microscopic view of current in a metal (Section 18.3)
magnetic fields and forces (Sections 19.1, 19.2, 19.8)
electric potential (Section 17.2)
angular velocity (Section 5.1)
angular frequency (Section 10.6)
right-hand rule 1 to find the direction of a cross product (Section 19.2)
right-hand rule 2 to determine the direction of magnetic fields caused by currents (Section 19.8)
exponential function; time constant (Appendix A.3; Section 18.10)
Mastering the Concepts
A conductor moving through a magnetic field develops a motional emf given by (3.0K)
if both (1.0K)are perpendicular to the rod.
The emf due to an ac generator with one planar coil of wire turning in a uniform magnetic field is sinusoidal and has amplitude wNBA: (4.0K)
Here w is the angular speed of the coil, A is its area, and N is the number of turns.
Magnetic flux through a planar surface: (4.0K)
(q is the angle between (0.0K)and the normal.) The magnetic flux is proportional to the number of magnetic field lines that cut through a surface. The SI unit of magnetic flux is the weber (1 Wb = 1 T·m2).
Faraday's law gives the induced emf whenever there is a changing magnetic flux, regardless of the reason the flux is changing:
Lenz's law: the direction of an induced emf or an induced current opposes the change that caused it.
The back emf in a motor increases as the rotational speed increases.
For an ideal transformer, (5.0K)
The ratio N2/N1 is called the turns ratio. There is no energy loss in an ideal transformer, so the power input is equal to the power output.
Whenever a solid conductor is subjected to a changing magnetic flux, the induced emf causes eddy currents to flow simultaneously along many different paths. Eddy currents dissipate energy.
A changing magnetic field gives rise to an induced electric field. The induced emf is the circulation of the induced electric field.
A changing current in one circuit element induces an emf in another circuit element. The mutual inductance is the constant of proportionality between the rate of change of the current and the induced emf. (10.0K)
Self-inductance is when a changing current induces an emf in the same device: