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Introduction

A shaft is a rotating member, usually of circular cross section, used to transmit power
or motion. It provides the axis of rotation, or oscillation, of elements such as gears,
pulleys, flywheels, cranks, sprockets, and the like and controls the geometry of their
motion. An axle is a nonrotating member that carries no torque and is used to sup-
port rotating wheels, pulleys, and the like. The automotive axle is not a true axle; the
term is a carry-over from the horse-and-buggy era, when the wheels rotated on non-
rotating members. A non-rotating axle can readily be designed and analyzed as a static
beam, and will not warrant the special attention given in this chapter to the rotating
shafts which are subject to fatigue loading.

There is really nothing unique about a shaft that requires any special treatment
beyond the basic methods already developed in previous chapters. However, because of
the ubiquity of the shaft in so many machine design applications, there is some advan-
tage in giving the shaft and its design a closer inspection. A complete shaft design has
much interdependence on the design of the components. The design of the machine itself
will dictate that certain gears, pulleys, bearings, and other elements will have at least been
partially analyzed and their size and spacing tentatively determined. Chapter 18 provides
a complete case study of a power transmission, focusing on the overall design process.
In this chapter, details of the shaft itself will be examined, including the following:

e Material selection
* Geometric layout

e Stress and strength
* Static strength
* Fatigue strength

e Deflection and rigidity
* Bending deflection
* Torsional deflection
* Slope at bearings and shaft-supported elements
* Shear deflection due to transverse loading of short shafts

e Vibration due to natural frequency

In deciding on an approach to shaft sizing, it is necessary to realize that a stress analy-
sis at a specific point on a shaft can be made using only the shaft geometry in the vicin-
ity of that point. Thus the geometry of the entire shaft is not needed. In design it is usually
possible to locate the critical areas, size these to meet the strength requirements, and then
size the rest of the shaft to meet the requirements of the shaft-supported elements.

The deflection and slope analyses cannot be made until the geometry of the entire
shaft has been defined. Thus deflection is a function of the geometry everywhere,
whereas the stress at a section of interest is a function of local geometry. For this rea-
son, shaft design allows a consideration of stress first. Then, after tentative values for
the shaft dimensions have been established, the determination of the deflections and
slopes can be made.

Shaft Materials

Deflection is not affected by strength, but rather by stiffness as represented by the
modulus of elasticity, which is essentially constant for all steels. For that reason, rigid-
ity cannot be controlled by material decisions, but only by geometric decisions.
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Necessary strength to resist loading stresses affects the choice of materials and
their treatments. Many shafts are made from low carbon, cold-drawn or hot-rolled
steel, such as ANSI 1020-1050 steels.

Significant strengthening from heat treatment and high alloy content are often not
warranted. Fatigue failure is reduced moderately by increase in strength, and then only
to a certain level before adverse effects in endurance limit and notch sensitivity begin
to counteract the benefits of higher strength. A good practice is to start with an inex-
pensive, low or medium carbon steel for the first time through the design calculations.
If strength considerations turn out to dominate over deflection, then a higher strength
material should be tried, allowing the shaft sizes to be reduced until excess deflection
becomes an issue. The cost of the material and its processing must be weighed against
the need for smaller shaft diameters. When warranted, typical alloy steels for heat
treatment include ANSI 1340-50, 3140-50, 4140, 4340, 5140, and 8650.

Shafts usually don’t need to be surface hardened unless they serve as the actual
journal of a bearing surface. Typical material choices for surface hardening include
carburizing grades of ANSI 1020, 4320, 4820, and 8620.

Cold drawn steel is usually used for diameters under about 3 inches. The nom-
inal diameter of the bar can be left unmachined in areas that do not require fitting
of components. Hot rolled steel should be machined all over. For large shafts
requiring much material removal, the residual stresses may tend to cause warping.
If concentricity is important, it may be necessary to rough machine, then heat treat
to remove residual stresses and increase the strength, then finish machine to the
final dimensions.

In approaching material selection, the amount to be produced is a salient factor.
For low production, turning is the usual primary shaping process. An economic view-
point may require removing the least material. High production may permit a volume-
conservative shaping method (hot or cold forming, casting), and minimum material in
the shaft can become a design goal. Cast iron may be specified if the production quan-
tity is high, and the gears are to be integrally cast with the shaft.

Properties of the shaft locally depend on its history—cold work, cold forming,
rolling of fillet features, heat treatment, including quenching medium, agitation, and
tempering regimen.'

Stainless steel may be appropriate for some environments.

Shaft Layout

The general layout of a shaft to accommodate shaft elements, e.g. gears, bearings, and
pulleys, must be specified early in the design process in order to perform a free body
force analysis and to obtain shear-moment diagrams. The geometry of a shaft is gen-
erally that of a stepped cylinder. The use of shaft shoulders is an excellent means of
axially locating the shaft elements and to carry any thrust loads. Figure 7-1 shows an
example of a stepped shaft supporting the gear of a worm-gear speed reducer. Each
shoulder in the shaft serves a specific purpose, which you should attempt to deter-
mine by observation.

ISee J oseph E. Shigley, Charles R. Mischke, and Thomas H. Brown, Jr. (eds-in-chief), Standard Handbook
of Machine Design, 3rd ed., McGraw-Hill, New York, 2004. For cold-worked property prediction see
Chap. 29, and for heat-treated property prediction see Chaps. 29 and 33.
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Figure 7-1

A vertical worm-gear speed
reducer. [Courfesy of the
Cleveland Gear Company.)

Figure 7-2

(a) Choose a shaft
configuration to support and
locate the two gears and two
bearings. (b) Solution uses an
infegral pinion, three shaft
shoulders, key and keyway,
and sleeve. The housing
locates the bearings on their
outer rings and receives the
thrust loads. (c] Choose fan-
shaft configuration. (d) Solution
uses sleeve bearings, a
straightthrough shaft, locating
collars, and setscrews for
collars, fan pulley, and fan
itself. The fan housing supports
the sleeve bearings.

(a) (b)

(©) (d)

The geometric configuration of a shaft to be designed is often simply a revision
of existing models in which a limited number of changes must be made. If there is
no existing design to use as a starter, then the determination of the shaft layout may
have many solutions. This problem is illustrated by the two examples of Fig. 7-2. In
Fig. 7-2a a geared countershaft is to be supported by two bearings. In Fig. 7-2¢ a
fanshaft is to be configured. The solutions shown in Fig. 7-2b and 7-2d are not nec-
essarily the best ones, but they do illustrate how the shaft-mounted devices are fixed
and located in the axial direction, and how provision is made for torque transfer from
one element to another. There are no absolute rules for specifying the general layout,
but the following guidelines may be helpful.
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Axial Layout of Components

The axial positioning of components is often dictated by the layout of the housing
and other meshing components. In general, it is best to support load-carrying com-
ponents between bearings, such as in Fig. 7-2a, rather than cantilevered outboard of
the bearings, such as in Fig. 7-2c. Pulleys and sprockets often need to be mounted
outboard for ease of installation of the belt or chain. The length of the cantilever
should be kept short to minimize the deflection.

Only two bearings should be used in most cases. For extremely long shafts carrying
several load-bearing components, it may be necessary to provide more than two bearing
supports. In this case, particular care must be given to the alignment of the bearings.

Shafts should be kept short to minimize bending moments and deflections. Some
axial space between components is desirable to allow for lubricant flow and to pro-
vide access space for disassembly of components with a puller. Load bearing com-
ponents should be placed near the bearings, again to minimize the bending moment
at the locations that will likely have stress concentrations, and to minimize the deflec-
tion at the load-carrying components.

The components must be accurately located on the shaft to line up with other
mating components, and provision must be made to securely hold the components in
position. The primary means of locating the components is to position them against
a shoulder of the shaft. A shoulder also provides a solid support to minimize deflec-
tion and vibration of the component. Sometimes when the magnitudes of the forces
are reasonably low, shoulders can be constructed with retaining rings in grooves,
sleeves between components, or clamp-on collars. In cases where axial loads are very
small, it may be feasible to do without the shoulders entirely, and rely on press fits,
pins, or collars with setscrews to maintain an axial location. See Fig. 7-2b and 7-2d
for examples of some of these means of axial location.

Supporting Axial Loads

In cases where axial loads are not trivial, it is necessary to provide a means to trans-
fer the axial loads into the shaft, then through a bearing to the ground. This will be
particularly necessary with helical or bevel gears, or tapered roller bearings, as each
of these produces axial force components. Often, the same means of providing axial
location, e.g., shoulders, retaining rings, and pins, will be used to also transmit the
axial load into the shaft.

