Site MapHelpFeedbackLearning Objectives
Learning Objectives
(See related pages)

Concepts & Skills to Review
  • conservation of energy (Section 6.1)
  • internal energy and heat (Sections 14.1–14.2)
  • zeroth law of thermodynamics (Section 13.1)
  • system and surroundings (Section 14.1)
  • work done is the area under a graph of Fx(x) (Section 6.6)
  • heat capacity (Section 14.3)
  • the ideal gas law (Section 13.5)
  • specific heat of ideal gases at constant volume (Section 14.4)
  • natural logarithm (Appendix A.3)
Master the Concepts
  • The first law of thermodynamics is a statement of energy conservation:
    <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663823/15_1.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (3.0K)</a>
    where Q is the heat flow into the system and W is the work done on the system.
  • Pressure, temperature, volume, number of moles, internal energy, and entropy are state variables; they describe the state of a system at some instant of time but not how the system got to that state. Heat and work are not state variables—they describe how a system gets from one state to another.
  • The work done on a system when the pressure is constant—or for a volume change small enough that the pressure change is insignificant—is
    <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663823/15_2.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (3.0K)</a>
    The magnitude of the work done is the total area under the PV curve.
  • The change in internal energy of an ideal gas is determined solely by the temperature change. Therefore,
    <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663823/15_10.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (6.0K)</a>
  • A process in which no heat is transferred into or out of the system is called an adiabatic process.
  • The molar specific heats of an ideal gas at constant volume and constant pressure are related by
    <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663823/15_9.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (3.0K)</a>
  • Spontaneous heat flow from a hotter body to a colder body is always irreversible.
  • For one cycle of an engine, heat pump, or refrigerator, conservation of energy requires
    <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663823/for_one_cycle.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (3.0K)</a>
    where Q H, Q C, and W net are defined as positive quantities.
  • The efficiency of an engine is defined as
    <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663823/15_12.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (3.0K)</a>
  • The coefficient of performance for a heat pump is
    <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663823/15_15.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (6.0K)</a>
  • The coefficient of performance for a refrigerator or air conditioner is
    <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663823/15_16.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (6.0K)</a>
  • A reservoir is a system with such a large heat capacity that it can exchange heat in either direction with a negligibly small temperature change.
  • The second law of thermodynamics can be stated in various equivalent ways. Two of them are: (1) heat never flows spontaneously from a colder body to a hotter body, and (2) the entropy of the universe never decreases.
  • The efficiency of a reversible engine is determined only by the absolute temperatures of the hot and cold reservoirs:
    <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=gif::::/sites/dl/free/0073512141/663823/15_17.gif','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (0.0K)</a>
  • If an amount of heat Q flows into a system at constant absolute temperature T, the entropy change of the system is
    <a onClick="window.open('/olcweb/cgi/pluginpop.cgi?it=jpg::::/sites/dl/free/0073512141/663823/15_20.jpg','popWin', 'width=NaN,height=NaN,resizable,scrollbars');" href="#"><img valign="absmiddle" height="16" width="16" border="0" src="/olcweb/styles/shared/linkicons/image.gif"> (3.0K)</a>
  • The third law of thermodynamics: it is impossible to cool a system to absolute zero.







GiambattistaOnline Learning Center

Home > Chapter 15 > Learning Objectives