
���������	
���
�����
������������������

��

������	
��

A2.4 THE FUTURE OF SOFTWARE ENGINEERING

Software engineering has come a long way since 1968, when it was first used at a
NATO conference. Software engineering got a boost when it responded to the
need to build custom-based systems for defence, government and industrial appli-
cations. We now develop wider systems such as embedded, Web enabled, intranet
and enterprise. These systems cover applications in manufacturing, services, dis-
tribution, process control, communications and so on. As software systems re-
quirement started growing from the late sixties, the software developer community
as a whole started thinking of automating the processes by developing tools and
techniques. When software started becoming an activity performed by different
teams, at different locations and on different platforms, it raised the requirement
of co-operation, collaboration, co-ordination and communication, and on comple-
tion of the development its integration for testing and implementation. Besides
cost, risk and quality and technology became critical components in the develop-
ment effort. The software community believed that a scientific and systematic
effort was necessary for successful completion of software development and they
sat down to evolve an SE discipline consisting of the following:

� Principles � Processes � Methods of evaluation

� Methods � Models � Planning

� Scheduling � Manufacturing � Testing

� Implementation � Learning

When requirements become complex and large and users and stakeholders de-
mand continuous changes in the software system, adopting engineering discipline
became very necessary for the benefit of the community at large.

Any engineering faculty has the following features

� Standards: They could be universal and/or specific to a domain in all
critical areas of the subject.

� Principles: Based on pure sciences and its application for developing
subject -related engineering principles.

� Models: Development of different types of models using ‘Abstrac-
tion’ process for viewing, simplifying and prototyping.

� Methods: Standard methods for common processes like analysis,
measurement, computing and communications.

� Artifacts: Use of templates, forms, checklists for formalization of
documentation and communication for common under-
standing.

� Tools: Tools for automation, mechanisation, simplification of pro-
cess to save time and cost.

� Estimation Estimation of inputs, resources and efforts for costing,
techniques: budgeting, planning and control.

� Building standard Uses experiences to develop most efficient and effective
practices: methods of applications, which also became best prac-

tices at a later date.

Software Engineering

Software development effort started becoming large, complex, technology-driven
and influenced by human behaviour and environment changes, which required
strict controls on quality and cost and timely deliveries. Slowly, it started evolving
as an ’engineering’ discipline, moving from disorganized non-standard unsystem-
atic activities to goal-oriented, systematic, methodical and scientific activities,
using universally accepted engineering principles, concepts and discipline.

Software engineering uses the following extensively

� Standards: Programming standards, documentation standards, protocols,
COM/DCOM, CORBA standards, design standards, test stan-
dards, GUI standards and so on.

� Principles: Principles of development, testing, implementation where vio-
lation is risky and fatal. For example, it is principally wrong to
use the waterfall model for the development of a dynamic,
open, complex system. To save cost and effort principle is to
use reusable component technology.

� Models: Waterfall model, Boehm model, process models, COMOCO
model, design models.

� Methods: � Analysis – Design – Build – Test – Deliver.
� Unit testing, module testing, �–testing, �–testing.
� Installation testing and user acceptance testing.

� Tools: CASE, report writers, editors, interpreters, modeling tools (ra-
tional, visio), compilers, DBM tools, CMM models and so on.

� Estimation: Function point analysis, COMOCO II model
� Building � Use of templates and checklists.

standard � Reviews/ inspections; prototypes
practices: � Technology applications

As software development activity became complex, requiring specialization,
management and engineering principles became imperative. Software engineering
is not a pure science, but largely an application science with a very tight and close
connection to computer science and technology. It is in continuous evolution,
tending to become full-fledged computer engineering.

� Wasserman Principles

Wasserman, stated seven key factors that have altered software engineering prac-
tices. The key factors are:
1. Criticality of time to deliver.

