22

110

16

105
4

12
15 20

v(m/s)

t(s)

t(s)

x(ft)

216

4 5

217

18

124
133

18

10
0

12 15 20

Fig. 1 Acceleration of the particle as a 
function of time
Fig. 1 Acceleration of the particle as a 
function of time

Fig. 2 Velocity of the particle as a 
function of time

Fig. 3 Position of the particle as a 
function of time
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655 655

SOLVING PROBLEMS
ON YOUR OWN

In this section, we reviewed and developed several graphical techniques for the 
solution of problems involving rectilinear motion. These techniques can be used to 

solve problems directly or to complement analytical methods of solution by providing 
a visual description, and thus a better understanding, of the motion of a given body. 
We suggest that you sketch one or more motion curves for several of the problems 
in this section, even if these problems are not part of your homework assignment.

1. Drawing x−t, v−t, and a−t curves and applying graphical methods. We described 
the following properties in Sec. 11.3, and they should be kept in mind as you use a 
graphical method of solution.

 a. The slopes of the x−t and v−t curves at a time t1 are equal to the velocity 
and the acceleration at time t1, respectively.

 b. The areas under the a−t and v−t curves between the times t1 and t2 are 
equal to the change Dv in the velocity and to the change Dx in the position coordinate, 
respectively, during that time interval.

 c. If you know one of the motion curves, the fundamental properties we have 
summarized in paragraphs a and b will enable you to construct the other two curves. 
However, when using the properties of paragraph b, you must know the velocity and 
the position coordinate at time t1 in order to determine the velocity and the position 
coordinate at time t2. Thus, in Sample Prob. 11.9, knowing that the initial value of 
the velocity was zero allowed us to find the velocity at t 5 6 s: v6 5 v0 1 Dv 5 
0 1 24 ft/s 5 24 ft/s.

If you have studied the shear and bending-moment diagrams for a beam previously, 
you should recognize the analogy between the three motion curves and the three 
diagrams representing, respectively, the distributed load, the shear, and the bending 
moment in the beam. Thus, any techniques that you have learned regarding the 
construction of these diagrams can be applied when drawing the motion curves.

2. Using approximate methods. When the a–t and v–t curves are not represented 
by analytical functions or when they are based on experimental data, it is often 
 necessary to use approximate methods to calculate the areas under these curves. In 
those cases, the given area is approximated by a series of rectangles of width Dt. The 
smaller the value of Dt, the smaller is the error introduced by the approximation. You 
can obtain the velocity and the position coordinate from

v 5 v0 1 oaave Dt  x 5 x0 1 ovave Dt

where aave and vave are the heights of an acceleration rectangle and a velocity rectangle, 
respectively.
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Problems

 11.61 A particle moves in a straight line with a constant acceleration of 
24 m/s2 for 6 s, zero acceleration for the next 4 s, and a constant 
acceleration of 14 m/s2 for the next 4 s. Knowing that the particle 
starts from the origin and that its velocity is 28 m/s during the zero 
acceleration time interval, (a) construct the v–t and x–t curves for 
0 # t # 14 s, (b) determine the position and the velocity of the 
particle and the total distance traveled when t 5 14 s.

4

0
6

10 14 t(s)
–4

a (m/s2)

Fig. P11.61 and P11.62

 11.62 A particle moves in a straight line with a constant acceleration of 
24 m/s2 for 6 s, zero acceleration for the next 4 s, and a constant 
acceleration of 14 m/s2 for the next 4 s. Knowing that the particle 
starts from the origin with v0 5 16 m/s, (a) construct the v–t and 
x–t curves for 0 # t # 14 s, (b) determine the amount of time during 
which the particle is further than 16 m from the origin.

 11.63 A particle moves in a straight line with the velocity shown in the 
figure. Knowing that x 5 2540 m at t 5 0, (a) construct the a–t 
and x–t curves for 0 , t , 50 s, and determine (b) the total distance 
traveled by the particle when t 5 50 s, (c) the two times at which 
x 5 0.

60

–20
–5

t (s)

v (m/s)

26 41 46
10

Fig. P11.63 and P11.64

 11.64 A particle moves in a straight line with the velocity shown in the 
figure. Knowing that x 5 2540 m at t 5 0, (a) construct the a–t 
and x–t curves for 0 , t , 50 s, and determine (b) the maximum 
value of the position coordinate of the particle, (c) the values of t for 
which the particle is at x 5 100 m.

 11.65 A particle moves in a straight line with the velocity shown in the 
figure. Knowing that x  5  248 m at t 5 0, draw the a–t and x–t 
curves for 0 ,  t  , 40 s and determine (a) the maximum value of 
the position coordinate of the particle, (b) the values of t for which 
the particle is at a distance of 108 m from the origin.

18

10 18
24 306

0

–18

t (s)

v (m/s)

Fig. P11.65
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 11.66 A parachutist is in free fall at a rate of 200 km/h when he opens his 
parachute at an altitude of 600 m. Following a rapid and constant 
deceleration, he then descends at a constant rate of 50 km/h from 
586 m to 30 m, where he maneuvers the parachute into the wind to 
further slow his descent. Knowing that the parachutist lands with a 
negligible downward velocity, determine (a) the time required for 
the parachutist to land after opening his parachute, (b) the initial 
deceleration.

 11.67 A commuter train traveling at 60 km/h is 4.5 km from a station. The 
train then decelerates so that its speed is 30 km/h when it is 0.75 km 
from the station. Knowing that the train arrives at the station 7.5 
min after beginning to decelerate and assuming constant decelera-
tions, determine (a) the time required for the train to travel the first 
3.75 km, (b) the speed of the train as it arrives at the station, (c) the 
final constant deceleration of the train.

60 km/h
4.5 km

Fig. P11.67

 11.68 A temperature sensor is attached to slider AB which moves back 
and forth through 1500 mm. The maximum velocities of the slider 
are 300 mm/s to the right and 750 mm/s to the left. When the slider 
is  moving to the right, it accelerates and decelerates at a constant 
rate of 150 mm/s2; when moving to the left, the slider accelerates 
and  decelerates at a constant rate of 500 mm/s2. Determine the time 
required for the slider to complete a full cycle, and construct the 
v–t and x–t curves of its motion.

 11.69 In a water-tank test involving the launching of a small model boat, 
the model’s initial horizontal velocity is 6 m/s and its horizontal 
acceleration varies linearly from 212 m/s2 at t 5 0 to 22 m/s2 at 
t 5 t1 and then remains equal to 22 m/s2 until t 5 1.4 s. Knowing 
that v 5 1.8 m/s when t 5 t1, determine (a) the value of t1, (b) the 
velocity and the position of the model at t 5 1.4 s.

 11.70 The acceleration record shown was obtained for a small airplane 
traveling along a straight course. Knowing that x 5 0 and v 5 
60 m/s when t 5 0, determine (a) the velocity and position of 
the plane at t 5 20 s, (b) its average velocity during the interval 
6 s , t , 14 s.

 11.71 In a 400-m race, runner A reaches her maximum velocity vA in 
4 s with constant acceleration and maintains that velocity until she 
reaches the halfway point with a split time of 25 s. Runner B reaches 
her maximum velocity vB in 5 s with constant acceleration and main-
tains that velocity until she reaches the halfway point with a split 
time of 25.2 s. Both runners then run the second half of the race 
with the same constant deceleration of 0.1 m/s2. Determine (a) the 
race times for both runners, (b) the position of the winner relative 
to the loser when the winner reaches the finish line.

v

Fig. P11.66

x

A B

1500 mm

Fig. P11.68

x

v0 = 6 m/s

Fig. P11.69

0.75

6 8
0

10

12 14 20 t(s)
–0.75

a (m/s2)

Fig. P11.70

B

200 m 200 m

A

Fig. P11.71
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 11.72 A car and a truck are both traveling at the constant speed of 50 km/h; 
the car is 12 m behind the truck. The driver of the car wants to 
pass the truck, i.e., he wishes to place his car at B, 12 m in front 
of the truck, and then resume the speed of 50 km/h. The maximum 
acceleration of the car is 1.5 m/s2 and the maximum deceleration 
obtained by applying the brakes is 6 m/s2. What is the shortest time 
in which the driver of the car can complete the passing  operation 
if he does not at any time exceed a speed of 75 km/h? Draw the 
v–t curve.

A B

4.8 m
12 m 15 m 12 m

Fig. P11.72

 11.73 Solve Prob. 11.72, assuming that the driver of the car does not pay 
any attention to the speed limit while passing and concentrates on 
reaching position B and resuming a speed of 50 km/h in the shortest 
possible time. What is the maximum speed reached? Draw the 
v–t curve.

 11.74 Car A is traveling on a highway at a constant speed (vA)0 5 90 km/h 
and is 120 m from the entrance of an access ramp when car B enters 
the acceleration lane at that point at a speed (vB)0 5 25 km/h.
Car B accelerates uniformly and enters the main traffic lane after travel-
ing 60 m in 5 s. It then continues to accelerate at the same rate until 
it reaches a speed of 90 km/h, which it then maintains. Determine the 
final distance between the two cars.

A (vA)0

(vB)0

(vA)0

120 m

B
(vB)0

Fig. P11.74

 11.75  An elevator starts from rest and moves upward, accelerating at a rate 
of 1.2 m/s2 until it reaches a speed of 7.8 m/s, which it then main-
tains. Two seconds after the elevator begins to move, a man standing 
12 m above the initial position of the top of the elevator throws a 
ball upward with an initial velocity of 20 m/s. Determine when the 
ball will hit the elevator.

12 m

Fig. P11.75
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 11.76 Car A is traveling at 60 km/h when it enters a 40 km/h speed zone. The 
driver of car A decelerates at a rate of 5 m/s2 until reaching a speed 
of 40 km/h, which she then maintains. When car B, which was initially 
20 m behind car A and traveling at a constant speed of 70 km/h, enters 
the speed zone, its driver decelerates at a rate of 6 m/s2 until reaching 
a speed of 35 km/h. Knowing that the driver of car B maintains a speed 
of 35 km/h, determine (a) the closest that car B comes to car A, (b) the 
time at which car A is 25 m in front of car B.

B A

20 m

(vB)0 = 70 km/h (vA)0 = 60 km/h

Fig. P11.76

 11.77 An accelerometer record for the motion of a given part of a mecha-
nism is approximated by an arc of a parabola for 0.2 s and a straight 
line for the next 0.2 s as shown in the figure. Knowing that v 5 0 
when t 5 0 and x 5 0.4 m when t 5 0.4 s, (a) construct the v–t 
curve for 0 # t # 0.4 s, (b) determine the position of the part at 
t 5 0.3 s and t 5 0.2 s.

0

8

12

a (m/s2)

0 0.2 0.4 t (s)

a = 12 – 100t2

a = 16 – 40t

Fig. P11.77

 11.78 A car is traveling at a constant speed of 54 km/h when its driver 
sees a child run into the road. The driver applies her brakes until the 
child returns to the sidewalk and then accelerates to resume her 
original speed of 54 km/h; the acceleration record of the car is shown 
in the figure. Assuming x 5 0 when t 5 0, determine (a) the time 
t1 at which the velocity is again 54 km/h, (b) the position of the car 
at that time, (c) the average velocity of the car during the interval 
1 s # t # t1.

2

0
21

4.5 t(s)t1

–6

a (m/s2)

Fig. P11.78
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 11.79 An airport shuttle train travels between two terminals that are 
2.5 km apart. To maintain passenger comfort, the acceleration of the 
train is limited to 61.2 m/s2, and the jerk, or rate of change of 
acceleration, is limited to 60.24 m/s2 per second. If the shuttle has 
a maximum speed of 30 km/h, determine (a) the shortest time for 
the shuttle to travel between the two terminals, (b) the corresponding 
average velocity of the shuttle.

 11.80 During a manufacturing process, a conveyor belt starts from rest and 
travels a total of 400 mm before temporarily coming to rest. Know-
ing that the jerk, or rate of change of acceleration, is limited to 
61.5 m/s2 per second, determine (a) the shortest time required for 
the belt to move 400 mm, (b) the maximum and average values of 
the velocity of the belt during that time.

 11.81 Two seconds are required to bring the piston rod of an air cylinder to 
rest; the acceleration record of the piston rod during the 2 s is as 
shown. Determine by approximate means (a) the initial velocity of 
the piston rod, (b) the distance traveled by the piston rod as it is 
brought to rest.

t (s)

4.0

3.0

2.0

1.0

0

–a (m/s2)

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

Fig. P11.81

 11.82 The acceleration record shown was obtained during the speed trials 
of a sports car. Knowing that the car starts from rest, determine by 
approximate means (a) the velocity of the car at t 5 8 s, (b) the 
distance the car has traveled at t 5 20 s.

a (m/s2)

t (s)

6.0

7.0

5.0

4.0

3.0

2.0

1.0

0
0 2 4 6 8 10 12 14 16 18 20 22

Fig. P11.82
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 11.83 A training airplane has a velocity of 38 m/s when it lands on an 
aircraft carrier. As the arresting gear of the carrier brings the airplane 
to rest, the velocity and the acceleration of the airplane are recorded; 
the results are shown (solid curve) in the figure. Determine by 
approximate means (a) the time required for the airplane to come to 
rest, (b) the distance traveled in that time.

18

15

9

12

6

3

0
0 6 12 18 24 30 36 42

–a (m/s2)

v (m/s)

Fig. P11.83

 11.84 Shown in the figure is a portion of the experimentally determined v–x 
curve for a shuttle cart. Determine by approximate means the accelera-
tion of the cart when (a) x 5 250 mm, (b) v 5 2000 mm/s.

2500

2000

1000

1500

500

0
0 250 500 750 1000 1250

v (mm/s)

x (mm)

Fig. P11.84

 11.85 An elevator starts from rest and rises 40 m to its maximum velocity 
in T s with the acceleration record shown in the figure. Determine 
(a) the required time T, (b) the maximum velocity, (c) the velocity 
and position of the elevator at t 5 T/2. 

0.6

0
TT/3 t(s)

a (m/s2)

Fig. P11.85
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 11.86 The acceleration of an object subjected to the pressure wave of a large 
explosion is defined approximately by the curve shown. The object is 
initially at rest and is again at rest at time t1. Using the method of Sec. 
11.8, determine (a) the time t1, (b) the distance through which the 
object is moved by the pressure wave.

30

a (m/s2)

t1

0.8 s

t(s)

–10

Fig. P11.86

 11.87 As shown in the figure, from t 5 0 to t 5 4 s, the acceleration of a 
given particle is represented by a parabola. Knowing that x 5 0 and 
v 5 8 m/s when t 5 0, (a) construct the v–t and x–t curves for 0 , t 
, 4 s, (b) determine the position of the particle at t 5 3 s. (Hint: 
Use table inside the front cover.)

42

t(s)

a = – 3 (t – 2)2 m/s2

–12

a (m/s2)

Fig. P11.87

 11.88 A particle moves in a straight line with the acceleration shown in 
the figure. Knowing that the particle starts from the origin with 
v0 5 22 m/s, (a) construct the v–t and x–t curves for 0 , t , 18 s, 
(b) determine the position and the velocity of the particle and the 
total distance traveled when t 5 18 s.

6

t(s)–0.75

2
8

12

a (m/s2)

Fig. P11.88
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11.4 Curvilinear Motion of Particles 663

11.4  CURVILINEAR MOTION 
OF PARTICLES

When a particle moves along a curve other than a straight line, we say 
that the particle is in curvilinear motion. We can use position, velocity, 
and acceleration to describe the motion, but now we must treat these 
quantities as vectors because they can have directions in two or three 
dimensions.

11.4A  Position, Velocity, and 
Acceleration Vectors

To define the position P occupied by a particle in curvilinear motion at a 
given time t, we select a fixed reference system, such as the x, y, z axes 
shown in Fig. 11.12a, and draw the vector r joining the origin O and 
point P. The vector r is characterized by its magnitude r and its direction 
with respect to the reference axes, so it completely defines the position of 
the particle with respect to those axes. We refer to vector r as the position 
vector of the particle at time t.

Consider now the vector r9 defining the position P9 occupied by the 
same particle at a later time t 1 Dt. The vector Dr joining P and P9 
 represents the change in the position vector during the time interval Dt 
and is called the displacement vector. We can check this directly from 
Fig. 11.12a, where we obtain the vector r9 by adding the vectors r and 
Dr according to the triangle rule. Note that Dr represents a change in 
direction as well as a change in magnitude of the position vector r. 

We define the average velocity of the particle over the time interval 
Dt as the quotient of Dr and Dt. Since Dr is a vector and Dt is a scalar, 
the quotient Dr/Dt is a vector attached at P with the same direction as Dr 
and a magnitude equal to the magnitude of Dr divided by Dt (Fig. 11.12b).

We obtain the instantaneous velocity of the particle at time t by 
taking the limit as the time interval Dt approaches zero. The instantaneous 
velocity is thus represented by the vector

 v 5 lim
Dty0

 
Dr
Dt

 (11.13)

As Dt and Dr become shorter, the points P and P9 get closer together. 
Thus, the vector v obtained in the limit must be tangent to the path of the 
particle (Fig. 11.12c).

Because the position vector r depends upon the time t, we can refer 
to it as a vector function of the scalar variable t and denote it by r(t). 
Extending the concept of the derivative of a scalar function introduced in 
elementary calculus, we refer to the limit of the quotient Dr/Dt as the 
derivative of the vector function r(t). We have

Velocity vector v 5
dr
dt

 (11.14)

The magnitude v of the vector v is called the speed of the particle. 
We can obtain the speed by substituting the magnitude of this vector, 

v 5
dr
dt

Fig. 11.12 (a) Position vectors for a particle 
moving along a curve from P to P9; (b) the 
average velocity vector is the quotient of the 
change in position to the elapsed time 
interval; (c) the instantaneous velocity vector 
is tangent to the particle’s path.
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664 Kinematics of Particles

which is represented by the straight-line segment PP9, for the vector Dr 
in formula (11.13). However, the length of segment PP9 approaches the 
length Ds of arc PP9 as Dt decreases (Fig. 11.12a). Therefore, we can 
write

 v 5 lim
Dty0

 
PP9

Dt
5 lim

Dty0
 
Ds

Dt
    v 5

ds

dt
 (11.15)

Thus, we obtain the speed v by finding the length s of the arc described 
by the particle and differentiating it with respect to t.

Now let’s consider the velocity v of the particle at time t and its 
velocity v9 at a later time t 1 Dt (Fig. 11.13a). Let us draw both vectors 
v and v9 from the same origin O9 (Fig. 11.13b). The vector Dv joining Q 
and Q9 represents the change in the velocity of the particle during the time 
interval Dt, since we can obtain the vector v9 by adding the vectors v and 
Dv. Again, note that Dv represents a change in the direction of the velocity 
as well as a change in speed. We define the average acceleration of the 
particle over the time interval Dt as the quotient of Dv and Dt. Since Dv 
is a vector and Dt is a scalar, the quotient Dv/Dt is a vector in the same 
direction as Dv.

We obtain the instantaneous acceleration of the particle at time t 
by choosing increasingly smaller values for Dt and Dv. The instantaneous 
acceleration is thus represented by the vector

 a 5 lim
Dty0

 
Dv
Dt

 (11.16)

Noting that the velocity v is a vector function v(t) of the time t, we can 
refer to the limit of the quotient Dv/Dt as the derivative of v with respect 
to t. We have

Acceleration vector a 5
dv
dt

 (11.17)

v 5
dsdsd

dt

a 5
dvdvd

dt
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Fig. 11.13 (a) Velocities v and v9 of a 
particle at two different times; (b) the vector 
change in the particle’s velocity during the 
time interval; (c) the instantaneous 
acceleration vector is tangent to the 
hodograph; (d) in general, the acceleration 
vector is not tangent to the particle’s path.

P

(d)

v

Path

a

r

x

y

z

O

bee87342_ch11_615-717.indd   664 12/10/15   11:37 AM



11.4 Curvilinear Motion of Particles  665

Observe that the acceleration a is tangent to the curve described by 
the tip Q of the vector v when we draw v from a fixed origin O9 
(Fig. 11.13c). However, in general, the acceleration is not tangent to the 
path of the particle (Fig. 11.13d). The curve described by the tip of v and 
shown in Fig. 11.13c is called the hodograph of the motion.

11.4B Derivatives of Vector Functions
We have just seen that we can represent the velocity v of a particle in 
curvilinear motion by the derivative of the vector function r(t)  characterizing 
the position of the particle. Similarly, we can represent the acceleration a 
of the particle by the derivative of the vector function v(t). Here we give 
a formal definition of the derivative of a vector function and establish a 
few rules governing the differentiation of sums and products of vector 
functions.

Let P(u) be a vector function of the scalar variable u. By that, we 
mean that the scalar u completely defines the magnitude and direction of 
the vector P. If the vector P is drawn from a fixed origin O and the scalar 
u is allowed to vary, the tip of P describes a given curve in space. Consider 
the vectors P corresponding, respectively, to the values u and u 1 Du 
of the scalar variable (Fig. 11.14a). Let DP be the vector joining the tips 
of the two given vectors. Then we have

DP 5 P(u 1 Du) 2 P(u)

Dividing through by Du and letting Du approach zero, we define the 
 derivative of the vector function P(u) as

 
dP
du

5 lim
Duy0

 
DP
Du

5 lim
Duy0

 
P(u 1 Du) 2 P(u)

Du
 (11.18)

As Du approaches zero, the line of action of DP becomes tangent to the 
curve of Fig. 11.14a. Thus, the derivative dP/du of the vector function 
P(u) is tangent to the curve described by the tip of P(u) (Fig. 11.14b).

The standard rules for the differentiation of the sums and products 
of scalar functions extend to vector functions. Consider first the sum of 
two vector functions P(u) and Q(u) of the same scalar variable u. 
 According to the definition given in Eq. (11.18), the derivative of the 
 vector P 1 Q is

d(P 1 Q)

du
5 lim

Duy0
 
D (P 1 Q)

Du
5 lim

Duy0
 aDP

Du
1

DQ
Du
b

or since the limit of a sum is equal to the sum of the limits of its terms,

d(P 1 Q)

du
5 lim

Duy0
 
DP
Du

1 lim
Duy0

 
DQ
Du

 
d(P 1 Q)

du
5

dP
du

1
dQ
du

 (11.19)

That is, the derivative of a sum of vector functions equals the sum of the 
derivative of each function separately.

d(P 1 Q)

du
5

dPdPd

du
1

dQ
du

Fig. 11.14 (a) The change in vector function 
for a particle moving along a curvilinear 
path; (b) the derivative of the vector function 
is tangent to the path described by the tip of 
the function.
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666 Kinematics of Particles

We now consider the product of a scalar function f(u) and a 
 vector function P(u) of the same scalar variable u. The derivative of the 
vector f  P is

d( f P)

du
5 lim

Duy0
 
( f 1 D f )(P 1 DP) 2 f P

Du
5 lim

Duy0 
a Df

Du
P 1 f 

DP
Du
b

or recalling the properties of the limits of sums and products,

 
d(f P)

du
5

df

du
 P 1 f 

dP
du

 (11.20)

In a similar way, we can obtain the derivatives of the scalar product and 
the vector product of two vector functions P(u) and Q(u). Thus, 

  
d(P ? Q)

du
5

dP
du

? Q 1 P ?
dQ
du

 (11.21)

  
d(P 3 Q)

du
5

dP
du

3 Q 1 P 3
dQ
du

 (11.22)†

We can use the properties just established to determine the rectan-
gular components of the derivative of a vector function P(u). Resolving 
P into components along fixed rectangular axes x, y, and z, we have

 P 5 Pxi 1 Pyj 1 Pzk (11.23)

where Px, Py, and Pz are the rectangular scalar components of the vector 
P, and i, j, and k are the unit vectors corresponding, respectively, to the 
x, y, and z axes (Sec. 2.12 or Appendix A). From Eq. (11.19), the deriva-
tive of P is equal to the sum of the derivatives of the terms in the right-
hand side. Since each of these terms is the product of a scalar and a vector 
function, we should use Eq. (11.20). However, the unit vectors i, j, and k 
have a constant magnitude (equal to 1) and fixed directions. Their deriva-
tives are therefore zero, and we obtain

 
dP
du

5
dPx

du
 i 1

dPy

du
 j 1

dPz

du
 k (11.24)

Note that the coefficients of the unit vectors are, by definition, the scalar 
components of the vector dP/du. We conclude that we can obtain the 
rectangular scalar components of the derivative dP/du of the vector  function 
P(u) by differentiating the corresponding scalar components of P.

Rate of Change of a Vector. When the vector P is a function of 
the time t, its derivative dP/dt represents the rate of change of P with 
respect to the frame Oxyz. Resolving P into rectangular components and 
using Eq. (11.24), we have

dP
dt

5
dPx

dt
 i 1

dPy

dt
 j 1

dPz

dt
 k

d(f(f( P)

du
5

dfdfd

du
P 1 f

dPdPd
f

du

d(P ? Q)

du
5

dPdPd

du
? Q 1 P ?

dQ
du

d(P 3 Q)

du
5

dPdPd

du
3 Q 1 P 3

dQ
du

dPdPd

du
5

dPdPd xPxP

du
i 1

dPdPd yPyP

du
j 1

dPdPd z

du
k

†Since the vector product is not commutative (see Sec. 3.4), the order of the factors in 
Eq. (11.22) must be maintained. 
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11.4 Curvilinear Motion of Particles  667

Alternatively, using dots to indicate differentiation with respect to t gives

 Ṗ 5 Ṗxi 1 Ṗyj 1 Ṗzk (11.249)

As you will see in Sec. 15.5, the rate of change of a vector as 
observed from a moving frame of reference is, in general, different from 
its rate of change as observed from a fixed frame of reference. However, 
if the moving frame O9x9y9z9 is in translation, i.e., if its axes remain 
 parallel to the corresponding axes of the fixed frame Oxyz (Fig. 11.15), 
we can use the same unit vectors i, j, and k in both frames, and at any 
given instant, the vector P has the same components Px, Py, and Pz in both 
frames. It follows from Eq. (11.249) that the rate of change Ṗ is the same 
with respect to the frames Oxyz and O9x9y9z9. Therefore,

The rate of change of a vector is the same with respect to a fixed 
frame and with respect to a frame in translation.

This property will greatly simplify our work, since we will be concerned 
mainly with frames in translation.

11.4C  Rectangular Components 
of Velocity and Acceleration

Suppose the position of a particle P is defined at any instant by its 
 rectangular coordinates x, y, and z. In this case, it is often convenient to 
resolve the velocity v and the acceleration a of the particle into rectangular 
components (Fig. 11.16).

To resolve the position vector r of the particle into rectangular 
 components, we write

 r 5 xi 1 yj 1 zk (11.25)

Here the coordinates x, y, and z are functions of t. Differentiating twice, 
we obtain

Velocity and acceleration in 
rectangular components

  v 5
dr
dt

5 x
.
i 1 y

.
j 1 z

.
k (11.26)

  a 5
dv
dt

5 x
$i 1 y

$j 1 z
$k (11.27)

where ẋ , ẏ , and ż  and ẍ, ÿ, and z̈ represent, respectively, the first and second 
derivatives of x, y, and z with respect to t. It follows from Eqs. (11.26) 
and (11.27) that the scalar components of the velocity and acceleration are

 vx 5 ẋ        vy 5 ẏ       vz 5 ż  (11.28)

 ax 5 ẍ    ay 5 ÿ    az 5 z̈ (11.29)

A positive value for vx indicates that the vector component vx is directed to 
the right, and a negative value indicates that it is directed to the left. The sense 
of each of the other vector components is determined in a similar way from 
the sign of the corresponding scalar component. If desired, we can obtain the 
magnitudes and directions of the velocity and acceleration from their scalar 
components using the methods of Secs. 2.2A and 2.4A (or Appendix A).

v 5
dr
dt

5 x
.
i 1 y

.
jyjy 1 z

.
k

a 5
dvdvd

dt
5 x
$i 1 y

$j$j$ 1 z
$k

Fig. 11.15 The rate of change of a vector is 
the same with respect to a fixed frame of 
reference and with respect to a frame in 
translation.
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Fig. 11.16 (a) Rectangular components of 
position and velocity for a particle P; 
(b) rectangular components of acceleration 
for particle P.
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668 Kinematics of Particles

The use of rectangular components to describe the position, velocity, 
and acceleration of a particle is particularly effective when the component 
ax of the acceleration depends only upon t, x, and/or vx, and similarly when 
ay depends only upon t, y, and/or vy, and when az depends upon t, z, and/or 
vz. In this case, we can integrate Equations (11.28) and (11.29)  independently. 
In other words, the motion of the particle in the x direction, its motion in 
the y direction, and its motion in the z direction can be treated separately.

In the case of the motion of a projectile, we can show (see 
Sec. 12.1D) that the components of the acceleration are

ax 5 ẍ 5 0    ay 5 ÿ 5 2g    az 5 z̈ 5 0

if the resistance of the air is neglected. Denoting the coordinates of a gun 
by x0, y0, and z0 and the components of the initial velocity v0 of the 
 projectile by (vx)0, (vy)0, and (vz)0, we can integrate twice in t and obtain

 vx 5 ẋ  5 (vx)0 vy 5 ẏ  5 (vy)0 2 gt vz 5 ż  5 (vz)0

 x 5 x0 1 (vx)0t y 5 y0 1 (vy)0t 2 1
2gt2 z 5 z0 1 (vz)0t

If the projectile is fired in the xy plane from the origin O, we have 
x0 5 y0 5 z0 5 0 and (vz)0 5 0, so the equations of motion reduce to

 vx 5 (vx)0     vy 5 (vy)0 2 gt          vz 5 0

 x 5 (vx)0t    y 5 (vy)0t 2 
1
2gt2    z 5 0

These equations show that the projectile remains in the xy plane, that its 
motion in the horizontal direction is uniform, and that its motion in the 
vertical direction is uniformly accelerated. Thus, we can replace the motion 
of a projectile by two independent rectilinear motions, which are easily 
visualized if we assume that the projectile is fired vertically with an initial 
velocity (vy)0 from a platform moving with a constant horizontal velocity 
(vx)0 (Fig. 11.17). The coordinate x of the projectile is equal at any instant 
to the distance traveled by the platform, and we can compute its 
coordinate y as if the projectile were moving along a vertical line. 
 Additionally, because the (vx)0 values are the same, the projectile will land 
on the platform regardless of the value of (vy)0.

Note that the equations defining the coordinates x and y of a 
 projectile at any instant are the parametric equations of a parabola. Thus, 
the trajectory of a projectile is parabolic. This result, however, ceases to 
be valid if we take into account the resistance of the air or the variation 
with altitude of the acceleration due to gravity.

11.4D  Motion Relative to a Frame  
in Translation

We have just seen how to describe the motion of a particle by using a single 
frame of reference. In most cases, this frame was attached to the earth and 
was considered to be fixed. Now we want to analyze situations in which 
it is convenient to use several frames of reference simultaneously. If one 
of the frames is attached to the earth, it is called a fixed frame of reference, 
and the other frames are referred to as moving frames of reference. You 
should recognize, however, that the selection of a fixed frame of reference 
is purely arbitrary. Any frame can be designated as “fixed”; all other frames 
not rigidly attached to this frame are then described as “moving.”

Photo 11.3 The motion of this snowboarder 
in the air is a parabola, assuming we can 
neglect air resistance.

Fig. 11.17 The motion of a projectile 
(a) consists of uniform horizontal motion and 
uniformly accelerated vertical motion and 
(b) is equivalent to two independent 
rectilinear motions.

y

x
O

(vy)0
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v0

(a) Motion of a projectile

y

x

(vy)0

(vx)0 (vx)0

(b) Equivalent rectilinear motions

bee87342_ch11_615-717.indd   668 12/10/15   11:37 AM



11.4 Curvilinear Motion of Particles  669

Consider two particles A and B moving in space (Fig. 11.18). The 
vectors rA and rB define their positions at any given instant with respect 
to the fixed frame of reference Oxyz. Consider now a system of axes x9, 
y9, and z9 centered at A and parallel to the x, y, and z axes. Suppose that, 
while the origin of these axes moves, their orientation remains the same; 
then the frame of reference Ax9y9z9 is in translation with respect to Oxyz. 
The vector rB/A joining A and B defines the position of B relative to the 
moving frame Ax9y9z9 (or for short, the position of B relative to A).