It is generally best to have only one bearing carry the axial load, to allow
greater tolerances on shaft length dimensions, and to prevent binding if the shaft
expands due to temperature changes. This is particularly important for long shafts.
Figures 7-3 and 7-4 show examples of shafts with only one bearing carrying the
axial load against a shoulder, while the other bearing is simply press-fit onto the
shaft with no shoulder.

Providing for Torque Transmission

Most shafts serve to transmit torque from an input gear or pulley, through the shaft, to
an output gear or pulley. Of course, the shaft itself must be sized to support the torsional
stress and torsional deflection. It is also necessary to provide a means of transmitting the
torque between the shaft and the gears. Common torque-transfer elements are:

* Keys

* Splines

* Setscrews
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Figure 7-3

Tapered roller bearings used
in a mowing machine spindle.
This design represents good
practice for the situafion in
which one or more torque-
transfer elements must be
mounted outboard. (Source:
Redrawn from material
fumished by The Timken
Company.)

Figure 7-4

A bevel-gear drive in which
both pinion and gear are
straddle-mounted. (Source:
Redrawn from material
furnished by Gleason

Machine Division.)
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¢ Pins
e Press or shrink fits
» Tapered fits

In addition to transmitting the torque, many of these devices are designed to fail if
the torque exceeds acceptable operating limits, protecting more expensive components.

Details regarding hardware components such as keys, pins, and setscrews are
addressed in detail in Sec. 7-7. One of the most effective and economical means
of transmitting moderate to high levels of torque is through a key that fits in a
groove in the shaft and gear. Keyed components generally have a slip fit onto the
shaft, so assembly and disassembly is easy. The key provides for positive angular
orientation of the component, which is useful in cases where phase angle timing

is important.




Figure 7-5

Arrangement showing bearing
inner rings pressfitied fo shaft
while outer rings float in the
housing. The axial clearance
should be sufficient only to

allow for machinery vibrations.

Note the labyrinth seal on the
right.
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Splines are essentially stubby gear teeth formed on the outside of the shaft and on
the inside of the hub of the load-transmitting component. Splines are generally much
more expensive to manufacture than keys, and are usually not necessary for simple
torque transmission. They are typically used to transfer high torques. One feature of a
spline is that it can be made with a reasonably loose slip fit to allow for large axial
motion between the shaft and component while still transmitting torque. This is use-
ful for connecting two shafts where relative motion between them is common, such as
in connecting a power takeoff (PTO) shaft of a tractor to an implement. SAE and ANSI
publish standards for splines. Stress concentration factors are greatest where the spline
ends and blends into the shaft, but are generally quite moderate.

For cases of low torque transmission, various means of transmitting torque are
available. These include pins, setscrews in hubs, tapered fits, and press fits.

Press and shrink fits for securing hubs to shafts are used both for torque trans-
fer and for preserving axial location. The resulting stress-concentration factor is usu-
ally quite small. See Sec. 7-8 for guidelines regarding appropriate sizing and toler-
ancing to transmit torque with press and shrink fits. A similar method is to use a split
hub with screws to clamp the hub to the shaft. This method allows for disassembly
and lateral adjustments. Another similar method uses a two-part hub consisting of a
split inner member that fits into a tapered hole. The assembly is then tightened to the
shaft with screws, which force the inner part into the wheel and clamps the whole
assembly against the shaft.

Tapered fits between the shaft and the shaft-mounted device, such as a wheel, are
often used on the overhanging end of a shaft. Screw threads at the shaft end then permit
the use of a nut to lock the wheel tightly to the shaft. This approach is useful because it
can be disassembled, but it does not provide good axial location of the wheel on the shaft.

At the early stages of the shaft layout, the important thing is to select an appro-
priate means of transmitting torque, and to determine how it affects the overall shaft
layout. It is necessary to know where the shaft discontinuities, such as keyways, holes,
and splines, will be in order to determine critical locations for analysis.

Assembly and Disassembly

Consideration should be given to the method of assembling the components onto the
shaft, and the shaft assembly into the frame. This generally requires the largest diam-
eter in the center of the shaft, with progressively smaller diameters towards the ends
to allow components to be slid on from the ends. If a shoulder is needed on both sides
of a component, one of them must be created by such means as a retaining ring or
by a sleeve between two components. The gearbox itself will need means to physi-
cally position the shaft into its bearings, and the bearings into the frame. This is typ-
ically accomplished by providing access through the housing to the bearing at one
end of the shaft. See Figs. 7-5 through 7-8 for examples.

(DT>
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Figure 7-6

Similar fo the arrangement of
Fig. 7-5 except that the outer
bearing rings are preloaded.

