| |
Table of ContentsContents Preface xii Chapter 1: The Crystal Structure of Solids 1
1.0 Preview 1
1.1 Semiconductor Materials 2
1.2 Types of Solids 3
1.3 Space Lattices 4
1.3.1 Primitive and Unit Cell 4
1.3.2 Basic Crystal Structures 6
1.3.3 Crystal Planes and Miller Indices 7
1.3.4 The Diamond Structure 13
1.4 Atomic Bonding 15
1.5 Imperfections and Impurities in Solids 17
1.5.1 Imperfections in Solids 17
1.5.2 Impurities in Solids 18
1.6 Growth of Semiconductor Materials 19
1.6.1 Growth from a Melt 20
1.6.2 Epitaxial Growth 22
1.7 Device Fabrication Techniques: Oxidation 23
1.8 Summary 25
Problems 27
Chapter 2: Theory of Solids 31
2.0 Preview 31
2.1 Principles of Quantum Mechanics 32
2.1.1 Energy Quanta 32
2.1.2 Wave–Particle Duality Principle 34
2.2 Energy Quantization and Probability Concepts 36
2.2.1 Physical Meaning of the Wave Function 36
2.2.2 The One-Electron Atom 37
2.2.3 Periodic Table 40
2.3 Energy-Band Theory 41
2.3.1 Formation of Energy Bands 41
2.3.2 The Energy Band and the Bond Model 45
2.3.3 Charge CarriersElectrons and Holes 47
2.3.4 Effective Mass 49
2.3.5 Metals, Insulators, and Semiconductors 51
2.3.6 The k-Space Diagram 52
2.4 Density of States Function 55
2.5 Statistical Mechanices 57
2.5.1 Statistical Laws 57
2.5.2 The FermiDirac Distribution Function and the Fermi Energy 58
2.5.3 MaxwellBoltzmann Approximation 62
2.6 Summary 64
Problems 65
Chapter 3: The Semiconductor in Equilibrium 70
3.0 Preview 70
3.1 Charge Carriers in Semiconductors 71
3.1.1 Equilibrium Distribution of Electrons and Holes 72
3.1.2 The no and po Equations 74
3.1.3 The Intrinsic Carrier Concentration 79
3.1.4 The Intrinsic Fermi-Level Position 82
3.2 Dopant Atoms and Energy Levels 83
3.2.1 Qualitative Description 83
3.2.2 Ionization Energy 86
3.2.3 Group III-V Semiconductors 88
3.3 Carrier Distributions in the Extrinsic Semiconductor 89
3.3.1 Equilibrium Distribution of Electrons and Holes 89
3.3.2 The noPo Product 93
3.3.3 The FermiDirac Integral 94
3.3.4 Degenerate and Nondegenerate Semiconductors 96
3.4 Statistics of Donors and Acceptors 97
3.4.1 Probability Function 98
3.4.2 Complete Ionization and Freeze-Out 99
3.5 Carrier ConcentrationsEffects of Doping 88
3.5.1 Compensated Semiconductors 102
3.5.2 Equilibrium Electron and Hole Concentrations 102
3.6 Position of Fermi Energy LevelEffects of Doping and Temperature 109
3.6.1 Mathematical Derivation 109
3.6.2 Variation of EF with Doping Concentration and Temperature 112
3.6.3 Relevance of the Fermi Energy 114
3.7 Device Fabrication Technology: Diffusion and Ion Implantation 115
3.7.1 Impurity Atom Diffusion 116
3.7.2 Impurity Atom Ion Implantation 118
3.8 Summary 119
Problems 121
Chapter 4: Carrier Transport and Excess Carrier Phenomena 128
4.0 Preview 128
4.1 Carrier Drift 129
4.1.1 Drift Current Density 129
4.1.2 Mobility Effects 132
4.1.3 Semiconductor Conductivity and Resistivity 137
4.1.4 Velocity Saturation 143
4.2 Carrier Diffusion 145