Figure 11.18 shows that the position vector rB of particle B is the 
sum of the position vector rA of particle A and of the position vector rB/A 
of B relative to A; that is,

Relative 
position

 rB 5 rA 1 rB/A (11.30)

Differentiating Eq. (11.30) with respect to t within the fixed frame of 
reference, and using dots to indicate time derivatives, we have

 ṙB 5 ṙA 1 ṙB/A (11.31)

The derivatives ṙA and ṙB represent, respectively, the velocities vA and vB 
of the particles A and B. Since Ax9y9z9 is in translation, the derivative ṙB/A 
represents the rate of change of rB/A with respect to the frame Ax9y9z9 as 
well as with respect to the fixed frame (Sec. 11.4B). This derivative, there-
fore, defines the velocity vB/A of B relative to the frame Ax9y9z9 (or for 
short, the velocity vB/A of B relative to A). We have

Relative 
velocity

 vB 5 vA 1 vB/A (11.32)

Differentiating Eq. (11.32) with respect to t, and using the derivative v̇B/A 
to define the acceleration aB/A of B relative to the frame Ax9y9z9 (or for 
short, the acceleration aB/A of B relative to A), we obtain

Relative 
acceleration

 aB 5 aA 1 aB/A (11.33)

We refer to the motion of B with respect to the fixed frame Oxyz as the 
absolute motion of B. The equations derived in this section show that we 
can obtain the absolute motion of B by combining the motion of A and 
the relative motion of B with respect to the moving frame attached to A. 
Equation (11.32), for example, expresses that the absolute velocity vB of 
 particle B can be obtained by vectorially adding the velocity of A and the 
velocity of B relative to the frame Ax9y9z9. Equation (11.33) expresses a 
 similar property in terms of the accelerations. (Note that the product of the 
subscripts A and B/A used in the right-hand sides of Eqs. (11.30) through 
(11.33) is equal to the subscript B used in their left-hand sides.) Keep in mind, 
however, that the frame Ax9y9z9 is in translation; that is, while it moves with A, it 
maintains the same orientation. As you will see later (Sec. 15.7), you must 
use different relations in the case of a rotating frame of reference.

rB 5 rArAr 1 rB/A

vB 5 vAvAv 1 vB/A

aB 5 aAaAa 1 aB/A

Fig. 11.18 The vector rB/A defines the 
position of B with respect to moving 
frame A.
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Photo 11.4 The pilot of a helicopter landing 
on a moving carrier must take into account 
the relative motion of the ship.
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670 Kinematics of Particles

Sample Problem 11.10

A projectile is fired from the edge of a 150-m cliff with an initial velocity 
of 180 m/s at an angle of 30° with the horizontal. Neglecting air resis-
tance, find (a) the horizontal distance from the gun to the point where the 
projectile strikes the ground, (b) the greatest elevation above the ground 
reached by the projectile.

STRATEGY: This is a projectile motion problem, so you can consider 
the vertical and horizontal motions separately. First determine the equations 
governing each direction, and then use them to find the distances.

MODELING and ANALYSIS: Model the projectile as a particle and 
neglect the effects of air resistance. The vertical motion has a constant 
acceleration. Choosing the positive sense of the y axis upward and placing 
the origin O at the gun (Fig. 1), you have

 (vy)0 5 (180 m/s) sin 30° 5 190 m/s

 a 5 29.81 m/s2

Substitute these values into the equations for motion with constant accel-
eration. Thus,

 vy 5 (vy)0 1 at      vy 5 90 2 9.81t (1)
 y 5 (vy)0t 1 1

2 at2    y 5 90t 2 4.90t2 (2)
 v2

y 5 (vy)
2
0 1 2ay    v2

y 5 8100 2 19.62y (3)

The horizontal motion has zero acceleration. Choose the positive sense of 
the x axis to the right (Fig. 2), which gives you

(vx)0 5 (180 m/s) cos 30° 5 1155.9 m/s

Substituting into the equation for constant acceleration, you obtain

 x 5 (vx)0 t    x 5 155.9t (4)

a. Horizontal Distance. When the projectile strikes the ground,

y 5 2150 m

Substituting this value into Eq. (2) for the vertical motion, you have

2150 5 90t 2 4.90t2 t2 2 18.37t 2 30.6 5 0 t 5 19.91 s

Substituting t 5 19.91 s into Eq. (4) for the horizontal motion, you obtain

 x 5 155.9(19.91) x 5 3100 m b

b. Greatest Elevation. When the projectile reaches its greatest elevation, 
vy 5 0; substituting this value into Eq. (3) for the vertical motion, you have

0 5 8100 2 19.62y    y 5 413 m
Greatest elevation above ground 5 150 m 1 413 m 5 563 m b

REFLECT and THINK: Because there is no air resistance, you can treat 
the vertical and horizontal motions separately and can immediately write 
down the algebraic equations of motion. If you did want to include air 
resistance, you must know the acceleration as a function of the speed (you 
will see how to derive this in Chapter 12), and then you need to use the 
basic kinematic relationships, separate variables, and integrate.

x

30°

180 m/s

150 m

Fig. 1 Acceleration and initial 
velocity of the projectile in the 
y-direction.

O

y

30°

180 m/s

–150 m

a = –9.81 m /s2

(vy)0

Fig. 2 Initial velocity of the 
projectile in the x-direction.

x
O 30°

180 m/s

(vx)0
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11.4 Curvilinear Motion of Particles  671

Sample Problem 11.11

A projectile is fired with an initial velocity of 240 m/s at a target B located 
600 m above the gun A and at a horizontal distance of 3,600 m. Neglect-
ing air resistance, determine the value of the firing angle α needed to hit 
the target.

STRATEGY: This is a projectile motion problem, so you can consider the 
vertical and horizontal motions separately. First determine the  equations gov-
erning the motion in each direction, and then use them to find the firing angle.

MODELING and ANALYSIS: 

Horizontal Motion. Place the origin of the coordinate axes at the 
gun (Fig. 1). Then

(vx)0 5 240 cos α

Substituting into the equation of uniform horizontal motion, you obtain

x 5 (vx)0t  x 5 (240 cos α)t

Obtain the time required for the projectile to move through a horizontal 
distance of 3,600 m by setting x equal to 3,600 m.

5 (240 cos α)t

 t 5
3,600

240 cos α 5
15

cos α

3600

Vertical Motion. Again, place the origin at the gun (Fig. 2).

(vy)0 5 240 sin α  a 5 29.81 m/s2

Substituting into the equation for constant acceleration in the vertical 
direction, you obtain

y 5 (vy)0 t 1 1
2 at2    y 5 (240 sin α)t 2 4.905t2

Projectile Hits Target. When x 5 3600 m, you want y 5 600 m. 
Substituting for y and setting t equal to the value found previously, you have

 600 5 240 sin a  

15
cos a

24.905
15

cos a

2

 (1)

Since 1/cos2 a 5 sec2 a 5 1 1 tan2 a, we have

600 5 240(15) tan a 2 4.905(152)(1 1 tan2 a)

1104 tan2 a 2 3600 tan a 1 1704 5 0

Solving this quadratic equation for tan a, we have

tan a 5 0.575  and  tan a 5 2.69
a 5 29.9°  and  a 5 69.6° b

The target will be hit if either of these two firing angles is used (Fig. 3).

REFLECT and THINK: It is a well-known characteristic of projectile 
motion that you can hit the same target by using either of two firing 
angles. We used trigonometry to write the equation in terms of tan α, but 
most calculators or computer programs like Maple, Matlab, or Mathematica 
also can be used to solve (1) for α. You must be careful when using these 
tools, however, to make sure that you find both angles.

240 m/s

600 mA

B

a

3600 m

Fig. 1 Initial velocity of the 
projectile in the x-direction.

(vx)0 = 240 cos �
x

O

v0 = 240 m/s
B

a

3,600 m

Fig. 2 Acceleration and initial 
velocity of the projectile in the 
y-direction.

(vy)0 = 240 sin a

a = – 9.81 m/s2

O
v0 = 240 m/s

B

a

y

600 m

Fig. 3 Firing angles that will 
hit target B.

69.6˚

29.9˚A

B
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Sample Problem 11.12

A conveyor belt at an angle of 20º with the horizontal is used to trans-
fer small packages to other parts of an industrial plant. A worker tosses 
a package with an initial velocity v0 at an angle of 45º so that its 
velocity is parallel to the belt as it lands 1 m above the release point. 
Determine (a) the magnitude of v0, (b) the horizontal distance d.

STRATEGY: This is a projectile motion problem, so you can con-
sider the vertical and the horizontal motions separately. First deter-
mine the equations governing the motion in each direction, then use 
them to determine the unknown quantities.

MODELING and ANALYSIS: 

Horizontal Motion. Placing the axes of your origin at the location 
where the package leaves the workers hands (Fig. 1), you can write 

Horizontal: vx 5 v0 cos 45°   and      x 5 (v0 cos 45°) t

Vertical: vy 5 v0 sin 45° 2 gt  and  y 5 (v0 sin 45°) t 2
1
2

 gt2

Landing on the Belt. The problem statement indicates that 
when the package lands on the belt, its velocity vector will be in the 
same direction as the belt is  moving. If this happens when t 5 t1, 
you can write

 
vy

vx
5 tan 20° 5

v0 sin 45° 2 gt1

v0 cos 45°
5 1 2

gt1

v0 cos 45°
 (1)

This equation has two unknown quantities: t1 and v0. Therefore, you 
need more equations. Substituting t 5 t1 into the remaining projectile 
motion equations gives 

 d 5 (v0 cos 45°) t (2)

 1 m 5 (v0 sin 45°) t1 2
1
2

 gt2
1 (3)

You now have three equations (1), (2), and (3) and three unknowns 
t1, v0, and d. Using g 5 9.81 m/s2 and solving these three equations 
give t1 5 0.3083 s and

v0 5 6.73 m/s b

d 5 1.466 m b

REFLECT and THINK: All of these projectile problems are simi-
lar. You write down the governing equations for motion in the hori-
zontal and vertical directions and then use additional information in 
the problem statement to solve the problem. In this case, the distance 
is just less than 1.5 meters, which is a reasonable distance for a 
worker to toss a package.

v0

45°

20°

1 m

d

Fig. 1 Initial velocity 
of the package.

v0

45°O

y

x
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Sample Problem 11.13 

Airplane B, which is travelling at a constant 560 km/h, is pursuing airplane 
A, which is travelling northeast at a constant 800 km/hr. At time t 5 0, 
airplane A is 640 km east of airplane B. Determine (a) the direction of 
the course airplane B should follow (measured from the east) to intercept 
plane A, (b) the rate at which the distance between the airplanes is 
decreasing, (c) how long it takes for airplane B to catch airplane A.

STRATEGY: To find when B intercepts A, you just need to find out 
when the two planes are at the same location. The rate at which the 
 distance is decreasing is the magnitude of vB/A, so you can use the relative 
velocity equation. 

MODELING and ANALYSIS: Choose x to be east, y to be north, and 
place the origin of your coordinate system at B (Fig. 1).

Positions of the Planes: You know that each plane has a constant 
speed, so you can write a position vector for each plane. Thus,

 rA 5 [(vA cos 45°) t 1 640 km]i 1 [(vA sin 45°) t] j (1)
 rB 5 [(vB cos θ) t]i 1 [(vB sin θ )t]j (2)

a. Direction of B. Plane B will catch up when they are at the same 
 location, that is, rA 5 rB. You can equate components in the j direction to find

vA sin 45°t1 5 vB sin θ t1

After you substitute in values,

sin θ 5
(vA sin 45°)t1

vBt1
5

(560 km/hr)sin 45°

800 km/hr
5 0.4950

 θ 5 sin21 0.4950 5 29.67° θ 5 29.7º b

b. Rate. The rate at which the distance is decreasing is the magnitude 
of vB/A, so

vB/A 5 vB 2 vA 5 (vB cos θ i 1 vB sin θ j) 2 (vA cos 45° i 1 vA sin 45° j)
 5 [(800 km/h)cos 29.668° 2 (560 km/h)cos 45°]i 
 1 [(800 km/h)sin 29.668° 2(560 km/h)sin 45°]j
 5 299.15 km/h i ZvB/AZ 5 299 km/h b

c. Time for B to catch up with A. To find the time, you equate 
the i components of each position vector, giving

(vA cos 45°) t1 1 640 km 5 (vB cos θ) t1

Solve this for t1. Thus,

t1 5
640 km

vB cos θ 2 vA cos 45°

 5
640 km

(800 km/h)cos 29.67° 2 (560 km/h)cos 45°
5 2.139 h

t1 = 2.14 h b

REFLECT and THINK: The relative velocity is only in the horizontal 
(eastern) direction. This makes sense, because the vertical (northern) 
 components have to be equal in order for the two planes to intersect.

Fig. 1 Initial velocity of 
airplanes A and B.

45°

640 km

q
O xB A

y

vAvB

bee87342_ch11_615-717.indd   673 12/10/15   11:38 AM



674 Kinematics of Particles

Sample Problem 11.14

Automobile A is traveling east at the constant speed of 36 km/h. As 
 automobile A crosses the intersection shown, automobile B starts from rest 
35 m north of the intersection and moves south with a constant  acceleration 
of 1.2 m/s2. Determine the position, velocity, and acceleration of B relative 
to A 5 s after A crosses the intersection.

STRATEGY: This is a relative motion problem. Determine the motion 
of each vehicle independently, and then use the definition of relative 
motion to determine the desired quantities.

MODELING and ANALYSIS: 

Motion of Automobile A.  Choose x and y axes with the origin at 
the intersection of the two streets and with positive senses directed east 
and north, respectively. First express the speed in m/s, as

vA 5 a36  

km
h
b a1000 m

1 km
b a 1 h

3600 s
b 5 10 m/s

The motion of A is uniform, so for any time t

 aA 5 0
 vA 5 110 m/s
 xA 5 (xA)0 1 vAt 5 0 1 10t

For t 5 5 s, you have (Fig. 1)

 aA 5 0 aA 5 0
 vA 5 110 m/s vA 5 10 m/s y
 xA 5 1(10 m/s)(5 s) 5 150 m  rA 5 50 m y

Motion of Automobile B. The motion of B is uniformly acceler-
ated, so

 aB 5 21.2 m/s2

 vB 5 (vB)0 1 at 5 0 2 1.2t
 yB 5 (yB)0 1 (vB)0t 1 1

2aBt2 5 35 1 0 2 1
2(1.2)t2

For t 5 5 s, you have (Fig. 1)

 aB 5 21.2 m/s2 aB 5 1.2 m/s2w
 vB 5 2(1.2 m/s2)(5 s) 5 26 m/s vB 5 6 m/sw
 yB 5 35 2 1

2(1.2 m/s2)(5 s)2 5 120 m  rB 5 20 mx

Motion of B Relative to A. Draw the triangle corresponding to the 
vector equation rB 5 rA 1 rB/A (Fig. 2) and obtain the magnitude and 
direction of the position vector of B relative to A.

rB/A 5 53.9 m    α 5 21.8°    rB/A 5 53.9 m b 21.8° b

Proceeding in a similar fashion (Fig. 2), find the velocity and acceleration 
of B relative to A. Hence,
 vB 5 vA 1 vB/A
 vB/A 5 11.66 m/s  β 5 31.0°  vB/A 5 11.66 m/s d 31.0° b

 aB 5 aA 1 aB/A aB/A 5 1.2 m/s2w b
Fig. 2 Vector triangles for position, 
velocity, and acceleration.

rB

rA

rB/ArB/A

vB

vA

vB/A vB/A

aB aB/A aB/A

a

b

20 m

10 m/s

6 m/s

1.2 m/s2

50 m

A

B

36 km /h

1.2 m /s2
35 m

A

B

x

y

xA

yB

35 m

Fig. 1 Initial positions of 
car A and B.
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REFLECT and THINK: Note that the relative position and velocity of 
B relative to A change with time; the values given here are only for the 
moment t 5 5 s. Rather than drawing triangles, you could have also used 
vector algebra. When the vectors are at right angles, as in this problem, 
drawing vector triangles is usually easiest.

