McGraw-Hill OnlineMcGraw-Hill Higher EducationLearning Center
Student Center | Instructor Center | Information Center | Home
Full Study Guide
Guide to Electronic Research
Internet Guide
Study Skills Primer
Statistics primer
Appendices
Learning Objectives
Chapter Overview
Fill in the Blanks
Definitions
Flashcards
Symbols and Formulas
Problems
SPSS Exercises
Self-Test
Feedback
Help Center


Thorne and Giesen Book Cover
Statistics for the Behavioral Sciences, 4/e
Michael Thorne, Mississippi State University -- Mississippi State
Martin Giesen, Mississippi State University -- Mississippi State

One-Way Analysis of Variance With Post Hoc Comparisons

Symbols and Formulas

SYMBOLS

SymbolStands For

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_s1.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (0.0K)</a> total mean or grand mean (GM)
<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_s2.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (0.0K)</a> score within a group
<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_s3.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (0.0K)</a> mean of a group
SStottotal sum of squares
SSwwithin-groups sum of squares
SSbbetween-groups sum of squares
SSsubjsubjects sum of squares
SSerrorerror sum of squares
Ngnumber of subjects within a group
Ntotal number of subjects or total number of scores in a repeated measures ANOVA
<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_s11.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (0.0K)</a> sum over or across groups
MSbmean square between groups
MSwmean square within groups
dfbbetween-groups degrees of freedom
Knumber of groups or number of trials in a repeated measures ANOVA
S number of participants (subjects)
dfwwithin-groups degrees of freedom
dftottotal degrees of freedom
dfsubjsubjects degrees of freedom
dferrorerror degrees of freedom
FF ratio, ANOVA test
Fcompyour computed F ratio
Fcritthe critical value of F from Table C
LSDleast significant difference
HSDhonestly significant difference
qstudentized range statistic
LSDa, HSDaLSD and HSD mean difference values required for significance at a particular α level (.05 or .01, usually)

FORMULAS

Before solving any of the formulas introduced, the following values need to be computed for the data: ∑Xg, ∑X2g, Ng, ∑X, ∑X2, and N. ∑Xg is the sum of the scores within each group; ∑X2g is the sum of the squared scores within each group; ∑Ng is the number of observations within each group; ∑X is the sum of all the scores; ∑X2 is the sum of all the squared scores; and N is the total number of observations. In addition, for one-way repeated measures ANOVA, ∑Xm, (∑Xm)2, S, and K must be computed. ∑Xm is the sum of scores for each participant; (∑Xm)2 is the square of the sum of the scores for each participant; S is the number of participants; and K is the numbers of trials or tests.

Formula 11 - 5. Computational formula for the total sum of squares

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_11_5.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>

This equation is identical to the numerator of sample variance, which we said in Chapter 6 was sometimes called the sum of squares or SS.

Formula 11-6. Computational formula for the within-group sum of squares

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_11_6b.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (3.0K)</a>

This is just the sum of squares equation computed for each group and then summed across groups.
For three groups, the computational formula for SSw becomes

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_11_6b.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (3.0K)</a>

Formula 11-7. Computational formula for the between-groups sum of squares

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_11_7.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (2.0K)</a>

For three groups, the computational formula for SSb becomes

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_11_7b.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (2.0K)</a>

Formulas 11-8, 11-9, and 11-10. Equations for between-groups degrees of freedom, within-groups degrees of freedom, and total degrees of freedom, respectively

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_11_8.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>

Formula 11-11.Equation for the between-groups mean square

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_11_11.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>

Formula 11-12.Equation for the within-groups mean square

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_11_12.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>

Formula 11-13.Equation for F ratio in one-way between-subjects ANOVA

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_11_13.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>

Formula 11-14.Least significant difference (LSD) between pairs of means

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_11_14.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>

Formula 11-15.Honestly significant difference (HSD) between pairs of means

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_11_15.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>

Formula 11-18.Computational formula for within-subjects sum of squares in one-way repeated measures ANOVA

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_11_18.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (2.0K)</a>

For three subjects, the computational formula for SSsubj becomes

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_11_18b.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (2.0K)</a>

Formula 11-19.Computational formula for error sum of squares in one-way repeated measures ANOVA

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_11_19.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>

Formula 11-20.Computational formula for error degrees of freedom

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_11_20.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>

Formula 11-21.Computational formula for mean square error in one-way repeated measures ANOVA

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_11_21.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>

Formula 11-22.Computational formula for F ratio in one-way repeated measures ANOVA

<a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif:: ::/sites/dl/free/0072832517/55320/c11_11_22.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (1.0K)</a>

The degrees of freedom for the F ratio are the df associated with the numerator (dfb = K – 1) and df associated with the denominator [dferror = (K – 1)(S – 1)].