4.2.1 Diffusion Current Density 145
4.2.2 Total Current Density 148
4.3 Graded Impurity Distribution 149
4.3.1 Induced Electric Field 149
4.3.2 The Einstein Relation 152
4.4 Carrier Generation and Recombination 153
4.4.1 The Semiconductor in Equilibrium 154
4.4.2 Excess Carrier Generation and Recombination 155
4.4.3 GenerationRecombination Processes 158
4.5 The Hall Effect 161
4.6 Summary 164
Problems 166
Chapter 5: The pn Junction and MetalSemiconductor Contact 174
5.0 Preview 174
5.1 Basic Structure of the pn Junction 175
5.2 The pn JunctionZero Applied Bias 176
5.2.1 Built-In Potential Barrier 177
5.2.2 Electric Field 179
5.2.3 Space Charge Width 183
5.3 The pn JunctionReverse Applied Bias 185
5.3.1 Space Charge Width and Electric Field 186
5.3.2 Junction Capacitance 189
5.3.3 One-Sided Junctions 192
5.4 MetalSemiconductor ContactRectifying Junction 194
5.4.1 The Schottky Barrier 194
5.4.2 The Schottky JunctionReverse Bias 196
5.5 Forward Applied BiasAn Introduction 197
5.5.1 The pn Junction 197
5.5.2 The Schottky Barrier Junction 199
5.5.3 Comparison of the Schottky Diode and the pn Junction Diode 201
5.6 MetalSemiconductor Ohmic Contacts 203
5.7 Nonuniformly Doped pn Junctions 206
5.7.1 Linearly Graded Junctions 206
5.7.2 Hyperabrupt Junctions 208
5.8 Device Fabrication Techniques: Photolithography, Etching, and Bonding 210
5.8.1 Photomasks and Photolithography 210
5.8.2 Etching 211
5.8.3 Impurity Diffusion or Ion Implantation 211
5.8.4 Metallization, Bonding, and Packaging 211
5.9 Summary 212
Problems
Chapter 6: Fundamentals of the MetalOxideSemiconductor Field-Effect Transistor 223
6.0 Preview 223
6.1 The MOS Field-Effect Transistor Action 224
6.1.1 Basic Principle of Operation 225
6.1.2 Modes of Operation
6.1.3 Amplification with MOSFETs 226
6.2 The Two-Terminal MOS Capacitor 227
6.2.1 Energy-Band Diagrams and Charge Distributions 228
6.2.2 Depletion Layer Thickness 235
6.3 Potential Differences in the MOS Capacitor 239
6.3.1 Work Function Differences 240
6.3.2 Oxide Charges 244
6.3.3 Flat-Band Voltage 245
6.3.4 Threshold Voltage 247
6.3.5 Electric Field Profile 254
6.4 CapacitanceVoltage Characteristics 258
6.4.1 Ideal CV Characteristics 258
6.4.2 Frequency Effects 263
6.4.3 Fixed Oxide and Interface Charge Effects 264
6.5 The Basic MOSFET Operation 268
6.5.1 MOSFET Structures 268
6.5.2 CurrentVoltage RelationshipBasic Concepts 270
6.5.3 CurrentVoltage RelationshipMathematical Derivation 282
6.5.4 Substrate Bias Effects 287
6.6 Small-Signal Equivalent Circuit and Frequency Limitation Factors 290
6.6.1 Transconductance 290
6.6.2 Small-Signal Equivalent Circuit 291
6.6.3 Frequency Limitation Factors and Cutoff Frequency 293
6.7 Device Fabrication Techniques 296
6.7.1 Fabrication of an NMOS Transistor 296
6.7.2 The CMOS Technology 297
6.8 Summary 299
Problems 231
Chapter 7: MetalOxideSemiconductor Field-Effect Transistor: Additional Concepts 311
7.0 Preview 311
7.1 MOSFET Scaling 312
