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5.65.6 Pattern Space and Weight Space

First consider the following. The activation of the neurony = XT WS is
the inner product of vectorsX andWS . In pattern space, points that satisfy
XT WS = 0 definea separating hyperplane as illustrated in Fig. 5.9(a) for the
two dimensional case. Pattern space points on one side of this hyperplane
(with an orientation indicated by the arrow in Fig. 5.9(a)) yield positive
inner products withWS and thus generate a +1 neuron signal. Pattern space
points on the other side of the hyperplane generate a negative inner product
with WS and consequently a neuron signal equal to 0. Points inC0 andC1

are thus correctly classified by such a placement of the hyperplane.
Now consider the inner productXT W from a different point of view: for

a specific patternXk ∈ Rn+1 let theweight vector be the variable vector. The
inner productWT Xk = 0 now represents a hyperplane inweight space. This
hyperplanealwayspasses through theorigin sinceW = 0 is a trivial solution
ofWT Xk = 0.We call this weight space hyperplane thepattern hyperplane
of patternXk. It is the locus of all pointsW such thatWT Xk = 0. It divides
theweight space into twoparts: onewhich generates apositive inner product
WT Xk > 0 (as indicated by the arrow in Fig. 5.9(b)), and the other where
the inner productWT Xk is negative. For each patternXk in pattern space
there will be a corresponding hyperplane in weight space. Similarly, for
every point in weight space there is a corresponding hyperplane in pattern
space.

Each hyperplane in pattern
space is defined by a specific
instance of weights Wk . Each
hyperplane in weight space is
defined for a specific instance
pattern Xk .

Fig. 5.9 The geometry of pattern and weight space

Consider the case of four patterns divided into two pattern setsX0

andX1, belonging to classesC0 andC1 respectively:X1 = {X1, X2} and
X0 = {X3, X4}. Figure 5.10 depicts four hyperplanes, one for each pattern
as depicted by the labels. The pattern hyperplane orientation arrows in
the figure indicate weight space regions of positive inner products. As
mentioned earlier, when using a TLN classifier to solve this classification
problem, we identifyC0 with a neuron signal 0, andC1 with a neuron signal
1. This puts forth the requirement for positive inner products for vectors
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in X1, and negative inner products for vectors inX0. The question that
then arises is: Which weight vectors in weight space generate positive inner
productsWT X1 andWT X2 (sinceX1, X2 belong toC1) andsimultaneously
generate negative inner productsWT X3 andWT X4 (sinceX3, X4 belong
to C0)?

It is straightforward to identify asolution regionknowing the orientation
of the individual pattern hyperplanes as shown in Fig. 5.10. The shaded

Fig. 5.10 A solution region in weight space with four pattern hyperplanes
as marked: X1 = {X1, X2} and X0 = {X3, X4}

cone in Fig. 5.10 represents the solution region for the four patterns with an
infinite number of weight vectors, each of which represents a single feasible
solution to the classification problem at hand.

Linear separability guarantees the existence of such a solution region. In
the design of an automated weight update procedure that can search out a
solution weight vector, starting out at an arbitrary initial weight vector, the
following points need to be kept in mind:

The procedure must consider each pattern in turn to assess the
correctness of the present classification.
It must subsequently adjust the weight vector to eliminate a classifi-
cation error, if any.
Since the set of all solution vectors forms aconvex cone, the weight
update procedure should terminate as soon as it penetrates the
boundary of this cone.
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We now proceed to study the design of a very important learning algorithm:
the Perceptron learning algorithm.