Sample Problem 11.15 

Knowing that at the instant shown cylinder/ramp A has a velocity of 
200 mm/s directed down, determine the velocity of block B. 

STRATEGY: You have objects connected by cables, so this is a 
 dependent-motion problem. You should define coordinates for each block-
object and write a constraint equation for the cable. You will also need to 
use relative motion, since B slides on A.

MODELING and ANALYSIS: Define position vectors, as shown in 
Fig. 1. 

Constraint Equations. Assuming the cable is inextensible, you can 
write the length in terms of the coordinates and then differentiate.

The constraint equation for the cable is

xA 1 2xB/A 5 constant

Differentiating this gives 

 vA 5 22vB/A (1)

Substituting for vA gives vB/A 5 2100 mm/s or 100 mm/s up the incline.

Dependent Motion: You know that the direction of vB/A is directed 
up the incline. Therefore, the relative motion equation relating the  velocities 
of blocks A and B is vB 5 vA 1 vB/A. You could either draw a vector 
triangle or use vector algebra. Let’s use vector algebra. Using the coordi-
nate system shown in Fig. 2 and substituting in the magnitudes gives

(vB)x i 1 (vB)y j 5  (2200 mm/s)j 1 (2100 mm/s) sin 50° i
  1 (100 mm/s) cos 50° j

Equating components gives 

i: (vB)x 5 2(100 mm/s)sin 50° y vBx 5 276.6 mm/s

j: (vB)y 5 (2200 mm/s) 1 (100 mm/s)cos 50° y vBy 5 2135.7 mm/s

Finding the magnitude and direction gives 

vB 5 155.8 mm/s d 60.6° b

REFLECT and THINK: Rather than using vector algebra, you could 
have also drawn a vector triangle, as shown in Fig. 3. To use this vector 
triangle, you need to use the law of cosines and the law of sines. Looking 
at the mechanism, block B should move up the incline if block A moves 
downward; our mathematical result is consistent with this. It is also 
 interesting to note that, even though B moves up the incline relative to A, 
block B is actually moving down and to the left, as shown in the  calculation 
here. This occurs because block A is also moving down.

B

A

q = 50°

Fig. 1 Position vectors to A and B.

B

xA

xB/A
A

θ = 50

Fig. 2 
Coordinates for 
vector algebra.

j

i

Fig. 3 Vector triangle for 
velocity of blocks A and B.

vA = 200 mm/s

a

b

40°
vB/A = 100 mm/s

vB
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In the problems for this section, you will analyze the curvilinear motion of a 
 particle. The physical interpretations of velocity and acceleration are the same as 

in the first sections of the chapter, but you should remember that these quantities are 
vectors. In addition, recall from your experience with vectors in statics that it is often 
advantageous to express position vectors, velocities, and accelerations in terms of their 
rectangular scalar components [Eqs. (11.25) through (11.27)].

A. Analyzing the motion of a projectile. Many of the following problems deal with 
the two-dimensional motion of a projectile where we can neglect the resistance of the 
air. In Sec. 11.4C, we developed the equations that describe this type of motion, and 
we observed that the horizontal component of the velocity remains constant (uniform 
motion), while the vertical component of the acceleration is constant (uniformly accel-
erated motion). We are able to consider the horizontal and the vertical motions of the 
particle separately. Assuming that the projectile is fired from the origin, we can write 
the two equations as

x 5 (vx)0t   y 5 (vy)0t 2 1
2gt2

1. If you know the initial velocity and firing angle, you can obtain the value of y 
corresponding to any given value of x (or the value of x for any value of y) by solving 
one of the previous equations for t and substituting for t into the other equation 
[Sample Prob. 11.10].

2. If you know the initial velocity and the coordinates of a point of the trajectory 
and you wish to determine the firing angle α, begin your solution by expressing the 
components (vx)0 and (vy)0 of the initial velocity as functions of α. Then substitute 
these expressions and the known values of x and y into the previous equations. Finally, 
solve the first equation for t and substitute that value of t into the second equation to 
obtain a trigonometric equation in α, which you can solve for that unknown [Sample 
Prob. 11.11].

SOLVING PROBLEMS
ON YOUR OWN
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B. Solving translational two-dimensional relative-motion problems. You saw in 
Sec. 11.4D that you can obtain the absolute motion of a particle B by combining the 
motion of a particle A and the relative motion of B with respect to a frame attached 
to A that is in translation [Sample Probs. 11.12 and 11.13]. You can then express the 
velocity and acceleration of B as shown in Eqs. (11.32) and (11.33), respectively.

1. To visualize the relative motion of B with respect to A, imagine that you are 
attached to particle A as you observe the motion of particle B. For example, to a 
 passenger in automobile A of Sample Prob. 11.14, automobile B appears to be heading 
in a southwesterly direction (south should be obvious; west is due to the fact that 
automobile A is moving to the east—automobile B then appears to travel to the west). 
Note that this conclusion is consistent with the direction of vB/A.

2. To solve a relative-motion problem, first write the vector equations (11.30), 
(11.32), and (11.33), which relate the motions of particles A and B. You may then use 
either of the following methods.

 a. Construct the corresponding vector triangles and solve them for the 
desired position vector, velocity, and acceleration [Sample Prob. 11.14].

 b. Express all vectors in terms of their rectangular components and solve 
the resulting two independent sets of scalar equations [Sample Prob. 11.15]. If you 
choose this approach, be sure to select the same positive direction for the displace-
ment, velocity, and acceleration of each particle.
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Problems
CONCEPT QUESTIONS
 11.CQ3 Two model rockets are fired simultaneously from a ledge and  follow 

the trajectories shown. Neglecting air resistance, which of the rock-
ets will hit the ground first?

   a. A.
   b. B.
   c. They hit at the same time.
   d. The answer depends on h.

h

A

B

Fig. P6.CQ3

 11.CQ4 Ball A is thrown straight up. Which of the following statements 
about the ball are true at the highest point in its path?

   a. The velocity and acceleration are both zero.
   b. The velocity is zero, but the acceleration is not zero.
   c. The velocity is not zero, but the acceleration is zero.
   d. Neither the velocity nor the acceleration is zero.

 11.CQ5 Ball A is thrown straight up with an initial speed v0 and reaches a 
maximum elevation h before falling back down. When A reaches its 
maximum elevation, a second ball is thrown straight upward with 
the same initial speed v0. At what height, y, will the balls cross 
paths?

   a. y 5 h
   b. y . h/2
   c. y 5 h/2
   d. y , h/2
   e. y 5 0

 11.CQ6 Two cars are approaching an intersection at constant speeds as shown. 
What velocity will car B appear to have to an observer in car A?

   a. S b. R c. a d. Q e. b

(a) (b) (c) (d) (e)

vA

vB

Fig. P6.CQ6

v0

h

y
A

Fig. P6.CQ4
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 11.CQ7  Blocks A and B are released from rest in the positions shown. 
Neglecting friction between all surfaces, which figure best  indicates 
the  direction α of the acceleration of block B?

Fig. P6.CQ7

a. b. c. d. e.
aB

aB

aB

a = q

aB

a > q

q

aB

a < q

A

B

END-OF-SECTION PROBLEMS

 11.89 A ball is thrown so that the motion is defined by the equations 
x 5 5t and y 5 2 1 6t 2 4.9t2, where x and y are expressed in meters 
and t is expressed in seconds. Determine (a) the velocity at t 5 l s, 
(b) the horizontal distance the ball travels before hitting the ground.

y

x

Fig. P11.89

 11.90 The motion of a vibrating particle is defined by the position  vector 
r 5 10(1 2 e23t)i 1 (4e22t sin 15t)j, where r and t are expressed 
in millimeters and seconds, respectively. Determine the velocity 
and acceleration when (a) t 5 0, (b) t 5 0.5 s.

 11.91 The motion of a vibrating particle is defined by the position vector 
r 5 (4 sin πt)i 2 (cos 2πt)j, where r is expressed in meters and 
t in seconds. (a) Determine the velocity and acceleration when 
t 5 1 s. (b) Show that the path of the particle is parabolic.

 11.92 The motion of a particle is defined by the equations x 5 100t 2 
50 sin t and y 5 100 2 50 cos t, where x and y are expressed in 
mm and t is expressed in seconds. Sketch the path of the  particle 
for the time interval 0 # t # 2π, and determine (a) the magnitudes 
of the smallest and largest velocities reached by the particle, (b) the 
 corresponding times, positions, and directions of the velocities.

 11.93 The damped motion of a vibrating particle is defined by the posi-
tion vector r 5 x1[1 2 1/(t 1 1)]i 1 (y1e

2πt/2 cos 2πt)j, where t is 
expressed in seconds. For x1 5 30 mm and y1 5 20 mm, determine 
the position, the velocity, and the acceleration of the particle when 
(a) t 5 0, (b) t 5 1.5 s.

3

1

2

0

−1

−2

2 4 6 8 10

y

x

Fig. P11.90

y

O
x

4 m 4 m

1 m

1 m

Fig. P11.91

1.0

0.5

0

–0.5

–1.0

0.2 0.4 0.6

y/y1

x/x1

Fig. P11.93

a. b. c. d. e.
aB

aB

aB

a = q

aB

a > q

q

aB

a < q

A

B
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 11.94 A girl operates a radio-controlled model car in a vacant parking lot. 
The girl’s position is at the origin of the xy coordinate axes, and the 
surface of the parking lot lies in the x–y plane. The motion of the car 
is defined by the position vector r 5 (2 1 2t2)i 1 (6 1 t3) j where r and 
t are expressed in meters and seconds, respectively. Determine (a) 
the distance between the car and the girl when t 5 2 s, (b) the dis-
tance the car traveled in the interval from t 5 0 to t 5 2 s, (c) the 
speed and direction of the car’s velocity at t 5 2 s, (d) the magnitude 
of the car’s acceleration at t 5 2 s.

Fig. P11.94

0

6

2

y (m)

x (m)

 11.95 The three-dimensional motion of a particle is defined by the  position 
vector r 5 (Rt cos vnt)i 1 ctj 1 (Rt sin vnt)k. Determine the 
 magnitudes of the velocity and acceleration of the particle. (The 
space curve described by the particle is a conic helix.)

 *11.96 The three-dimensional motion of a particle is defined by the 
  position vector r 5 (At cos t)i 1 (A2t2 1 1)j 1 (Bt sin t)k, 

where r and t are expressed in meters and seconds, respectively. 
Show that the curve described by the particle lies on the hyperbo-
loid (y/A)2 2 (x/A)2 2 (z/B)2 5 1. For A 5 3 and B 5 1, determine 
(a) the magnitudes of the velocity and acceleration when t 5 0, 
(b) the smallest nonzero value of t for which the position vector and 
the velocity are perpendicular to each other.

 11.97 An airplane used to drop water on brushfires is flying horizontally 
in a straight line at 315 km/h at an altitude of 80 m. Determine the 
distance d at which the pilot should release the water so that it will 
hit the fire at B.

Fig. P11.97

A

v0

B

d

Fig. P11.96

y

xz

y2

A2
x2

A2
z2

B2
– – = 1
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 11.98 A ski jumper starts with a horizontal take-off velocity of 25 m/s and 
lands on a straight landing hill inclined at 30°. Determine (a) the time 
between take-off and landing, (b) the length d of the jump, (c) the 
maximum vertical distance between the jumper and the  landing hill.

25 m/s

d

30°

Fig. P11.98

 11.99 A baseball pitching machine “throws” baseballs with a horizontal 
velocity v0. Knowing that height h varies between 788 mm and 
1068 mm, determine (a) the range of values of v0, (b) the values of 
α corresponding to h 5 788 mm and h 5 1068 mm.

v0A

Bh
1.5 m

12.2 m

α

Fig. P11.99

 11.100 While delivering newspapers, a girl throws a newspaper with a 
horizontal velocity v0. Determine the range of values of v0 if the 
newspaper is to land between points B and C.

v0A

B

C

350 mm

200 mm
200 mm

200 mm

900 mm

1.2 m

2.1 m

Fig. P11.100
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 11.101 Water flows from a drain spout with an initial velocity of 0.75 m/s at 
an angle of 15° with the horizontal. Determine the range of values of 
the distance d for which the water will enter the trough BC.

A

CB

v0

15°

0.6 m

0.36 m

d

3 m

Fig. P11.101

 11.102 In slow pitch softball, the underhand pitch must reach a maximum 
height of between 1.8 m and 3.7 m above the ground. A pitch is 
made with an initial velocity v0 with a magnitude of 13 m/s at an 
angle of 33° with the horizontal. Determine (a) if the pitch meets the 
maximum height requirement, (b) the height of the ball as it reaches 
the batter.

15.2 m

33°
0.6 m

v0

Fig. P11.102

 11.103 A volleyball player serves the ball with an initial velocity v0 of 
 magnitude 13.40 m/s at an angle of 20° with the horizontal. 
 Determine (a) if the ball will clear the top of the net, (b) how far 
from the net the ball will land.

v0

A
C

20°

2.1 m 2.43 m

9 m

Fig. P11.103
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 11.104 A golfer hits a golf ball with an initial velocity of 50 m/s at an angle 
of 25° with the horizontal. Knowing that the fairway slopes down-
ward at an average angle of 5°, determine the distance d between 
the golfer and point B where the ball first lands.

A

B

v0

25°
5°

d

Fig. P11.104

 11.105 A homeowner uses a snowblower to clear his driveway. Knowing 
that the snow is discharged at an average angle of 40° with the 
horizontal, determine the initial velocity v0 of the snow.

A

B
v0

40°
1.05 m

0.6 m

4.2 m

Fig. P11.105

 11.106 At halftime of a football game souvenir balls are thrown to the 
 spectators with a velocity v0. Determine the range of values of v0 if 
the balls are to land between points B and C.

A

B

C

8 m

10 m

7 m

1.5 m2 m

v0

40° 35°

Fig. P11.106

 11.107 A basketball player shoots when she is 5 m from the backboard. 
Knowing that the ball has an initial velocity v0 at an angle of 30° 
with the horizontal, determine the value of v0 when d is equal to 
(a) 225 mm, (b) 425 mm.

30°
A

B v0

d
5 m

3 m

2.1 m

Fig. P11.107
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 11.108 A tennis player serves the ball at a height h 5 2.5 m with an initial 
velocity of v0 at an angle of 5° with the horizontal. Determine the 
range of v0 for which the ball will land in the service area that 
extends to 6.4 m beyond the net.

12.2 m 6.4 m

0.914 m

5°

v0

h

Fig. P11.108

 11.109 The nozzle at A discharges cooling water with an initial velocity v0 at 
an angle of 6° with the horizontal onto a grinding wheel 350 mm in 
diameter. Determine the range of values of the initial velocity for which 
the water will land on the grinding wheel between points B and C.

10°

6°

v0

20 mm

A B

C 30°
205 mm

200 mm

Fig. P11.109

 11.110 While holding one of its ends, a worker lobs a coil of rope over the 
lowest limb of a tree. If he throws the rope with an initial velocity 
v0 at an angle of 65° with the horizontal, determine the range of 
values of v0 for which the rope will go over only the lowest limb.

 11.111 The pitcher in a softball game throws a ball with an initial velocity 
v0 of 72 km/h at an angle α with the horizontal. If the height of the 
ball at point B is 0.68 m, determine (a) the angle α, (b) the angle θ 
that the velocity of the ball at point B forms with the horizontal.

v0

vB

A
B

0.6 m

0.68 m

14 m

a
q

Fig. P11.111

65°

v0

A

B

C

0.9 m

0.7 m

5.7 m

5 m

Fig. P11.110
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 11.112 A model rocket is launched from point A with an initial velocity 
v0 of 75 m/s. If the rocket’s descent parachute does not deploy and 
the rocket lands a distance d 5 100 m from A, determine (a) the 
angle α that v0 forms with the vertical, (b) the maximum height 
above point A reached by the rocket, (c) the duration of the flight.

 11.113 The initial velocity v0 of a hockey puck is 160 km/h. Determine 
(a) the largest value (less than 45°) of the angle α for which the 
puck will enter the net, (b) the corresponding time required for the 
puck to reach the net.

v0

DC

0.75 m
5 m

1.2 m

B EA

a

Fig. P11.113

 11.114 A worker uses high-pressure water to clean the inside of a long 
drainpipe. If the water is discharged with an initial velocity v0 of 
11.5 m/s, determine (a) the distance d to the farthest point B on the 
top of the pipe that the worker can wash from his position at A, 
(b) the corresponding angle α.

A

B

1.1 m

d

v0

C

α

Fig. P11.114

 11.115 An oscillating garden sprinkler which discharges water with an 
 initial velocity v0 of 8 m/s is used to water a vegetable garden. 
 Determine the distance d to the farthest point B that will be watered 
and the corresponding angle α when (a) the vegetables are just 
beginning to grow, (b) the height h of the corn is 1.8 m.

A B

d

1.5 m

hv0

a

Fig. P11.115

d

v0

a

B

A30°

Fig. P11.112
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 *11.116 A ball is dropped onto a step at point A and rebounds with a veloc-
ity v0 at an angle of 15° with the vertical. Determine the value of 
v0 knowing that just before the ball bounces at point B its velocity 
vB forms an angle of 12° with the vertical.

v0

vB

A

B

12˚

15˚

0.2 m

Fig. P11.116

 11.117 The velocities of skiers A and B are as shown. Determine the 
 velocity of A with respect to B.

A

B

25°

10°

14 m/s

10 m/s

Fig. P11.117

 11.118 The three blocks shown move with constant velocities. Find the 
velocity of each block, knowing that the relative velocity of A with 
respect to C is 300 mm/s upward and that the relative velocity of B 
with respect to A is 200 mm/s downward.

 11.119 Three seconds after automobile B passes through the intersection 
shown, automobile A passes through the same intersection. 
Knowing that the speed of each automobile is constant, determine 
(a) the relative velocity of B with respect to A, (b) the change 
in position of B with respect to A during a 4-s interval, (c) the 
distance between the two automobiles 2 s after A has passed 
through the intersection.

Fig. P11.118

A B

D

C

Fig. P11.119

70°

A

B

60 km/h60 km/h90 km/h90 km/h

N

S
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 11.120 Shore-based radar indicates that a ferry leaves its slip with a velocity 
v 5 18 km/h d70°, while instruments aboard the ferry indicate a 
speed of 18.4 km/h and a heading of 30° west of south relative to 
the river. Determine the velocity of the river.

 11.121 Airplanes A and B are flying at the same altitude and are tracking 
the eye of hurricane C. The relative velocity of C with respect to 
A is vC/A 5 350 km/h d75°, and the relative velocity of C with 
respect to B is vC/B 5 400 km/h c 40°. Determine (a) the relative 
velocity of B with respect to A, (b) the velocity of A if ground-based 
radar indicates that the hurricane is moving at a speed of 30 km/h 
due north, (c) the change in position of C with respect to B during 
a 15-min interval.

Fig. P11.121

A

B

C
N

 11.122 Instruments in an airplane which is in level flight indicate that the 
velocity relative to the air (airspeed) is 120 km/h and the direction 
of the relative velocity vector (heading) is 70° east of north. Instru-
ments on the ground indicate that the velocity of the airplane (ground 
speed) is 110 km/h and the direction of flight (course) is 60° east of 
north. Determine the wind speed and direction.

 11.123 Knowing that the velocity of block B with respect to block A is 
vB/A 5 5.6 m/s a 70°, determine the velocities of A and B.

Fig. P11.123

30°

A

Bq

B

Fig. P11.122

heading

course

N

60°
70°

Fig. P11.120
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Fig. P11.124

25°

15°

A

B

Fig. P11.127

vB

vA = 2.5 m/s

1.5 m

15°

A

B

Fig. P11.126

A

B
75°

20°

C

 11.124 Knowing that at the instant shown block A has a velocity of 200 mm/s 
and an acceleration of 150 mm/s2 both directed down the incline, 
determine (a) the velocity of block B, (b) the acceleration of block B.

 11.125 A boat is moving to the right with a constant deceleration of 
0.3 m/s2 when a boy standing on the deck D throws a ball with an 
initial velocity relative to the deck which is vertical. The ball rises 
to a maximum height of 8 m above the release point and the boy 
must step forward a distance d to catch it at the same height as the 
release point. Determine (a) the distance d, (b) the relative velocity 
of the ball with respect to the deck when the ball is caught.

Fig. P11.125

8 m

D
d

vD

aD = 0.3 m/s2

 11.126 The assembly of rod A and wedge B starts from rest and moves to the 
right with a constant acceleration of 2 mm/s2. Determine (a) the 
acceleration of wedge C, (b) the velocity of wedge C when t 5 10 s.

 11.127 Determine the required velocity of the belt B if the relative velocity with 
which the sand hits belt B is to be (a) vertical, (b) as small as possible.

 11.128 Conveyor belt A, which forms a 20° angle with the horizontal, moves 
at a constant speed of 1.2 m/s and is used to load an airplane. 
 Knowing that a worker tosses duffel bag B with an initial velocity 
of 0.75 m/s at an angle of 30° with the horizontal, determine the 
velocity of the bag relative to the belt as it lands on the belt.

Fig. P11.128

vA

(vB)0

30°

20°
A

B

450 mm
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 11.129 During a rainstorm the paths of the raindrops appear to form an 
angle of 30° with the vertical and to be directed to the left when 
observed from a side window of a train moving at a speed of 
15 km/h. A short time later, after the speed of the train has increased 
to 24 km/h, the angle between the vertical and the paths of the drops 
appears to be 45°. If the train were stopped, at what angle and with 
what velocity would the drops be observed to fall?

 11.130 Instruments in airplane A indicate that, with respect to the air, the 
plane is headed 30° north of east with an air speed of 480 km/h. 
At the same time, radar on ship B indicates that the relative velocity 
of the plane with respect to the ship is 416 km/h in the direction 
33° north of east. Knowing that the ship is steaming due south at 
20 km/h, determine (a) the velocity of the airplane, (b) the wind 
speed and direction.

 11.131 When a small boat travels north at 5 km/h, a flag mounted on its stern 
forms an angle θ 5 50° with the centerline of the boat as shown. A 
short time later, when the boat travels east at 20 km/h, angle θ is again 
50°. Determine the speed and the direction of the wind.

 11.132 As part of a department store display, a model train D runs on a slight 
incline between the store’s up and down escalators. When the train 
and shoppers pass point A, the train appears to a shopper on the up 
escalator B to move downward at an angle of 22° with the horizon-
tal, and to a shopper on the down escalator C to move upward at an 
angle of 23° with the horizontal and to travel to the left. Knowing 
that the speed of the escalators is 1 m/s, determine the speed and 
the direction of the train.

Fig. P11.132

vB

vC

30°

A

B

C

D

30°

Fig. P11.130

30°

N

A

B

20 km/h

Fig. P11.131

q
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690 Kinematics of Particles

11.5  NON-RECTANGULAR 
COMPONENTS

Sometimes it is useful to analyze the motion of a particle in a coordinate 
system that is not rectangular. In this section, we introduce two common 
and important systems. The first system is based on the path of the  particle; 
the second system is based on the radial distance and angular displacement 
of the particle.

11.5A  Tangential and Normal 
Components

We saw in Sec. 11.4 that the velocity of a particle is a vector tangent to 
the path of the particle, but in general, the acceleration is not tangent to the 
path. It is sometimes convenient to resolve the acceleration into  components 
directed, respectively, along the tangent and the normal to the path of the 
particle. We will refer to this reference frame as tangential and normal 
coordinates, which are sometimes called path coordinates. 

Planar Motion of a Particle. First we consider a particle that 
moves along a curve contained in a plane. Let P be the position of the 
particle at a given instant. We attach at P a unit vector et tangent to the 
path of the particle and pointing in the direction of motion (Fig. 11.19a). 
Let e9t be the unit vector corresponding to the position P9 of the particle 
at a later instant. Drawing both vectors from the same origin O9, we define 
the vector Det 5 e9t 2 et (Fig. 11.19b). Since et and e9t are of unit length, 
their tips lie on a circle with a radius of 1. Denote the angle formed by 
et and e9t by Dθ. Then the magnitude of Det is 2 sin (Dθ/2). Considering 
now the vector Det /Dθ, we note that, as Dθ approaches zero, this vector 
becomes tangent to the unit circle of Fig. 11.19b, i.e., perpendicular to et, 
and that its magnitude approaches

lim
Dθy0

2 sin(Dθ/2)

Dθ 5 lim
Dθy0

 sin(Dθ/2)

Dθ/2
5 1

Thus, the vector obtained in the limit is a unit vector along the normal to 
the path of the particle in the direction toward which et turns. Denoting 
this vector by en, we have

en 5 lim
Dθy0

 
Det
Dθ

 en 5
det
dθ

  (11.34)

Now, since the velocity v of the particle is tangent to the path, we 
can express it as the product of the scalar v and the unit vector et. We 
have

 v 5 vet (11.35) v 5 vet

Fig. 11.19 (a) Unit tangent vectors for two 
positions of particle P; (b) the angle between 
the unit tangent vectors and their difference 
Det.

y

O x

P

P'

en

et

et

∆ete't

e't

(a)

(b)

∆q

O'

1
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11.5 Non-Rectangular Components 691

To obtain the acceleration of the particle, we differentiate Eq. (11.35) with 
respect to t. Applying the rule for the differentiation of the product of a 
scalar and a vector function (Sec. 11.4B), we have

 a 5
dv
dt

5
dv

dt
 et 1v 

det

dt
 (11.36)

However,

det
dt

5
det
dθ

 
dθ
ds

 
ds

dt

Recall from Eq. (11.15) that ds/dt 5 v, from Eq. (11.34) that det/dθ 5 en, 
and from elementary calculus that dθ/ds is equal to 1/ρ, where ρ is the 
radius of curvature of the path at P (Fig. 11.20). Then we have

 
det

dt
5

v
r

 en  (11.37)

Substituting into Eq. (11.36), we obtain

Acceleration in normal 
and tangential components

 a 5
dv

dt
 et 1

v2

r
 en  (11.38)

Thus, the scalar components of the acceleration are

 at 5
dv

dt
   an 5

v2

r
 (11.39)

These relations state that the tangential component of the accelera-
tion is equal to the rate of change of the speed of the particle, whereas 
the normal component is equal to the square of the speed divided by 
the radius of curvature of the path at P. For a given speed, the normal 
acceleration increases as the radius of curvature decreases. If the particle 
travels in a straight line, then ρ is infinite, and the normal acceleration is 
zero. If the speed of the particle increases, at is positive, and the vector 
component at points in the direction of motion. If the speed of the particle 
decreases, at is negative, and at points against the direction of motion. The 
vector component an, on the other hand, is always directed toward the 
center of curvature C of the path (Fig. 11.21).

We conclude from this discussion that the tangential component of 
the acceleration reflects a change in the speed of the particle, whereas its 
normal component reflects a change in the direction of motion of the 
particle. The acceleration of a particle is zero only if both of its compo-
nents are zero. Thus, the acceleration of a particle moving with constant 
speed along a curve is not zero unless the particle happens to pass through 
a point of inflection of the curve (where the radius of curvature is infinite) 
or unless the curve is a straight line.

The fact that the normal component of acceleration depends upon 
the radius of curvature of the particle’s path is taken into account in the 
design of structures or mechanisms as widely different as airplane wings, 
railroad tracks, and cams. In order to avoid sudden changes in the accel-
eration of the air particles flowing past a wing, wing profiles are designed 
without any sudden change in curvature. Similar care is taken in designing 

a 5
dvdvd

dt
et 1

v2

r
en

Fig. 11.20 Relationship among Dθ, Ds, and 
ρ. Recall that for a circle, the arc length is 
equal to the radius multiplied by the angle.

C

P

P'
et

e't

∆q

∆s
ρ

∆ q = ∆s
ρ

O x

y

Fig. 11.21 Acceleration components in 
normal and tangential coordinates; the 
normal component always points toward the 
center of curvature of the path.

an =      en
v2

ρ

a t =      et
dv
dt

C

P

y

O x
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692 Kinematics of Particles

railroad curves to avoid sudden changes in the acceleration of the cars 
(which would be hard on the equipment and unpleasant for the  passengers). 
A straight section of track, for instance, is never directly followed by a 
circular section. Special transition sections are used to help pass smoothly 
from the infinite radius of curvature of the straight section to the finite 
radius of the circular track. Likewise, in the design of high-speed cams 
(that can be used to transform rotary motion into translational motion), 
abrupt changes in acceleration are avoided by using transition curves that 
produce a continuous change in acceleration.

Motion of a Particle in Space. The relations in Eqs. (11.38) and 
(11.39) still hold in the case of a particle moving along a space curve. 
However, since an infinite number of straight lines are perpendicular to 
the tangent at a given point P of a space curve, it is necessary to define 
more precisely the direction of the unit vector en.

Let us consider again the unit vectors et and e9t tangent to the path 
of the particle at two neighboring points P and P9 (Fig. 11.22a). Again 
the vector Det represents the difference between et and e9t (Fig. 11.22b). 
Let us now imagine a plane through P (Fig. 11.22c) parallel to the plane 
defined by the vectors et, e9t, and Det (Fig. 11.22b). This plane contains 
the tangent to the curve at P and is parallel to the tangent at P9. If we let 
P9 approach P, we obtain in the limit the plane that fits the curve most 
closely in the neighborhood of P. This plane is called the osculating plane 
at P (from the Latin osculari, to kiss). It follows from this definition that 
the osculating plane contains the unit vector en, since this vector  represents 
the limit of the vector Det /Dθ. The normal defined by en is thus contained 
in the osculating plane; it is called the principal normal at P. The unit 
vector eb 5 et 3 en that completes the right-handed triad et, en, and eb 
(Fig. 11.22c) defines the binormal at P. The binormal is thus  perpendicular 
to the osculating plane. We conclude that the acceleration of the particle 
at P can be resolved into two components: one along the tangent and the 
other along the principal normal at P, as indicated in Eq. (11.38). Note 
that the acceleration has no component along the binormal.

Fig. 11.22 (a) Unit tangent vectors for a particle moving in space; (b) the plane defined by the unit vectors and the 
vector difference Det; (c) the osculating plane contains the unit tangent and principal normal vectors and is 
perpendicular to the unit binormal vector.

y

O
x

et

e't

et

∆et

e't

Osculating
plane

z

y'

x'

z'

P

P'

O'

(a) (b)

∆θ

y

O
x

et

en

eb

z

P

(c)

Photo 11.5 The passengers in a train 
traveling around a curve experience a 
normal acceleration toward the center of 
curvature of the path.
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11.5 Non-Rectangular Components 693

11.5B  Radial and Transverse 
Components

In some situations in planar motion, the position of particle P is defined 
by its polar coordinates r and θ (Fig. 11.23a). It is then convenient to 
resolve the velocity and acceleration of the particle into components 
 parallel and perpendicular to the radial line OP. These components are 
called radial and transverse components.

Fig. 11.23 (a) Polar coordinates r and θ of a particle at P; (b) radial and transverse unit vectors; (c) changes of 
the radial and transverse unit vectors resulting from a change in angle Dθ.