7.1.1 Constant-Field Scaling 312
7.1.2 Threshold VoltageFirst Approximation 313
7.1.3 Generalized Scaling 314
7.2 Nonideal Effects 315
7.2.1 Subthreshold Conduction 315
7.2.2 Channel Length Modulation 318
7.2.3 Mobility Variation 321
7.2.4 Velocity Saturation 324
7.3 Threshold Voltage Modifications 326
7.3.1 Short-Channel Effects 327
7.3.2 Narrow-Channel Effects 331
7.3.3 Substrate Bias Effects 333
7.4 Additional Electrical Characteristics 335
7.4.1 Oxide Breakdown 335
7.4.2 Near Punch-Through or Drain-Induced Barrier Lowering 335
7.4.3 Hot Electron Effects 337
7.4.4 Threshold Adjustment by Ion Implantation 338
7.5 Device Fabrication Techniques: Specialized Devices 341
7.5.1 Lightly Doped Drain Transistor 342
7.5.2 The MOSFET on Insulator 343
7.5.3 The Power MOSFET 345
7.5.4 MOS Memory Device 348
7.6 Summary 350
Problems 352
Chapter 8: Nonequilibrium Excess Carriers in Semiconductors 358
8.0 Preview 358
8.1 Carrier Generation and Recombination 359
8.2 Analysis of Excess Carriers 360
8.2.1 Continuity Equations 361
8.2.2 Time-Dependent Diffusion Equations 362
8.3 Ambipolar Transport 364
8.3.1 Derivation of the Ambipolar Transport Equation 364
8.3.2 Limits of Extrinsic Doping and Low Injection 366
8.3.3 Applications of the Ambipolar Transport Equation 368
8.3.4 Dielectric Relaxation Time Constant 376
8.3.5 Haynes-Shockley Experiment 379
8.4 Quasi-Fermi Energy Levels 382
8.5 Excess Carrier Lifetime 385
8.5.1 Shockley-Read-Hall Theory of Recombination 385
8.5.2 Limits of Extrinsic Doping and Low Injection 387
8.6 Surface Effects 389
8.6.1 Surface States 389
8.6.2 Surface Recombination Velocity 390
8.7 Summary 391
Problems 392
Chapter 9: The pn Junction and Schottky Diodes 398
9.0 Preview 398
9.1 The pn and Schottky Barrier Junctions Revisited 399
9.1.1 The pn Junction 399
9.1.2 The Schottky Barrier Junction 402
9.2 The pn JunctionIdeal CurrentVoltage Relationship 404
9.2.1 Boundary Conditions 404
9.2.2 Minority-Carrier Distribution 409
9.2.3 Ideal pn Junction Current 411
9.2.4 Summary of Physics 416
9.2.5 Temperature Effects 418
9.2.6 The "Short" Diode 420
9.2.7 Summary of Results 422
9.3 The Schottky Barrier JunctionIdeal CurrentVoltage Relationship 423
9.3.1 The Schottky Diode 423
9.3.2 Comparison of the Schottky Diode and the pn Junction Diode 426
9.4 Small-Signal Model of the pn Junction 428
9.4.1 Diffusion Resistance 428
9.4.2 Small-Signal Admittance 430
9.4.3 Equivalent Circuit 432
9.5 GenerationRecombination Currents 434
9.5.1 Reverse-Bias Generation Current 434
9.5.2 Forward-Bias Recombination Current 437
9.5.3 Total Forward-Bias Current 439
9.6 Junction Breakdown 441
9.7 Charge Storage and Diode Transients 446
9.7.1 The Turn-Off Transient 446
9.7.2 The Turn-On Transient 449
9.8 Summary 449
Problems 451
Chapter 10: The Bipolar Transistor 460
10.0 Preview 460
10.1 The Bipolar Transistor Action 461
10.1.1 The Basic Principle of Operation 462
10.1.2 Simplified Transistor Current Relations 466
