<l></l>

techbo

PROBLEM 18.21

Outline two ways in which 4-methyl-2-octanone can be prepared by conjugate addition of an organocuprate to an α,β -unsaturated ketone.

Sample Solution Mentally disconnect one of the bonds to the β carbon so as to identify the group that comes from the lithium dialkylcuprate.

Now see if you can identify the second possibility.

Like other carbon-carbon bond-forming reactions, organocuprate addition to enones is a powerful tool in organic synthesis.

18.15 **SUMMARY**

Sections 18.1–18.14

Because aldehydes and ketones exist in equilibrium with their corresponding enol isomers, they can express a variety of different kinds of chemical reactivity.

Reactions that proceed via enol or enolate intermediates are summarized in Table 18.2.

EQA

42 ×

techbooks

780 CHAPTER EIGHTEEN Enols and Enolates

781

EQA

42 ×

techbooks

car47872_ch18_752-789 11/13/06 19:27PM Page 781

Summary 18.15

CONFIRMING PAGES

TABLE 18.2 Reactions of Aldehydes and Ketones That Involve Enol or Enolate Ion Intermediates (Continued) Reaction (section) and comments General equation and typical example Enolization (Sections 18.5-18.6) 0 QН Aldehydes and ketones having at \Rightarrow R₂C=CR $R_2CH - CR' \equiv$ least one α hydrogen exist in equilibrium with their enol forms. Aldehyde Enol The rate at which equilibrium is or ketone achieved is increased by acidic or basic catalysts. The enol content of $K = 1 \times 10^{-8}$ simple aldehydes and ketones is quite small; β-diketones, however, Cyclopentanone Cyclopenten-1-ol are extensively enolized. α Halogenation (Sections 18.7 and **18.8)** Halogens react with aldehydes R₂CHCR' НΧ χ_2 R₂CCR and ketones by substitution; an α hydrogen is replaced by a halogen. Reaction occurs by electrophilic Halogen Aldehyde α-Halo aldehyde attack of the halogen on the Hydrogen or ketone or ketone halide carbon-carbon double bond of the enol form of the aldehyde or ketone. acetic An acid catalyst increases the rate acid of enolization, which is the rate-Br₂ HBr Br B $CCH_2Br +$ determining step. *p*-Bromoacetophenone *p*-Bromophenacyl Hydrogen Bromine bromide (69-72%) bromide 0 HO⁻ HCX₃ RCCH₃ + $3X_2$ RCO Methyl Halogen Carboxylate Trihalomethane ketone ion (haloform) 1. Br₂, NaOH (CH₃)₃CCH₂CCH₃ $(CH_3)_3CCH_2CO_2H +$ CHBr₃ 2. H⁺ 3,3-Dimethylbutanoic Bromoform 4,4-Dimethyl-2-pentanone acid (89%) Conjugate addition to α , β -0 0 R₂C=CHCR' HY: R₂ÇCH₂ĈR' β -carbon atom of an α , β -unsaturated α,β -Unsaturated Nucleophile Product of conjugate aldehyde or ketone addition NHa $(CH_3)_2C = CHCCH_3$ (CH₃)₂CCH₂CCH₃ H₂0 ŃΗ₂ 4-Amino-4-methyl-2-4-Methyl-3-penten-2-one pentanone (63-70%) -Continued

Haloform reaction (Section 18.9) Methyl ketones are cleaved on reaction with excess halogen in the presence of base. The products are a trihalomethane (haloform) and a carboxylate salt.

unsaturated carbonyl compounds (Sections 18.11-18.14) The

carbonyl compound is electrophilic; nucleophiles, especially weakly basic ones, yield the products of conjugate addition to α , β -unsaturated aldeydes and ketones.

<l></l>

techbo

782 CHAPTER EIGHTEEN Enols and Enolates

PROBLEMS

- 18.22 (a) Write structural formulas for all the noncyclic aldehydes and ketones of molecular formula C_4H_6O .
 - (b) Are any of these compounds stereoisomers?
 - (c) Are any of these compounds chiral?
 - (d) Which of these are α,β -unsaturated aldehydes or α,β -unsaturated ketones?
 - (e) Which of these can be prepared by a simple (i.e., not mixed) aldol condensation?

18.23 The main flavor component of the hazelnut is (2E,5S)-5-methyl-2-hepten-4-one. Write a structural formula showing its stereochemistry.

18.24 The simplest α , β -unsaturated aldehyde *acrolein* is prepared by heating glycerol with an acid catalyst. Suggest a mechanism for this reaction.

HOCH₂CHCH₂OH
$$\xrightarrow{\text{KHSO}_4}_{\text{heat}}$$
 H₂C=CHCH + H₂C
OH

18.25 In each of the following pairs of compounds, choose the one that has the greater enol content, and write the structure of its enol form:

