CONTENTS

	Preface to the second edition	ix
	Preface to the second edition with SI units	x
	Preface to the first edition	хi
Chapter One	Fundamental principles of mechanics	1
	1.1. Introduction	1
	1.2. Generalized procedure	2
	1.3. The fundamental principles of mechanics	3
	1.4. The concept of force	5
	1.5. The moment of a force	9
	1.6. Conditions for equilibrium	13
	1.7. Engineering applications	18
	1.8. Friction	21
	1.9. Examples	26
	1.10. Hooke's joint	42
	1.11. Final remarks	48
	Problems	49

VI	CONTENTS

Chapter Two	Introduction to mechanics of deformable bodies	72
	2.1. Analysis of deformable bodies	72
	2.2. Uniaxial loading and deformation	81
	2.3. Statically determinate situations	84
	2.4. Statically indeterminate situations	99
	2.5. Computer analysis of trusses	102
	2.6. Elastic energy; Castigliano's theorem	108
	2.7. Summary	119
	Problems	120
Chapter Three	Forces and moments transmitted by slender members	143
	3.1. Introduction	143
	3.2. General method	144
	3.3. Distributed loads	150
	3.4. Resultants of distributed loads	154
	3.5. Differential equilibrium relationships	158
	3.6. Singularity functions	164
	3.7. Fluid forces	172
	3.8. Three-dimensional problems	175
	Problems	183
Chapter Four	Stress and strain	201
	4.1. Introduction	201
	4.2. Stress	202
	4.3. Plane stress	209
	4.4. Equilibrium of a differential element in plane stress	210
	4.5. Stress components associated with arbitrarily oriented faces in	
	plane stress	214
	4.6. Mohr's circle representation of plane stress	218
	4.7. Mohr's circle representation of a general state of stress	225
	4.8. Analysis of deformation	228
	4.9. Definition of strain components	231
	4.10. Relation between strain and displacement in plane strain	234
	4.11. Strain components associated with arbitrary sets of axes	236
	4.12. Mohr's circle representation of plane strain	239
	4.13. Mohr's circle representation of a general state of strain	242
	4.14. Measurement of strains	244
	4.15. Indicial notation	250
	Problems	254
Chapter Five	Stress-strain-temperature relations	265
	5.1. Introduction	265
	5.2. The tensile test	268

CONTENTS		VII
	5.3. Idealizations of stress-strain curves	274
	5.4. Elastic stress-strain relations	280
	5.5. Thermal strain	287
	5.6. Complete equations of elasticity	287
	5.7. Complete elastic solution for a thick-walled cylinder	293
	5.8. Strain energy in an elastic body	300
	5.9. Stress concentration	302
	5.10: Composite materials and anisotropic elasticity	305
	5.11. Criteria for initial yielding	312
	5.12. Behavior beyond initial yielding in the tensile test	319
	5.13. Fracture of ductile specimens and structures	327
	5.14. Fracture of brittle specimens and structures	328
	5.15. Fatigue	329
	5.16. Criteria for continued yielding	337
	5.17. Plastic stress-strain relations	342
	5.18. Viscoelasticity	346
	Problems	350
Chapter Six	Torsion	364
	6.1. Introduction	364
	6.2. Geometry of deformation of a twisted circular shaft	366
	6.3. Stresses obtained from stress-strain relations	371
	6.4. Equilibrium requirements	372
	6.5. Stress and deformation in a twisted elastic circular shaft	373
	6.6. Torsion of elastic hollow circular shafts	378
	6.7. Stress analysis in torsion; combined stresses	380
	6.8. Strain energy due to torsion	383
	6.9. The onset of yielding in torsion	385
	6.10. Plastic deformations	386
	6.11. Residual stresses	389
	6.12. Limit analysis	391
	6.13. Torsion of rectangular shafts	393
	6.14. Torsion of hollow, thin-walled shafts	395
	Problems	399
Chapter Seven	Stresses due to bending	416
	7.1. Introduction	416
	7.2. Geometry of deformation of a symmetrical beam subjected to	
	pure bending	417
	7.3. Stresses obtained from stress-strain relations	422
	7.4. Equilibrium requirements	422
	7.5. Stress and deformation in symmetrical elastic beams subjected to	
	pure bending	423

	7.6. Stresses in symmetrical elastic beams transmitting both shear	
	force and bending moment	432
	7.7. Stress analysis in bending; combined stresses	443
	7.8. Strain energy due to bending	446
	7.9. The onset of yielding in bending	449
	7.10. Plastic deformations	452
	7.11. Bending of unsymmetrical beams	461
	7.12. Shear flow in thin-walled open sections; shear center	470
	Problems	477
Chapter Eight	Deflections due to bending	511
	8.1. Introduction	511
	8.2. The moment-curvature relation	512
	8.3. Integration of the moment-curvature relation	515
	8.4. Superposition	527
	8.5. The load-deflection differential equation	542
	8.6. Energy methods	545
	8.7. Limit analysis	550
	Problems	555
Chapter Nine	Stability of equilibrium: buckling	577
	9.1. Introduction	577
	9.2. Elastic stability	578
	9.3. Examples of instability	581
	9.4. Elastic stability of flexible columns	583
	9.5. Elastic postbuckling behavior	590
	9.6. Instability as a mode of failure	595
	9.7. Necking of tension members	596
	9.8. Plastic buckling	599
	Problems	606
	Answers to selected problems	613
	Index	619