List of Symbols (In the order they appear in the text)

σ	normal stress
F <u>n</u>	force
$\frac{\ddot{T}}{n}$	force vector on a plane with normal n
$T^{n}_{x,y,z}$	components of force vector in x , y , z directions
A	area of section
Α	normal to the section
au	shear stress
$\sigma_{x, y, z}$	normal stress on x-plane, y-plane, z-plane
$ au_{xy, yz, zx}$	shear stress on x-plane in y-direction, shear stress
xy, y2, 2x	on <i>y</i> -plane in <i>z</i> -direction, shear stress on <i>z</i> -plane in
	<i>x</i> -direction
n_x, n_y, n_z	direction cosines of n in x , y , z directions
$\sigma_1, \sigma_2, \sigma_3$	principal stresses at a point
I_1, I_2, I_3	first, second, third invariants of stress
σ_{oct}	normal stress on octahedral plane
$ au_{oct}$	shear stress on octahedral plane
$\sigma_{r_{i}} \sigma_{\theta_{i}} \sigma_{z}$	normal stresses in radial, circumferential, axial (polar)
., ., _	direction
γ, θ, φ	spherical coordinates
$ au_{\gamma heta_{,}} au_{\gamma z}, au_{ heta z}$	shear stresses in polar coordinates
u_x, u_y, u_z	displacements in x , y , z directions
E_{xx}, E_{yy}, E_{zz}	linear strains in x-direction, y-direction, z-direction (with
	non-linear terms)
$\epsilon_{xx}, \epsilon_{yy}, \epsilon_{zz}$	linear strains (with linear terms only)
E_{xy}, E_{yz}, E_{zx}	shear strain components (with non-linear terms)
γ_{xy} , γ_{yz} , γ_{zx}	shear strain components (with linear terms only)
$\omega_{x}, \omega_{y}, \omega_{z}$	rigid body rotations about x, y, z axes
$\Delta = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}$	cubical dilatation
$\varepsilon_1, \varepsilon_2, \varepsilon_3$	principal strains at a point
$J_{1,} J_{2,} J_{3}$	first, second, third invariants of strain

	strains in radial, circumferential, axial directions
$\mathcal{E}_{\gamma}, \mathcal{E}_{\theta}, \mathcal{E}_{z}$	Lame's constants
λ, μ $G = \mu$	
•	rigidity modulus
μ	engineering Poisson's ratio
E	modulus of elasticity
K	bulk modulus; stress intensity factor
Р	pressure
υ	Poisson's ratio
$\sigma_y \ U$	yield point stress
	elastic energy
U^*	distortion energy; complementary energy
σ_{ut}	ultimate stress in uniaxial tension
$\sigma_{ m ct}$	ultimate stress in uniaxial compression
a_{ii}	influence coefficient; material constant
b_{ij}	compliance component
M_{x}, M_{y}, M_{z}	moments about x, y, z axes
	linear deflection; generalized deflection
I_{x} , I_{y} , I_{z}	moments of inertia about x, y, z axes
$I_{ ho}$	polar moment of inertia
I_{xy}, I_{yz} T	products of inertia about xy and yz coordinates
	torque; temperature
Ψ	warping function
α	coefficient of thermal expansion
Q	lateral load
Р	axial load
V	elastic potential
V_{ij}	Poisson's ratio in <i>i</i> -direction due to stress in <i>j</i> -direction
<i>b</i> , <i>w</i>	width
t	thickness
K_t	theoretical stress concentration factor
N	normal force
ϕ	stream function
ρ	fillet radius
<i>D</i> , <i>d</i>	radii
q	notch sensitivity
K_{c}, K_{lc}	fracture toughness in mode I
S_{v}	offset yield stress
ω	angular velocity
R	fracture resistance
$\sigma_{\rm fr}$	fracture stress
$\sigma_{\!\scriptscriptstyle fr} \ \Gamma$	boundary
J	J-integral
·	·

SI Units (Systeme International d'Unit'es)

(a) Base Units

Quantity	Unit (Symbol)
length	meter (m)
mass	kilogram (kg)
time	second (s)
force	newton (N)
pressure	pascal (Pa)

force is a derived unit: kgm/s²

pressure is force per unit area: N/m²: kg/ms² kilo-watt is work done per second: kNm/s

(b) Multiples

giga (G)	1 000 000 000
mega (M)	1 000 000
kilo (k)	1 000
milli (m)	0.001
micro (μ)	0.000 001
nano (n)	0.000 000 001

(c) Conversion Factors

To Convert	to	Multiply by
kgf	newton	9.8066
kgf/cm ²	Ра	9.8066×10^4
kgf/cm ²	kPa	98.066
newton	kgf	0.10197
Ра	N/m ²	1
kPa	kgf/cm ²	0.010197
HP	kW	0.746
HP	kNm/s	0.746
kW	kNm/s	1

Typical Physical Constants (As an Aid to Solving Problems)

Material	Ultimate Strength		Yield Strength				Poisson's		
	(MPa)			(MI	Pa) Modula		dulus	Ratio	Therm
					(GPa)			Expans.	
	Tens.	Comp	Shear	Tens or	Shear	Tens	Shear		per °C
				Comp					$\times 10^{-6}$
Aluminium alloy	414	414	221	300	170	73	28	0.334	23.2
Cast iron, gray	210	825			—	90	41	0.211	10.4
Carbon steel	690	690	552	415	250	200	83	0.292	11.7
Stainless steel	568	568	—	276	—	207	90	0.291	17.0

For more accurate values refer to hand-books on material properties