P
P

O O

r

θ θ

(a) (b) (c)

er

r = rer

eθ

er

eθ

e'θ

e'r
∆eθ

∆er

∆θ

O'

∆θ

We attach two unit vectors, er and eθ, at P (Fig. 11.23b). The vector 
er is directed along OP and the vector eθ is obtained by rotating er through 
90° counterclockwise. The unit vector er defines the radial direction, i.e., 
the direction in which P would move if r were increased and θ were kept 
constant. The unit vector eθ defines the transverse direction, i.e., the 
 direction in which P would move if θ were increased and r were kept 
constant. A derivation similar to the one we used in the preceding section 
to determine the unit vector et leads to the relations

 
der
dθ

5 eθ    deθdθ 5 2er  (11.40)

Here 2er denotes a unit vector with a sense opposite to that of er 
(Fig. 11.23c). Using the chain rule of differentiation, we express the time 
derivatives of the unit vectors er and eθ as 

der
dt

5
der
dθ

 
dθ
dt

5 eθ 

dθ
dt
    deθ

dt
5
deθ
dθ

 
dθ
dt

5 2er 

dθ
dt

or using dots to indicate differentiation with respect to t as

 e
.
r 5 θ

.
eθ e

.
θ 5 2θ

.
er  (11.41)

To obtain the velocity v of particle P, we express the position vector 
r of P as the product of the scalar r and the unit vector er and then 
 differentiate with respect to t for

v 5
d

dt
 (rer) 5 re

.
r 1 re

.
r

Photo 11.6 The foot pedals on an elliptical 
trainer undergo curvilinear motion.
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Using the first of the relations of Eq. (11.41), we can rewrite this as

Velocity in radial and  
transverse components

 v 5 ·re r 1 ru
.
eu v 5 ·re r 1 ru

.
eu  (11.42)

Differentiating again with respect to t to obtain the acceleration, we have

a 5
dv
dt

5 r̈er 1 ṙ ̇er 1 ṙθ̇eθ 1 rθ̈ eθ 1 rθ̇  ̇eθ

Substituting for ėr and ėθ from Eq. (11.41) and factoring er and eθ, we 
obtain

Acceleration in radial and  
transverse components

 a 5 (r̈ 2 rθ
.

2)er 1 (rθ̈ 1 2r
. θ

.
)eθ a 5 (r̈ 2 rθ

.
2)er 1 (rθ̈ 1 2r

. θ
.
)eθ  (11.43)

The scalar components of the velocity and the acceleration in the radial 
and transverse directions are

 vr 5 ṙ  vθ 5 rθ̇  (11.44)

 ar 5 r̈ 2 rθ̇2  aθ 5 rθ̈  1 2 ṙθ̇  (11.45)

It is important to note that ar is not equal to the time derivative of vr and 
that aθ is not equal to the time derivative of vθ.

In the case of a particle moving along a circle with a center O, we 
have r 5 constant and ṙ 5 r̈ 5 0, so the formulas (11.42) and (11.43) 
reduce, respectively, to

 v 5 rθ̇eθ  a 5 2rθ̇2er 1 rθ̈ eθ (11.46)

Compare this to using tangential and normal coordinates for a particle in 
a circular path. In this case, the radius of curvature ρ is equal to the radius 
of the circle r, and we have v 5 vet and a 5 v̇et 1(v2/r)en. Note that er 
and en point in opposite directions (en inward and er outward).

Extension to the Motion of a Particle in Space: Cylindrical 
Coordinates. Sometimes it is convenient to define the position of a 
particle P in space by its cylindrical coordinates R, θ, and z (Fig. 11.24a). 
We can then use the unit vectors eR, eθ, and k shown in Fig. 11.24b. 
Resolving the position vector r of particle P into components along the 
unit vectors, we have

 r 5 ReR 1 zk (11.47)

Observe that eR and eθ define the radial and transverse directions in the 
horizontal xy plane, respectively, and that the vector k, which defines the 
axial direction, is constant in direction as well as in magnitude. Then we 
can verify that

 v 5
dr
dt

5 R
.
eR 1 Rθ

.
eθ 1 z

.
k (11.48)

  a 5
dv
dt

5 (R̈ 2 Rθ
.
2)eR 1 (Rθ̈ 1 2R

.
θ
.
)eθ 1 z̈k  (11.49)

Fig. 11.24 (a) Cylindrical coordinates R, θ, 
and z; (b) unit vectors in cylindrical 
coordinates for a particle in space.
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11.5 Non-Rectangular Components 695

Sample Problem 11.16

A motorist is traveling on a curved section of highway with a radius of 
750 m at a speed of 90 km/h. The motorist suddenly applies the brakes, 
causing the automobile to slow down at a constant rate. If the speed has 
been reduced to 72 km/h after 8 s, determine the acceleration of the auto-
mobile immediately after the brakes have been applied.

STRATEGY: You know the path of the motion, and that the forward 
speed of the vehicle defines the direction of et. Therefore, you can use 
tangential and normal components.

MODELING and ANALYSIS: 

Tangential Component of Acceleration. First express the speeds 
in m/s.

h/km 09 5 a90  

km

h
b a

1000 m

1 km
b a

1 h

3600 s
b 5 25 m/s

 72 km/h 5 20 m/s

Since the automobile slows down at a constant rate, you have the tangen-
tial acceleration of

at 5 average at 5
Dv

Dt
5

20 m/s 2 25 m/s

8 s
5 20.625 m/s2

Normal Component of Acceleration. Immediately after the 
brakes have been applied, the speed is still 88 ft/s. Therefore, you have

an 5
v2

r
5

(25 m/s)2

750 m
5 0.833 m/s2

Magnitude and Direction of Acceleration. The magnitude and 
direction of the resultant a of the components an and at are (Fig. 1)

 

tan α 5
an
at

5
0.833 m/s2

0.625 m/s2  α 5 53.1° b

 a 5
an

 sin α
5

0.833 m/s2

 sin 53.18
 

a 5 1.041 m/s2

 b

REFLECT and THINK: The tangential component of acceleration is 
opposite the direction of motion, and the normal component of  acceleration 
points to the center of curvature, which is what you would expect for 
slowing down on a curved path. Attempting to do this problem in  Cartesian 
coordinates is quite difficult.

A

vA = 90 km/h

750 m

A

a t = 0.625 m/s2

a n = 0.833 m/s2

a

a
Motion

Fig. 1 Acceleration of 
the car.
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Sample Problem 11.17

Determine the minimum radius of curvature of the trajectory described by 
the projectile considered in Sample Prob. 11.10.

STRATEGY: You are asked to find the radius of curvature, so you 
should use normal and tangential coordinates.

MODELING and ANALYSIS: Since an 5 v2/ρ, you have ρ 5 v2/an. 
Therefore, the radius is small when v is small or when an is large. The 
speed v is minimum at the top of the trajectory, since vy 5 0 at that point; 
an is maximum at that same point, since the direction of the vertical coin-
cides with the direction of the normal (Fig. 1). Therefore, the  minimum 
radius of curvature occurs at the top of the trajectory. At this point, you 
have 

v 5 vx 5 155.9 m/s    an 5 a 5 9.81 m/s2

    r 5
v2

an
5

(155.9 m/s)2

9.81 m/s2  ρ 5 2480 m b

REFLECT and THINK: The top of the trajectory is the easiest point to 
determine the radius of curvature. At any other point in the trajectory, you 
need to find the normal component of acceleration. You can do this easily 
at the top, because you know that the total acceleration is pointed verti-
cally downward and the normal component is simply the component 
 perpendicular to the tangent to the path. Once you have the normal 
 acceleration, it is straightforward to find the radius of curvature if you 
know the speed.

a = a n

v = vx

Fig. 1 Acceleration and velocity of 
the projectile.

Sample Problem 11.18

The rotation of the 0.9-m arm OA about O is defined by the relation 
θ 5 0.15t2, where θ is expressed in radians and t in seconds. Collar B 
slides along the arm in such a way that its distance from O is r 5 0.9 
2 0.12t2, where r is expressed in meters and t in seconds. After the arm 
OA has rotated through 30°, determine (a) the total velocity of the collar, 
(b) the total acceleration of the collar, (c) the relative acceleration of the 
collar with respect to the arm.

STRATEGY: You are given information in terms of r and θ, so you 
should use polar coordinates.

MODELING and ANALYSIS: Model the collar as a particle. 

Time t at which θ 5 30°.  Substitute θ 5 30° 5 0.524 rad into the 
expression for θ. You obtain

θ 5 0.15t 2    0.524 5 0.15t 2    t 5 1.869 s

O

B
A

q

r
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11.5 Non-Rectangular Components 697

Equations of Motion. Substituting t 5 1.869 s in the expressions 
for r, θ, and their first and second derivatives, you have

 r 5 0.9 2 0.12t 2 5 0.481 m  θ 5 0.15t 2 5 0.524 rad

 ṙ 5 20.24t 5 20.449 m/s   θ̇ 5 0.30t 5 0.561 rad /s

 r̈ 5 20.24 5 20.240 m/s2   θ̈ 5 0.30 5 0.300 rad /s2

a. Velocity of B. Using Eqs. (11.44), you can obtain the values of vr 
and vθ when t 5 1.869 s (Fig. 1).

 vr 5 ṙ 5 20.449 m/s

 vθ 5 rθ̇ 5 0.481(0.561) 5 0.270 m/s

Solve the right triangle shown in Fig. 2 to obtain the magnitude and 
 direction of the velocity,

v 5 0.524 m/s  β 5 31.0° b

b. Acceleration of B. Using Eqs. (11.45), you obtain (Fig. 3)

 ar 5 r̈ 2 rθ̇2

 5 20.240 2 0.481(0.561)2 5 20.391 m/s2

 aθ 5 rθ̈ 1 2 ṙθ̇

 5 0.481(0.300) 1 2(20.449)(0.561) 5 20.359 m/s2

a 5 0.531 m/s2  γ 5 42.6° b

c. Acceleration of B with Respect to Arm OA. Note that the 
motion of the collar with respect to the arm is rectilinear and defined by 
the coordinate r (Fig. 4). You have

aB/OA 5  r̈ 5 20.240 m/s2

aB/OA 5 0.240 m/s2 toward O. b

Fig. 4

er

eq

A

B

B

B

B

O

q
O

O

v = vrer + vUeU

vU = (0.270 m /s)eU

vr = (–0.449 m /s)er

aU = (–0.359 m/s2)eq

a r = (–0.391 m/s2)er

aB/OA = (–0.240 m/s2)er

a = arer + aUeU

b

30°

g

r

r =
 0.481 m

a

v

q

q

q

qq

q

q

REFLECT and THINK: You should consider polar coordinates for any 
kind of rotational motion. They turn this problem into a straightforward 
solution, whereas any other coordinate system would make this problem 
much more difficult. One way to make this problem harder would be to 
ask you to find the radius of curvature in addition to the velocity and 
acceleration. To do this, you would have to find the normal component of 
the acceleration; that is, the component of acceleration that is  perpendicular 
to the tangential direction defined by the velocity vector.

Fig. 1 Radial and transverse 
coordinates for collar B.

er

eq

A

B

B

B

B

O

q
O

O

v = vrer + vUeU

vU = (0.270 m /s)eU

vr = (–0.449 m /s)er

aU = (–0.359 m/s2)eq

a r = (–0.391 m/s2)er

aB/OA = (–0.240 m/s2)er

a = arer + aUeU

b

30°

g

r

r =
 0.481 m

a

v

q

q

q

qq

q

q

Fig. 2 Velocity of collar B.

er

eq

A

B

B

B

B

O

q
O

O

v = vrer + vUeU

vU = (0.270 m /s)eU

vr = (–0.449 m /s)er

aU = (–0.359 m/s2)eq

a r = (–0.391 m/s2)er

aB/OA = (–0.240 m/s2)er

a = arer + aUeU

b

30°

g

r

r =
 0.481 m

a

v

q

q

q

qq

q

q

Fig. 3 Acceleration of collar B.

er

eq

A

B

B

B

B

O

q
O

O

v = vrer + vUeU

vU = (0.270 m /s)eU

vr = (–0.449 m /s)er

aU = (–0.359 m/s2)eq

a r = (–0.391 m/s2)er

aB/OA = (–0.240 m/s2)er

a = arer + aUeU

b

30°

g

r

r =
 0.481 m

a

v

q

q

q

qq

q

q
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Sample Problem 11.19

A boy is flying a kite that is 60 m high with 75 m of cord out. The kite 
moves horizontally from this position at a constant 6 km/h that is directly 
away from the boy. Ignoring the sag in the cord, determine how fast the 
cord is being let out at this instant and how fast this rate is increasing.

STRATEGY: The most natural way to describe the position of the kite 
is using a radial vector and angle, as shown in Fig. 1. The distance r is 
changing, so use polar coordinates.

Fig. 1 Radial and transverse 
coordinates for the kite.

60 mr

O
q

75 m

ereθ

v

MODELING and ANALYSIS: The angle and the speed of the kite in 
m/s are found by

θ 5 sin21a60

75
b 5 53.13° and v 5 6 a

km

hr
ba hr

3600 s
ba1000 m

km
b 5

5

3
  m/s

Velocity in Polar Coordinates: You know that in polar coordinates 
the velocity is v 5 ṙer 1 rθ̇er. Using Fig. 1, you can resolve the velocity 
vector into polar coordinates, giving

 
.
r 5 v cos θ 5 a5

3
   m/sb cos 53.13°   ṙ 5 1.000 m/s b

rθ
.

5 2v sinθ   θ. 5 2
v sinθ
r

5 2
(5/3 m/s)sin 53.13°

75 m
5 0.01778 rad/s

Acceleration in Polar Coordinates: You know that the accelera-
tion is zero, because the kite is traveling at a constant speed. This means 
that both components of the acceleration need to be zero. You know the 
radial component is ar 5 r̈ 2 rθ̇2 5 0. So

 r̈ 5 rθ̇2 5 (75 m)(20.01778 rad/s)2  r̈ 5 0.0237 m/s2 b

REFLECT and THINK: When the angle is 90°, then ṙ will be zero. 
When the angle is very small––that is, when the kite is far away––you 
would expect the cord to increase at a rate of 6 m/s, which is the speed 
of the kite.  Our answer is reasonable since it is between these two 
limits.

60 mr

75 m

v
6 km/h
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11.5 Non-Rectangular Components 699

Sample Problem 11.20

At the instant shown, the length of the boom AB is being decreased at the 
constant rate of 0.2 m/s, and the boom is being lowered at the constant 
rate of 0.08 rad/s. Determine (a) the velocity of point B, (b) the  acceleration 
of point B. 

STRATEGY: Use polar coordinates, since that is the most natural way 
to describe the position of point B.

MODELING and ANALYSIS: From the problem statement, you know 

ṙ 5 20.2 m/s  r̈ 5 0   θ̇ 5 20.08 rad /s   θ̈ 5 0

a. Velocity of B. Using Eqs.(11.44), you can determine the values of 
vr and vθ at this instant to be

 vr 5 ṙ 5 20.2 m/s

 vθ 5 rθ̇ 5 (6 m)(20.08 rad/s) 5 20.48 m/s

Therefore, you can write the velocity vector as

v 5 (20.200 m/s)er 1 (20.480 m/s)et b

b. Acceleration of B. Using Eqs. (11.45), you find

 ar 5 r̈ 2 rθ̇2 5 0 2 (6 m)(20.08 rad/s)2 5 20.0384 m/s2

 aθ 5 rθ̈ 1 2 ṙθ̇ 5 0 1 2(20.02 m/s)(20.08 rad/s) 5 0.00320 m/s2

or

a 5 (20.0384 m/s2)er 1 (0.00320 m/s2)eθ b

REFLECT and THINK: Once you identify what you are given in the 
problem statement, this problem is quite straightforward. Sometimes you 
will be asked to express your answer in terms of a magnitude and  direction. 
The easiest way is to first determine the x and y components and then to 
find the magnitude and direction. From Fig. 1, 

 y1 : (vB)x 5 0.48 cos 60° 2 0.2 cos 30° 5 0.06680 m/s

 1x: (vB)y 5 20.48 sin 60° 2 0.2 sin 30° 5 20.5157 m/s

So the magnitude and direction are

vB 5 20.066802 1 0.51572

 5 0.520 m/s tan β 5
0.51569

0.06680
, β 5 82.6°

So, an alternative way of expressing the velocity of B is vB 5 0.520 m/s c 82.6°

You could also find the magnitude and direction of the acceleration if you 
needed it expressed in this way. It is important to note that no matter what 
coordinate system we choose, the resultant velocity vector is the same. 
You can choose to express this vector in whatever coordinate system is 
most useful. Figure 2 shows the velocity vector vB resolved into x and y 
components and r and θ coordinates.

A

B

θ = 30�

6 m

Fig. 1 Velocity of B.

B
30° 60°

vr = –0.2 m/s

vθ = –0.48 m/s

eθ er

Fig. 2 Resultant velocity 
of collar B in Cartesian 
and in radial and 
transverse coordinates.

B

vr

vy vB

vθ

vx
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In the following problems, you will be asked to express the velocity and the accel-
eration of particles in terms of either their tangential and normal components or 

their radial and transverse components. Although these components may not be as 
familiar to you as rectangular components, you will find that they can simplify the 
solution of many problems and that certain types of motion are more easily described 
when they are used.