���������
��	����������
���
������������������

���
����� ��

���������	
���
�����
������������������

���
������	
��

2. Change in software development economics, i.e. shift from higher hardware
cost to lower hardware cost, indicating lower power performance versus cost
ratio. Also, shift from low development and maintenance cost to high devel-
opment and maintenance cost.

3. Change in computing culture: centrally controlled main/mini platform to dis-
tributed client server user-driven, desktop computing.

4. Computing focus shift from local to wide area networks. use of Internet and
Web technologies.

5. Paradigm shift in development strategy, shift from SSAD to OOSAD technol-
ogy.

6. Design and architecture style based on user behaviour using use cases and
unified modeling language.

7. Very rare use of waterfall model due to its inherent rigid approach to develop-
ment and shift to Boehm’s spiral model with iterative evolution approach to
development.

Wasserman pointed out that any one of the seven technological changes would
have a significant impact on the software development effort. Together, they have
affected the work style and work culture of software development.

Wasserman identified eight fundamental notions in software development that
formed the basis for software development becoming software engineering. The
eight notions are:

� Abstraction: A process of taking a limited but critical view to understand
the problem to find solution. Abstraction helps to concen-
trate on the problem and ignores the details or entities, which
have no impact on the problem.

� Analysis and Analysis and design methods serve the purpose for which
design methods: they are made but also provide a medium of communication.

They help us to build reusable components, improving pro-
ductivity and quality of the software. However, in all these
methods there is no common method of representation that
can be used to communicate to others. Each member and
team has their style of representation. So what we are saying
is methods are common (insignificant variations) across the
team and organisations, but the manner in which they are
documented and conveyed are not common, same and stan-
dard.

� User interface Prototyping is used often to build a good user interface de-
prototyping: sign. But the use of prototype is not limited to design but

can be extended to improve function, feature and facilities.
User interface quality is greatly affected by user behaviour
and expectations helping to build a better user interface.

� Software Architecture describes all the units of the system or software
architecture: and how they are connected with each other. Architecture is

built through the process of decomposition of a system/soft-
ware top-down.

� Software It is very difficult to prescribe a development process for the
process: software. This is because software differs from application

to application and organisation to organisation, calling for
different processes of development. The process differs for
simple, single user, desktop application when compared to
enterprise-wide, multi-user complex applications. Wasserman
prescribes tailoring the process to software application.

� Reuse: The notion of reuse is to take the benefit of development
already made in many other applications and save the effort
and cost of current software development. The notion is
based on the principle of commonalities across the applica-
tion. Reuse of code/application /program from other appli-
cations in the concerned application reduces the cost of
development, improves efficiency, and also the effective-
ness of the software.

� Measurement: Measurement helps to assess the status of an entity of inter-
est. The same is true in software development. In software,
measurement is used to quantify size, cost, effort, quality of
the software. Measurement and metrics help to assess, moni-
tor and compare progress among various applications and
projects.

� Tools: The notion of tools is to automate the process effectively
and attain higher quality. However, tools do not address all
the requirements of the entire development cycle. There are
many tools and their use requires integration in the develop-
ment cycle and in the development environment.

All the eight notions together integrate the disparate activities of software deve-
lopment and elevate software engineering into a scientific engineering discipline.

Wasserman suggests five ways of decomposing systems into smaller modules
or units

1. Modular: Function is a module. Sub-function is a sub-module.

2. External data Data structure, basis for decomposition. That is, use of data
driven: hierarchy constructed by type and application or usage

3. Event driven: Event-responding decomposition Event could be external or
internal. For example, ATM Card swapping will trigger an
event. Receipt of material is an event generating receipt
processing.

4. User inputs Wasserman calls it ‘outside-in design’. Decomposition is
driven: built on the basis of user inputs to the system. For example,

at the billing counter in a shop, the package is scanned. A
unit is needed to receive it and process it.

���������
��	����������
���
������������������

���
����� ��

���������	
���
�����
������������������

���
������	
��

5. Class-object Viewing the system in class and objects and their relation
driven: ship.

The five ways are not mutually exclusive.

