410

Part Il Object Oriented Systems Analysis and Design (OOSAD)

14.2 UNIFIED MODELING LANGUAGE (UML)

Before we go into UA and OOSAD development, let us study the Unified Model-
ing Language (UML), which is extensively used in modeling the software system
process development.

= In the OO software life cycle development, the following models are
built to achieve the system objective

Model Achievement

Use case model Defines actors inside and outside of use
case and their behaviour.
Business domain object model Business domain modeled through objects.

Analysis object model Presents information how the object
model will be executed.

Design object model Presents the detail design object model
that will be created.

Implementation model Converts design object model to imple-

mentation model, based on reusable com-
ponent technology.

Test model Stipulates test strategy, test plan, test
specifications, test results and test re-
covery reports.

UML provides standard notations to model these different OO models, each
having its own unique characteristics. UML is alanguage used to create an abstract
system scenario, by visualising, specifying, constructing and documenting various
parts and components of the system into a representative model enabling software
system development.

UML uses ‘object constraint language’ (OCL), which uses simple logic for
specifying system specifications. UML with OCL becomes powerful enough to
map to OO languages, which developers use for coding the methods selected for
object operations. The application of UML is one more step towards unification of
best practices in the OO system development.

The primary goals in the design of UML (The Unified Modeling Language,
Notation Guide Version [.l, September 1997) are as follows:

= e Provide users with a ready-to-use, expressive and visual modeling lan-
guage to develop models.
e Provide a language and notations to extend concepts to higher order
representation.
e Independent of OO languages.

411

The Unified Approach and Unified Modeling Language (UML) Chapter 14

e Support higher-level development concepts like component technology,
rapid application development, reusability, portability and inter-
operability.

The inventors and promoters of UML are Grady Booch, Ivar Jacobson,

and James Rumbaugh. They evolved UML notations and its semantics.

14.2.1 UML Diagrams
UML provides notations and diagrams to model the system in different views. The
views and diagrams put together accurately represent the real-world scenario, as
shown in Table 14.1.
Table 14.1 |
Views—UML View UML diagram Model
Diagrams— | pomain/business Class diagram Static business model
Model | \jgerg Use case diagrams Static use case
Behaviour Interactions diagrams Dynamic use case model
e Seguence diagram similar to DFDs and work
e Collaboration diagram flow diagrams.
State chart diagram
Activity diagram
Implementation Component diagram Deployment model
Deployment diagram
UML supports both static modeling and dynamic modeling, where static model-
ing shows the stand-alone static view, and dynamic modeling shows the changing
behaviour view of the business system.
= Static models clearly bring out the structural aspect of the system at a

point of time. The business model comprising various systems is modeled
in the class diagram. It corresponds, to some extent, to the high-level
modular structure of SSAD. Dynamic models, in contrast, model the
behaviour of the system over time. They show the interaction of objects
that achieve the goals of the system. DFD, work flow diagrams and
system flow charts in SSAD are equivalent to interaction diagrams, state
chart diagrams and activity diagrams.

The static model explains structure and relationship. For example, a delivery
note object is made of more than one line item and belongs to more than one
purchase order. The dynamic model explains the behavioural interaction of Worked
Hours object with Salary object to compute salary. These two objects have an
association through a relationship expressed in a method Compute Salary.

412

Part Il Object Oriented Systems Analysis and Design (OOSAD)

UML-based modeling of the system helps to represent the complexity of the
system structure at all levels (data, application, system) and the behaviour of the
system elements through interaction, based on rules, assumptions, constraints and
conclusions.

= UML-based modeling offers the following benefits:

e Improves communication among project teams Reason: this leads to a
uniform and common understanding of the system.

e Improves the developer’s insight and visualization of the complex
system.

e Developers learn faster to incorporate the system’s intricacies cor-
rectly in the design.

e Prototype design is more appropriate, where the specific complexity
of structure and behaviour is considered in each iteration. This im-
proves the system in increments, and part by part.

In general terms, UML-based modeling benefits manager, designer and devel-
oper as it provides additional operational benefits as shown in Table 14.2.

Table 14.2 |

Additional Benefit Comment

Benefits of
UML Modeling

Clarity Provides transparency in the system enabling detection of errors, mistakes
and omissions in the life cycle development process.

Familiarity Use case-based models bring familiarity to the system, as model represents,
in parallel, the system flows (data, information, application).

Quicker Provides improved clarity and familiarity due to in-depth visibility in the

Maintenance system, which aids in the maintenance phase in early problem location,
identification of solution and testing. This reduces maintenance cycle time.

14.2.2 UML Diagrams in UA

In this section, we study UML diagrams used in OOSAD. For OO modeling of the
system, eight diagrams are proposed. Each of these plays a unique contributory
role in improving the understanding of the system; they enhance clarity and visu-
alization and aid in simplification of the system. The eight diagrams, with their
modeling objective, are listed below.

Diagram Objective
Static class diagram
Use case diagram

Sequence diagram
Collaboration diagram
State chart diagram
Activity diagram

Structure modeling

Behaviour modeling

413

The Unified Approach and Unified Modeling Language (UML) Chapter 14

e Component diagram

« Deployment diagram] Implementation and deployment modeling

We will now illustrate the diagrams in terms of the methods of drawing, the
purpose of drawing and what their purpose. These models, shown in different
diagrams, together contribute extensively to system development in UA.

Through structure modeling, we understand the system, and are in a better
position to analyse it for software development. The static and stable view of the
system helps to understand the partners and participants in the system. We arein a
position to relate the system structure to organisation structure in terms of people
and function.

Through behaviour modeling, we understand relationships, nature of interac-
tions and responses between various elements of the system. The behaviour model
throws light on functionality, features and outputs, within the framework of condi-
tions and constraints, over a period of time.

Through implementation modeling, we learn how the system is moved from a
development environment to a deployment environment.