10.1.3 The Modes of Operation 468
10.1.4 Amplification with Bipolar Transistors 470
10.2 Minority-Carrier Distribution 472
10.2.1 Forward-Active Mode 472
10.2.2 Other Modes of Operation 480
10.3 Low-Frequency Common-Base Current Gain 483
10.3.1 Contributing Factors 483
10.3.2 Mathematical Derivation of Current Gain Factors 486
10.3.3 Summary and Review 489
10.3.4 Example Calculations of the Gain Factors 490
10.4 Nonideal Effects 495
10.4.1 Base Width Modulation 495
10.4.2 High Injection 499
10.4.3 Emitter Bandgap Narrowing 501
10.4.4 Current Crowding 503
10.4.5 Nonuniform Base Doping 506
10.4.6 Breakdown Voltage 507
10.5 Hybrid-Pi Equivalent Circuit Model 513
10.6 Frequency Limitations 517
10.6.1 Time-Delay Factors 517
10.6.2 Transistor Cutoff Frequency 519
10.7 Large-Signal Switching 522
10.8 Device Fabrication Techniques 524
10.8.1 Polysilicon Emitter BJT 524
10.8.2 Fabrication of Double-Polysilicon npn Transistor 525
10.8.3 Silicon-Germanium Base Transistor 527
10.8.4 The Power BJT 529
10.9 Summary 533
Problems 535
Chapter 11: Additional Semiconductor Devices and Device Concepts 546
11.0 Preview 546
11.1 The pn JFET 547
11.1.1 Energy-Band Diagrams 450
11.1.2 Electrical Characteristics 553
11.2 Heterojunctions 560
11.2.1 The Heterojunction 560
11.2.2 Heterojunction Bipolar Transistors 564
11.2.3 High-Electron-Mobility Transistor 566
11.3 The Thyristor 567
11.3.1 The Basic Characteristics 568
11.3.2 Triggering the SCR 570
11.3.3 Device Structures 574
11.4 Additional MOSFET Concepts 578
11.4.1 Latch-Up 578
11.4.2 Breakdown 580
11.5 Microelectromechanical Systems (MEMS) 583
11.5.1 Accelerometers 583
11.5.2 Inkjet Printing 584
11.5.3 Biomedical Sensors 584
11.6 Summary 586
Problems 587 Chapter 12: Optical Devices 590
12.0 Preview 590
12.1 Optical Absorption 591
12.1.1 Photon Absorption Coefficient 591
12.1.2 Electron-Hole Pair Generation Rate 594
12.2 Solar Cells 596
12.2.1 The pn Junction Solar Cell 596
12.2.2 Conversion Efficiency and Solar Concentration 599
12.2.3 The Heterojunction Solar Cell 601
12.2.4 Amorphous Silicon Solar Cells 603
12.3 Photodetectors 605
12.3.1 Photoconductor 605
12.3.2 Photodiode 608
12.3.3 PIN Photodiode 611
12.3.4 Avalanche Photodiode 614
12.3.5 Phototransistor 614
12.4 Light-Emitting Diodes 616
12.4.1 Generation of Light 616
12.4.2 Internal Quantum Efficiency 616
12.4.3 External Quantum Efficiency 618
12.4.4 LED Devices 620
12.5 Laser Diodes 622
12.5.1 Stimulated Emission and Population Inversion 622
12.5.2 Optical Cavity 625
12.5.3 Threshold Current 627
12.5.4 Device Structures and Characteristics 627
12.6 Summary 629
Problems 631
Appendix A: Selected List of Symbols 636
Appendix B: System of Units, Conversion Factors, and General Constants 643
Appendix C: The Periodic Table 647
Appendix D: Unit of EnergyThe Electron-Volt 648
Appendix E: "Derivation" and Applications of Schrödinger's Wave Equation 656
Appendix F: Answers to Selected Problems 656
Index 663 |
|
|