1. Using tangential and normal components. These components are most often 
used when the particle of interest travels along a known  curvilinear path or when the 
radius of curvature of the path is to be determined [Sample Prob. 11.16]. Remember 
that the unit vector et is tangent to the path of the particle (and thus aligned with the 
velocity), whereas the unit vector en is directed along the normal to the path and 
always points toward its center of curvature. It follows that the directions of the two 
unit vectors are constantly changing as the particle moves.

2. Acceleration in terms of tangential and normal components. We derived in 
Sec. 11.5A the following equation, which is applicable to both the two-dimensional 
and the three-dimensional motion of a particle:

 a 5
dv

dt
 et 1

v2

r
 en (11.38)

The following observations may help you in solving the problems of this section.

 a. The tangential component of the acceleration measures the rate of change 
of the speed as at 5 dv/dt. It follows that, when at is constant, you can use the 
 equations for uniformly accelerated motion with the acceleration equal to at. Further-
more, when a particle moves at a constant speed, we have at 5 0, and the acceleration 
of the particle reduces to its normal component.

 b. The normal component of the acceleration is always directed toward the 
center of curvature of the path of the particle, and its magnitude is an 5 v2/ρ. Thus, 
you can determine the normal component if you know the speed of the particle and 
the radius of curvature ρ of the path.  Conversely, if you know the speed and normal 
acceleration of the particle, you can find the radius of curvature of the path by solving 
this equation for ρ [Sample Prob. 11.17].

SOLVING PROBLEMS
ON YOUR OWN
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3. Using radial and transverse components. These components are used to analyze 
the planar motion of a particle P when the position of P is defined by its polar 
 coordinates r and θ. As shown in Fig. 11.23, the unit vector er, which defines the 
radial direction, is attached to P and points away from the fixed point O, whereas 
the unit vector eθ, which defines the transverse direction, is obtained by rotating er 
counterclockwise through 90°. The velocity and acceleration of a particle are expressed 
in terms of their radial and transverse components in Eqs. (11.42) and (11.43), respec-
tively. Note that the expressions obtained contain the first and second derivatives with 
respect to t of both coordinates r and θ.

In the problems of this section, you will encounter the following types of problems 
involving radial and transverse components.

 a. Both r and θ are known functions of t. In this case, you  compute the first 
and second derivatives of r and θ and substitute the resulting expressions into 
Eqs. (11.42) and (11.43).

 b. A certain relationship exists between r and θ. First, you should determine 
this relationship from the geometry of the given system and use it to express r as a 
function of θ. Once you know the function r 5 f(θ), you can apply the chain rule to 
determine ṙ in terms of θ and θ̇, and r̈ in terms of θ, θ̇, and θ̈:

 ṙ 5 f 9(θ)θ̇

r̈ 5 f 0(θ)θ̇2 1 f 9(θ)θ̈ 

You can then substitute these expressions into Eqs. (11.42) and (11.43).

 c. The three-dimensional motion of a particle, as indicated at the end of 
Sec. 11.5B, often can be described effectively in terms of the cylindrical coordinates 
R, θ, and z (Fig. 11.24). The unit vectors then should consist of eR, eθ, and k. The 
 corresponding components of the velocity and the acceleration are given in Eqs. (11.48) 
and (11.49). Note that the radial distance R is always measured in a plane parallel to 
the xy plane, and be careful not to confuse the position vector r with its radial 
 component ReR.
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Problems
CONCEPT QUESTIONS
 11.CQ8 The Ferris wheel is rotating with a constant angular velocity v. 

What is the direction of the acceleration of point A?
   a. y b. x c. w d. z e. The acceleration is zero.
 11.CQ9 A race car travels around the track shown at a constant speed. At 

which point will the race car have the largest acceleration?
   a.  A. b. B. c. C. d. D. e. The acceleration will be zero at all 

the points.

Fig. P11.CQ9

C

B

A

D

v

 11.CQ10 A child walks across merry-go-round A with a constant speed u 
relative to A. The merry-go-round undergoes fixed-axis rotation 
about its center with a constant angular velocity v counterclockwise. 
When the child is at the center of A, as shown, what is the direction 
of his acceleration when viewed from above?

   a. y b. z c. x d. w e. The acceleration is zero.

END-OF-SECTION PROBLEMS

 11.133 Determine the smallest radius that should be used for a highway 
if the normal component of the acceleration of a car traveling at 
72 km/h is not to exceed 0.8 m/s2.

Fig. P11.133

A
r

B

 11.134 Determine the maximum speed that the cars of the roller-coaster can 
reach along the circular portion AB of the track if ρ 5 25 m and the 
normal component of their acceleration cannot exceed 3g.

Fig. P11.CQ8

A

Fig. P11.CQ10

ω

u

A

Fig. P11.134

B
A

ρ
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 11.135 Human centrifuges are often used to simulate different acceleration 
levels for pilots and astronauts. Space shuttle pilots typically face 
inwards towards the center of the gondola in order to experience 
a simulated 3-g forward acceleration. Knowing that the astronaut 
sits 5 m from the axis of rotation and experiences 3 g’s inward, 
determine her velocity.

Fig. P11.135

A

5 m

 11.136 Pin A, which is attached to link AB, is constrained to move in the 
circular slot CD. Knowing that at t 5 0 the pin starts from rest and 
moves so that its speed increases at a constant rate of 20 mm/s2, 
determine the magnitude of its total acceleration when (a) t 5 0, 
(b) t 5 2 s.

Fig. P11.136

A

B

C

D

90 mm

 11.137 A monorail train starts from rest on a curve of radius 400 m and 
accelerates at the constant rate at. If the maximum total accelera-
tion of the train must not exceed 1.5 m/s2, determine (a) the shortest 
distance in which the train can reach a speed of 72 km/h, (b) the 
corresponding constant rate of acceleration at.

 11.138 A robot arm moves so that P travels in a circle about point B, which is 
not moving. Knowing that P starts from rest, and its speed increases 
at a constant rate of 10 mm/s2, determine (a) the magnitude of the 
acceleration when t 5 4 s, (b) the time for the magnitude of the 
acceleration to be 80 mm/s2.

Fig. P11.138

B

P

O

0.8 m
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 11.139 A monorail train starts from rest on a curve of radius 400 m and 
accelerates at the constant rate at. If the maximum total acceleration 
of the train must not exceed 1.5 m/s2, determine (a) the shortest 
distance in which the train can reach a speed of 72 km/h, (b) the 
corresponding constant rate of acceleration at.

 11.140 A motorist starts from rest at point A on a circular entrance ramp 
when t 5 0, increases the speed of her automobile at a constant rate 
and enters the highway at point B. Knowing that her speed continues 
to  increase at the same rate until it reaches 100 km/h at point C, 
determine (a) the speed at point B, (b) the magnitude of the total 
acceleration when t 5 20 s.

 11.141 Race car A is traveling on a straight portion of the track while race 
car B is traveling on a circular portion of the track. At the instant 
shown, the speed of A is increasing at the rate of 10 m/s2, and the 
speed of B is decreasing at the rate of 6 m/s2. For the position shown, 
determine (a) the velocity of B relative to A, (b) the acceleration of 
B relative to A.

Fig. P11.141

50°

A

B

200 km/h
300 m

240 km/h

 11.142 At a given instant in an airplane race, airplane A is flying horizontally 
in a straight line, and its speed is being increased at the rate of 8 m/s2. 
Airplane B is flying at the same altitude as airplane A and, as it 
rounds a pylon, is following a circular path of 300-m radius. Knowing 
that at the given instant the speed of B is being decreased at the rate 
of 3 m/s2, determine, for the positions shown, (a) the velocity of B 
relative to A, (b) the acceleration of B relative to A.

Fig. P11.142

A

30°

400 m

B

300 m

450  km/h

540 km/h

 11.143 A race car enters the circular portion of a track that has a radius of 
70 m. When the car enters the curve at point P, it is travelling with 
a speed of 120 km/h that is increasing at 5 m/s2. Three seconds later, 
determine the x and y components of velocity and acceleration of 
the car.

Fig. P11.140

B C

A

150 m

100 m

Fig. P11.143

q

y

x

r = 70 m

120 km/h

P
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 11.144 An airplane flying at a constant speed of 240 m/s makes a banked 
horizontal turn. What is the minimum allowable radius of the turn 
if the structural specifications require that the acceleration of the 
airplane shall never exceed 4 g?

 11.145 A golfer hits a golf ball from point A with an initial velocity of 
50 m/s at an angle of 25° with the horizontal. Determine the radius 
of curvature of the trajectory described by the ball (a) at point A, 
(b) at the highest point of the trajectory.

 11.146 Three children are throwing snowballs at each other. Child A throws 
a snowball with a horizontal velocity v0. If the snowball just passes 
over the head of child B and hits child C, determine the radius of 
curvature of the trajectory described by the snowball (a) at point B, 
(b) at point C.

A

B

C

1 m

2 m

7 m d

v0

Fig. P11.146

 11.147 Coal is discharged from the tailgate A of a dump truck with an 
 initial velocity vA 5 2 m/s d 50°. Determine the radius of  curvature 
of the trajectory described by the coal (a) at point A, (b) at the point 
of the trajectory 1 m below point A.

 11.148 From measurements of a photograph, it has been found that as 
the stream of water shown left the nozzle at A, it had a radius 
of  curvature of 25 m. Determine (a) the initial velocity vA of the 
stream, (b) the radius of curvature of the stream as it reaches its 
maximum height at B.

 11.149 A child throws a ball from point A with an initial velocity v0 at an 
angle of 3° with the horizontal. Knowing that the ball hits a wall at 
point B, determine (a) the magnitude of the initial velocity, (b) the 
minimum radius of curvature of the trajectory.

Fig. P11.149

v0
3°

1.5 m

A B

6 m

0.97 m

A

vA

25°

Fig. P11.145

Fig. P11.147

vA

50° A

Fig. P11.148

A

B

4

3

vA

Fig. P11.144
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 11.150 A projectile is fired from point A with an initial velocity v0. (a) Show 
that the radius of curvature of the trajectory of the projectile 
reaches its minimum value at the highest point B of the trajectory. 
(b) Denoting by θ the angle formed by the trajectory and the 
horizontal at a given point C, show that the radius of curvature of 
the trajectory at C is ρ 5 ρmin/cos3θ.

A

B

C θminρ

ρ

v0

x

α

Fig. P11.150

  *11.151 Determine the radius of curvature of the path described by the 
particle of Prob. 11.95 when t 5 0.

  *11.152 Determine the radius of curvature of the path described by the 
particle of Prob. 11.96 when t 5 0, A 5 3, and B 5 1.

 11.153 and 11.154 A satellite will travel indefinitely in a circular orbit 
around a planet if the normal component of the acceleration of the 
satellite is equal to g(R/r)2, where g is the acceleration of gravity 
at the surface of the planet, R is the radius of the planet, and r is 
the distance from the center of the planet to the satellite. Knowing 
that the diameter of the sun is 1.39 Gm and that the acceleration of 
gravity at its surface is 274 m/s2, determine the radius of the orbit 
of the indicated planet around the sun assuming that the orbit is 
circular.

   11.153 Earth: (ymean)orbit 5 107 Mm/h.
   11.154 Saturn: (ymean)orbit 5 34.7 Mm/h.

 11.155 through 11.157 Determine the speed of a satellite relative to the 
indicated planet if the satellite is to travel indefinitely in a circular 
orbit 160 km above the surface of the planet. (See information given 
in Probs. 11.153–11.154.)

   11.155 Venus: g 5 8.53 m/s2, R 5 6161 km.
   11.156 Mars: g 5 3.83 m/s2, R 5 3332 km.
   11.157 Jupiter: g 5 26.0 m/s2, R 5 69,893 km.

 11.158 A satellite will travel indefinitely in a circular orbit around the earth 
if the normal component of its acceleration is equal to g(R/r)2, where 
g 5 9.81 m/s2, R 5 radius of the earth 5 6370 km, and r 5 distance 
from the center of the earth to the satellite. Assuming that the orbit 
of the moon is a circle with a radius of 384 3 103 km, determine 
the speed of the moon relative to the earth.
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 11.159 Knowing that the radius of the earth is 6370 km, determine the 
time of one orbit of the Hubble Space Telescope if the telescope 
travels in a circular orbit 590 km above the surface of the earth. 
(See information given in Probs. 11.153–11.154.)

 11.160 Satellites A and B are traveling in the same plane in circular orbits 
around the earth at altitudes of 180 and 300 km, respectively. If at 
t 5 0 the satellites are aligned as shown and knowing that the radius 
of the earth is R 5 6370 km, determine when the satellites will next 
be radially aligned. (See information given in Probs. 11.153–11.154.)

 11.161 The oscillation of rod OA about O is defined by the relation 
θ 5 (2yπ)(sin πt), where θ and t are expressed in radians and 
seconds, respectively. Collar B slides along the rod so that its 

distance from O is r 5 
625

(t + 4)
  where r and t are expressed in mm 

and seconds, respectively. When t 5 1 s, determine (a) the velocity 
of the collar, (b) the acceleration of the collar, (c) the acceleration 
of the collar relative to the rod.

 11.162 The path of a particle P is a limaçon. The motion of the particle is 
defined by the relations r 5 b(2 1 cos πt) and θ 5 πt where t and θ 
are expressed in seconds and radians, respectively. Determine (a) the 
velocity and the acceleration of the particle when t 5 2 s, (b) the 
value of θ for which the magnitude of the velocity is maximum.

 11.163 During a parasailing ride, the boat is traveling at a constant 30 km/hr 
with a 200-m long tow line. At the instant shown, the angle between 
the line and the water is 30° and is increasing at a constant rate of 
2°/s. Determine the velocity and acceleration of the parasailer at 
this instant. 

r

θ

Fig. P11.163

 11.164 Pin P is attached to BC and slides freely in the slot of OA. Deter-
mine the rate of change 

·
u  of the angle u, knowing that BC moves 

at a constant speed v0. Express your answer in terms of v0, h, b, 
and u.

Fig. P11.160

A

B

rB

rA

Fig. P11.161

O

B

A

θ
r

Fig. P11.162

P

r

q

B

C

A

u

b

P

O

h

v0

Fig. P11.164
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 11.165 As rod OA rotates, pin P moves along the parabola BCD. Knowing 
that the equation of this parabola is r 5 2b/(1 1 cos θ) and that 
θ 5 kt, determine the velocity and acceleration of P when (a) θ 5 0, 
(b) θ 5 90°.

 11.166 The pin at B is free to slide along the circular slot DE and along 
the rotating rod OC. Assuming that the rod OC rotates at a  constant 
rate 

þ
u, (a) show that the acceleration of pin B is of constant  magnitude, 

(b) determine the direction of the acceleration of pin B.

Fig. P11.166

r

b

B
D C

A
O

E

b

θ

 11.167 To study the performance of a race car, a high-speed camera is 
 positioned at point A. The camera is mounted on a mechanism 
which permits it to record the motion of the car as the car travels 
on straightaway BC. Determine (a) the speed of the car in terms of 
b, θ, and θ̇, (b) the magnitude of the acceleration in terms of b, θ, 
θ̇, and ü .

 11.168 After taking off, a helicopter climbs in a straight line at a constant 
angle β. Its flight is tracked by radar from point A. Determine the 
speed of the helicopter in terms of d, β, θ, and θ̇. 

Fig. P11.168

B

A θ

d

v

β

Fig. P11.165

A

O

D

P

C

B

θ

r

b

Fig. P11.167
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A θ
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v a

b
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 11.169 At the bottom of a loop in the vertical plane an airplane has a 
horizontal velocity of 150 m/s and is speeding up at a rate of 
25 m/s2. The radius of curvature of the loop is 2000 m. The plane 
is being tracked by radar at O. What are the recorded values of ṙ, 
r̈, θ̇, and θ̈ for this instant?

Fig. P11.169

150 m/s

600 m

800 mO

q

2000 m

r

 11.170 Pin C is attached to rod BC and slides freely in the slot of rod 
OA which rotates at the constant rate v. At the instant when 
β 5 60°,  determine (a) r

.
 and 

.
θθ, (b) r̈ and  θθ̈θ . Express your answers 

in terms of d and v.

