
���������	�
�����
�������
��
�	���
�����	�
��������

���
�����			

14.5 BEHAVIOUR DIAGRAMS

The object diagrams that we discussed so far are models showing the state of the
object or entity from the system. In other words it is a simple frontal view of the
object. To understand the object as a system, we must understand its behaviour in
association with other objects in the system. The object diagram, along with its
behaviour diagram, explains the system. When a system performs in real time,
many objects come into play. They send messages to each other and activate the
methods in the object. When a method is chosen and performed on the data, the
object status changes. The static object assumes a dynamic state. A state of the
object is the result of its behaviour, which changes dynamically.

For example, a car, when stationary, is a static object, but when the owner drives
it (messaging), it demonstrates behaviour that changes with every action of the
owner. Further, the owner’s driving actions also respond to the external traffic en-
vironment and car’s feedback on various actions taken by the owner. Any qualitative
comment on the car is better based on the behaviour of the car in driving mode.

Business system objects are similar to a car. We have to understand them first
in then static state and then also in the dynamic state, where it interacts other
objects. Booch and other specialists in UA, recommend four different diagrams to
explain the dynamic state of the object. The diagrams explaining the behaviour are
called Behaviour Diagrams. Behaviour diagrams put the object model as a dy-
namic model. The behaviour diagrams are
� Interaction diagrams

� Sequence diagrams
� Collaboration diagrams

� State chart diagrams
� Activity diagrams

14.5.1 Interaction Diagrams

The purpose of an interaction diagram is to understand the role of other objects
that are in collaboration with the object in question, the objective being to com-
plete the job. When a car key is turned, the driver object, the engine object and the
starter object collaborate to start the car and put car in a dynamic state. This has
happened through interaction between the concerned objects. The interaction has
two dimensions, the manner (logical time sequence) in which interaction takes
place, and style (collaboration) in which it is executed. Object behaviour is better
understood, if the sequence of interaction between objects, and collaboration be-
tween objects, is analysed in detail.

This is achieved through specific diagrams covered under interaction diagrams.
The two diagrams are
� Sequence diagram
� Collaboration diagram
The basis for drawing these diagrams is use case models of the system. These

diagrams are explained using the action scripts given in use case models.



�����
	�	�������������
���
	�	��������	
����
�����������

���
���
������

A sequence diagram shows an interaction arranged in a time sequence in its
logical order. It also shows objects participating in the behaviour, and the mes-
sages that they exchange in order to perform.

Figure 14.15 shows a sequence diagram of a use case ‘starting the car’ by
starting the engine.

A sequence diagram uses the following notations. A rectangle shows objects
that participate in the behaviour. Existence of the object in the behaviour is shown
by a vertical dotted line. The horizontal arrowhead line shows message ‘from - to’.
The horizontal lines are arranged in sequence of their occurrence.

The sequence diagram is simple to understand, and it follows the use case
transaction sequence. The sequence diagram also is an alternative to understand
the program that executes the object behaviour. The sequence diagrams show the
task or activity sequence but do not show the relationship between objects through
the roles that they play in the interaction. In sequence diagrams, objects are shown
with no connection. But in collaboration diagrams, those objects that collaborate
to perform the role based on the message received are connected. .

Both sequence and collaboration diagrams are alternatives to each other. The
sequence diagram is easier to understand but does not show the flow of the
behaviour and collaboration of objects. The collaboration diagram shows both
collaboration and sequence.

Figure 14.16 shows the collaboration diagram for starting the car engine.

����������

��! ����

��
�

��

Driver Starter Engine
Car Key Switched on

No Response

Switched on Again Sends Electrical
Thrust

����������

����
��

����

��
�

�

Driver
Object

1. Car Key
Switched ON

3. Switched
ON Again 2. No response

Starter

Engine

4. Sends Electrical Thrust

5. Engine starts

Outwardly, there is no difference between two diagrams. A sequence diagram
is easy to read, and the collaboration diagram shows the interaction between
objects and sequence of activities denoted by numbers. The disadvantage of the

Engine Starts Running



���������	�
�����
�������
��
�	���
�����	�
��������

���
�����			

interaction diagram is that in complex interactions, with couple of objects, the
diagrams are difficult to draw and difficult to read. The remedy is split the use
cases into smaller activities or tasks with specific goals, and to then use interac-
tion diagrams.

The interaction diagrams are not good enough if the behaviour of the object is
conditional and gets into loop. It also loses its clarity with more complex condi-
tional behaviour. In such cases, the best designing tool is the Activity Diagram,
which we will discuss here later in the chapter.

Amongst the two, the sequence diagram is better when we want to see the
sequence of message occurrence, to directly employ use case models to show
interactions, and also want to show details of messages in terms of parameters,
values, results, etc. Otherwise, a collaboration diagram is better to show interaction.