Fig. P11.170

r

d

B

A

C

b d
O q

 11.171 For the race car of Prob. 11.167, it was found that it took 0.5 s for 
the car to travel from the position θ 5 60° to the position θ 5 35°. 
Knowing that b 5 25 m, determine the average speed of the car 
during the 0.5-s interval.

 11.172 For the helicopter of Prob. 11.168, it was found that when the 
 helicopter was at B, the distance and the angle of elevation of the 
helicopter were r 5 1000 m and θ 5 20°, respectively. Four seconds 
later, the radar station sighted the helicopter at r 5 1100 m and 
θ 5 23.1°. Determine the average speed and the angle of climb β 
of the  helicopter during the 4-s interval.
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 11.173 and 11.174 A particle moves along the spiral shown. Determine 
the magnitude of the velocity of the particle in terms of b, θ, and θ̇.

Fig. P11.173 and P11.175

O

r = be
1
2

2q

 Fig. P11.174 and P11.176

r 2 = bq

O

 11.175 and 11.176 A particle moves along the spiral shown. Knowing 
that θ̇ is  constant and denoting this constant by v, determine the 
 magnitude of the acceleration of the particle in terms of b, θ, and θ̇.

 11.177 The motion of a particle on the surface of a right circular cylinder is 
defined by the relations R 5 A, θ 5 2πt, and z 5 B sin 2πnt, where 
A and B are constants and n is an integer. Determine the magnitudes 
of the velocity and acceleration of the particle at any time t.

Fig. P11.177

y

z

B

A

B

n = 10
x

 11.178 Show that r
.

5 hϕ
.

  sin θ knowing that at the instant shown, step 
AB of the step exerciser is rotating counterclockwise at a constant 
rate 

þ
f.

 11.179 The three-dimensional motion of a particle is defined by the 
relations R 5 A(1 2 e2t), θ 5 2πt, and z 5 B(1 2 e2t ). Determine 
the magnitudes of the velocity and acceleration when (a) t 5 0, 
(b) t 5 .̀

  *11.180 For the conic helix of Prob. 11.95, determine the angle that the 
osculating plane forms with the y axis.

  *11.181 Determine the direction of the binormal of the path described by 
the particle of Prob. 11.96 when (a) t 5 0, (b) t 5 π/2 s.Fig. P11.178

h

B

A

P

O

φ

θ

d

r
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Position Coordinate of a Particle in Rectilinear Motion
In the first half of this chapter, we analyzed the rectilinear motion of a 
 particle, i.e., the motion of a particle along a straight line. To define the posi-
tion P of the particle on that line, we chose a fixed origin O and a positive 
direction (Fig. 11.25). The distance x from O to P, with the appropriate sign, 
completely defines the position of the particle on the line and is called the 
position  coordinate of the particle [Sec. 11.1A].

Velocity and Acceleration in Rectilinear Motion
The velocity v of the particle was shown to be equal to the time derivative of 
the position coordinate x, so

 v 5
dx

dt
 (11.1)

And we obtained the acceleration a by differentiating v with respect to t, as

 a 5
dv

dt
 (11.2)

or

 a 5
d2x

dt2  (11.3)

We also noted that a could be expressed as

 a 5 v 

dv

dx
 (11.4)

 We observed that the velocity v and the acceleration a are represented 
by algebraic numbers that can be positive or negative. A positive value for v 
indicates that the particle moves in the positive direction, and a negative value 
shows that it moves in the negative direction. A positive value for a, however, 
may mean that the particle is truly accelerated (i.e., moves faster) in the 
 positive direction or that it is decelerated (i.e., moves more slowly) in the 
negative direction. A negative value for a is subject to a similar interpretation 
[Sample Prob. 11.1].

Determination of the Velocity and Acceleration by 
Integration
In most problems, the conditions of motion of a particle are defined by the 
type of acceleration that the particle possesses and by the initial conditions 
[Sec. 11.1B]. Then we can obtain the velocity and position of the particle by 
integrating two of the equations (11.1) to (11.4). The selection of these equa-
tions depends upon the type of acceleration involved [Sample Probs. 11.2 
through 11.4].

Review and Summary
O P

x
x

Fig. 11.25
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Uniform Rectilinear Motion
Two types of motion are frequently encountered. Uniform rectilinear motion 
[Sec. 11.2A], in which the velocity v of the particle is constant, is described by

 x 5 x0 1 vt (11.5)

Uniformly Accelerated Rectilinear Motion
Uniformly accelerated rectilinear motion [Sec. 11.2B], in which the accel-
eration a of the particle is constant, is described by

 v  5 v0 1 at  (11.6)

 x  5 x0 1 v0t 1 1
2at2  (11.7)

 v2 5 v0
2 1 2a(x 2 x0) (11.8)

Relative Motion of Two Particles
When two particles A and B (such as two aircraft) move, we may wish to 
consider the relative motion of B with respect to A [Sec. 11.2C]. Denoting 
the relative position coordinate of B with respect to A by xB/A (Fig. 11.26), 
we have
 xB 5 xA 1 xB/A (11.9)

Differentiating Eq. (11.9) twice with respect to t, we obtained successively

 vB 5 vA 1 vB/A (11.10)

 aB 5 aA 1 aB/A (11.11)

where vB/A and aB/A represent, respectively, the relative velocity and the 
relative acceleration of B with respect to A.

Dependent Motion
When several blocks are connected by inextensible cords, it is possible to 
write a linear relation between their position coordinates. We can then write 
similar relations between their velocities and between their accelerations, 
which we can use to analyze their motion [Sample Probs. 11.7 and 11.8].

Graphical Solutions
It is sometimes convenient to use a graphical solution for problems involving 
the rectilinear motion of a particle [Sec. 11.3]. The graphical solution most 
commonly used involves the x–t, v–t, and a–t curves [Sample Prob. 11.10]. It 
was shown at any given time t that

v 5 slope of x–t curve

a 5 slope of v–t curve

Also, over any given time interval from t1 to t2, we have

v2 2 v1 5 area under a–t curve

x2 2 x1 5 area under v–t curve

Position Vector and Velocity in Curvilinear Motion
In the second half of this chapter, we analyzed the curvilinear motion of a 
particle, i.e., the motion of a particle along a curved path. We defined the 
 position P of the particle at a given time [Sec. 11.4A] by the position vector r 

x
 xA

AO B

 xB

 xB/A

Fig. 11.26

bee87342_ch11_615-717.indd   712 12/10/15   11:39 AM



713

joining the O of the coordinates and point P (Fig. 11.27). We defined the 
velocity v of the particle by the relation

 v 5
dr
dt

 (11.14)

The velocity is a vector tangent to the path of the particle with a magnitude 
v (called the speed of the particle) equal to the time derivative of the length 
s of the arc described by the particle. Thus,

 v 5
ds

dt
 (11.15)

Acceleration in Curvilinear Motion
We defined the acceleration a of the particle by the relation

 a 5
dv
dt

 (11.17)

and we noted that, in general, the acceleration is not tangent to the path of 
the particle.

Derivative of a Vector Function
Before proceeding to the consideration of the components of velocity and 
acceleration, we reviewed the formal definition of the derivative of a vector 
function and established a few rules governing the differentiation of sums and 
products of vector functions. We then showed that the rate of change of a 
vector is the same with respect both to a fixed frame and to a frame in transla-
tion [Sec. 11.4B].

Rectangular Components of Velocity and Acceleration
Denoting the rectangular coordinates of a particle P by x, y, and z, we found 
that the rectangular components of the velocity and acceleration of P equal, 
respectively, the first and second derivatives with respect to t of the 
 corresponding coordinates. Thus,

  vx 5 x
.     vy 5 y

.    vz 5 z
.
 (11.28)

 ax 5 ẍ    ay 5 ÿ    az 5 z̈   (11.29)

Component Motions
When the component ax of the acceleration depends only upon t, x, and/or 
vx; when, similarly, ay depends only upon t, y, and/or vy; and az upon t, z, 
and/or vz, Eq. (11.29) can be integrated independently. The analysis of the 
given curvilinear motion then reduces to the analysis of three independent 
rectilinear component motions [Sec. 11.4C]. This approach is particularly 
effective in the study of the motion of projectiles [Sample Probs. 11.10 
and 11.11].

Relative Motion of Two Particles
For two particles A and B moving in space (Fig. 11.28), we considered the rela-
tive motion of B with respect to A, or more precisely, with respect to a moving 
frame attached to A and in translation with A [Sec. 11.4D]. Denoting the relative 
position vector of B with respect to A by rB/A (Fig. 11.28), we have

 rB 5 rA 1 rByA (11.30)

O

y

x

P

P0

r

v

s

Fig. 11.27

rB/A
rA

rB

y

O x

z

B

A x'

z'

y'

Fig. 11.28
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Denoting the relative velocity and the relative acceleration of B with respect 
to A by vB/A and aB/A, respectively, we also showed that

 vB 5 vA 1 vB/A (11.32)

and

 aB 5 aA 1 aB/A (11.33)

Tangential and Normal Components
It is sometimes convenient to resolve the velocity and acceleration of a particle 
P into components other than the rectangular x, y, and z components. For a particle 
P moving along a path contained in a plane, we attached to P unit vectors et 
tangent to the path and en normal to the path and directed toward the center of 
curvature of the path [Sec. 11.5A]. We then express the velocity and acceleration 
of the particle in terms of tangential and normal components. We have

 v 5 vet (11.35)

and

 a 5
dv

dt
 et 1

v2

r
 en  (11.38)

where v is the speed of the particle and ρ is the radius of curvature of its path 
[Sample Probs. 11.16, ,and 11.17]. We observed that, while the velocity v is 
directed along the tangent to the path, the acceleration a consists of a  component 
at directed along the tangent to the path and a component an directed toward 
the center of curvature of the path (Fig. 11.29).

Motion Along a Space Curve
For a particle P moving along a space curve, we defined the plane that most 
closely fits the curve in the neighborhood of P as the osculating plane. This 
plane contains the unit vectors et and en that define the tangent and principal 
normal to the curve, respectively. The unit vector eb, which is perpendicular 
to the osculating plane, defines the binormal.

Radial and Transverse Components
When the position of a particle P moving in a plane is defined by its polar 
coordinates r and θ, it is convenient to use radial and transverse components 
directed, respectively, along the position vector r of the particle and in the 
direction obtained by rotating r through 90° counterclockwise [Sec. 11.5B]. 
We attached to P unit vectors er and eθ directed in the radial and transverse 
directions, respectively (Fig. 11.30). We then expressed the velocity and accel-
eration of the particle in terms of radial and transverse components as

 v 5 r
.
er 1 r

.
θeθ  (11.42)

 
a 5 (r

$
2 r

.
θ2)er 1 (rθ

$
1 2

.
r

.
θ)eθ 

 (11.43)

where dots are used to indicate differentiation with respect to time. The scalar 
components of the velocity and acceleration in the radial and transverse 
 directions are therefore

  vr 5
.
r    vθ 5 r

.
θ

    (11.44)
  ar 5 r

$
2 r

.
θ2    aθ 5 rθ

$
1 2

.
r

.
θ  (11.45)

It is important to note that ar is not equal to the time derivative of vr and that aθ 
is not equal to the time derivative of vθ [Sample Probs. 11.18, 11.19, and 11.20].
 This chapter ended with a discussion of the use of cylindrical coordi-
nates to define the position and motion of a particle in space.

an =      en
v2

ρ

a t =      et
dv
dt

C

P

y

O x

Fig. 11.29

r = rer

er

eθ

O

P

θ

Fig. 11.30
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 11.182 The motion of a particle is defined by the relation x 5 2t3 2 15t2 1 
24t 1 4, where x and t are expressed in meters and seconds, respec-
tively. Determine (a) when the velocity is zero, (b) the position and 
the total distance traveled when the acceleration is zero.

 11.183 A drag car starts from rest and moves  down the racetrack with 
an acceleration defined by a 5 50 2 10t , where a and t are in 
m/s2 and seconds, respectively. After reaching a speed of 125 m/s, a 
 parachute is deployed to help slow down the dragster. Knowing that 
this deceleration is defined by the relationship a 5 20.02v2, where v 
is the velocity in m/s, determine (a) the total time from the  beginning 
of the race until the car slows back down to 10 m/s, (b) the total 
distance the car travels during this time.

 11.184 A particle moves in a straight line with the acceleration shown in the 
figure. Knowing that the particle starts from the origin with 
v0 5 22 m/s, (a) construct the v – t and x – t curves for 0 , t , 18 s, 
(b) determine the position and the velocity of the particle and the 
total distance traveled when t 5 18 s.

6

2

12
8

t (s)

a (m /s2)

0.75–

Fig. P11.184

 11.185 The velocities of commuter trains A and B are as shown. Knowing that 
the speed of each train is constant and that B reaches the  crossing 
10 min after A passed through the same crossing, determine (a) the 
relative velocity of B with respect to A, (b) the distance between the 
fronts of the engines 3 min after A passed through the crossing.

Review Problems

66 km/h

48 km/h 25°B

A

Fig. P11.185
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 11.186 Block B starts from rest and moves downward with a constant accel-
eration. Knowing that after slider block A has moved 400 mm is 
velocity is 4 m/s, determine (a) the acceleration of A and B, (b) the 
velocity and change in position of B after 2 s.

 11.187 Collar A starts from rest at t 5 0 and moves downward with 
a constant acceleration of 175 mm/s2. Collar B moves upward with a 
constant acceleration, and its initial velocity is 200 mm/s. Knowing 
that collar B moves through 500 mm between t 5 0 and t 5 2 s, 
determine (a) the accelerations of collar B and block C, (b) the time 
at which the velocity of block C is zero, (c) the distance through 
which block C will have moved at that time.

 11.188 A golfer hits a ball with an initial velocity of magnitude v0 at an 
angle α with the horizontal. Knowing that the ball must clear the 
tops of two trees and land as close as possible to the flag, determine 
v0 and the distance d when the golfer uses (a) a six-iron with α 5 31°, 
(b) a five-iron with α 5 27°.

12 m 14 m

30 m 70 m
10 m

d

a

v0

Fig. P11.188

 11.189 As the truck shown begins to back up with a constant acceleration 
of 1.2 m/s2, the outer section B of its boom starts to retract with a 
constant acceleration of 0.48 m/s2 relative to the truck. Determine 
(a) the acceleration of section B, (b) the velocity of section B when 
t 5 2 s.

 11.190 A velodrome is a specially designed track used in bicycle racing that 
has constant radius curves at each end. Knowing that a rider starts 
from rest at 5 (11.46 2 0.01878v2) m/s2, determine her acceleration 
at point B.

A

B

18.5 m

28 m

Fig. P11.190

B

A

Fig. P11.186

A

B

50°

Fig. P11.189

C

A

B

Fig. P11.187
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 11.191 Sand is discharged at A from a conveyor belt and falls onto the top 
of a stockpile at B. Knowing that the conveyor belt forms an angle 
α 5 25° with the horizontal, determine (a) the speed v0 of the belt, 
(b) the radius of curvature of the trajectory described by the sand 
at point B.

 11.192 The end point B of a boom is originally 5 m from fixed point A 
when the driver starts to retract the boom with a constant radial 
acceleration of r̈ 5 21.0 m/s2  and lower it with a constant angular 
acceleration θ

$
5 20.5 rad/s rad/s2. At t 5 2 s, determine (a) the 

velocity of point B, (b) the acceleration of point B, (c) the radius of 
curvature of the path.

A

B

60°

Fig. P11.192

 11.193 A telemetry system is used to quantify kinematic values of a ski 
jumper immediately before she leaves the ramp. According to 
the system r 5 150 m, r

.
5 231.5 m/s r̈ 5 23 m/s2,,   θ 5 25°, 

u
.

5 0.07 rad/s, u
$

5 0.06 rad/s2. Determine (a) the velocity of the 
skier immediately before she leaves the jump, (b) the acceleration of 
the skier at this instant, (c) the distance of the jump d neglecting lift 
and air resistance.

3 m

30°

q
d

r

Fig. P11.193
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B
5.4 m

9 m

Fig. P11.191
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