This arrangement is similar to
Fig. 7-7 in that the lefthand
bearing positions the enfire
shaft assembly. In this case
the inner ring is secured to
the shaft using a snap ring.
Note the use of a shield to
prevent dirt generated

from within the machine from

enfering the bearing.
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Figure 7-7
In this arrangement the inner ring of the lefrhand bearing is locked to the shaft between a
nut and a shaft shoulder. The locknut and washer are AFBMA standard. The snap ring in

the outer race is used to positively locate the shaft assembly in the axial direction. Note
the floating righthand bearing and the grinding runout grooves in the shaft.

When components are to be press-fit to the shaft, the shaft should be designed
so that it is not necessary to press the component down a long length of shaft. This
may require an extra change in diameter, but it will reduce manufacturing and assem-
bly cost by only requiring the close tolerance for a short length.

Consideration should also be given to the necessity of disassembling the compo-
nents from the shaft. This requires consideration of issues such as; accessibility of
retaining rings, space for pullers to access bearings, openings in the housing to allow
pressing the shaft or bearings out, etc.

Shaft Design for Stress

Critical Locations

It is not necessary to evaluate the stresses in a shaft at every point; a few potentially
critical locations will suffice. Critical locations will usually be on the outer surface,
at axial locations where the bending moment is large, where the torque is present, and
where stress concentrations exist. By direct comparison of various points along the
shaft, a few critical locations can be identified upon which to base the design. An
assessment of typical stress situations will help.
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Most shafts will transmit torque through a portion of the shaft. Typically the
torque comes into the shaft at one gear and leaves the shaft at another gear. A free
body diagram of the shaft will allow the torque at any section to be determined. The
torque is often relatively constant at steady state operation. The shear stress due to
the torsion will be greatest on outer surfaces.

The bending moments on a shaft can be determined by shear and bending
moment diagrams. Since most shaft problems incorporate gears or pulleys that intro-
duce forces in two planes, the shear and bending moment diagrams will generally
be needed in two planes. Resultant moments are obtained by summing moments as
vectors at points of interest along the shaft. The phase angle of the moments is not
important since the shaft rotates. A steady bending moment will produce a com-
pletely reversed moment on a rotating shaft, as a specific stress element will alter-
nate from compression to tension in every revolution of the shaft. The normal stress
due to bending moments will be greatest on the outer surfaces. In situations where
a bearing is located at the end of the shaft, stresses near the bearing are often not
critical since the bending moment is small.

Axial stresses on shafts due to the axial components transmitted through heli-
cal gears or tapered roller bearings will almost always be negligibly small compared
to the bending moment stress. They are often also constant, so they contribute lit-
tle to fatigue. Consequently, it is usually acceptable to neglect the axial stresses
induced by the gears and bearings when bending is present in a shaft. If an axial
load is applied to the shaft in some other way, it is not safe to assume it is negli-
gible without checking magnitudes.

Shaft Stresses

Bending, torsion, and axial stresses may be present in both midrange and alternating
components. For analysis, it is simple enough to combine the different types of
stresses into alternating and midrange von Mises stresses, as shown in Sec. 6—14,
p. 309. It is sometimes convenient to customize the equations specifically for shaft
applications. Axial loads are usually comparatively very small at critical locations
where bending and torsion dominate, so they will be left out of the following equa-
tions. The fluctuating stresses due to bending and torsion are given by

M,c M,c

Uasz Ia O'mIKf }n (7—])
T,c Tyc

Tq = Kfa% T =Kfs% (7-2)

where M,, and M, are the midrange and alternating bending moments, 7,, and 7, are
the midrange and alternating torques, and K, and Ky, are the fatigue stress concen-
tration factors for bending and torsion, respectively.

Assuming a solid shaft with round cross section, appropriate geometry terms can
be introduced for ¢, I, and J resulting in

32M, 32M,,
w=KZm = kTE 73
16T, 16T,
T = Kfs— T = Kfs— (7-4)

nd?
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Combining these stresses in accordance with the distortion energy failure theory,
the von Mises stresses for rotating round, solid shafts, neglecting axial loads, are given

by
1/2
o aeyn = | (KM (19KnT )] 7-5)
o, = (0O T = _ - J° = _
a a a 7Td3 ]Td3
1/2
, ) 28172 32K, M, \* 16K/, T, \* /
0,=(0,+31,) " =|(—5—) +3| —5— (7-6)
wd wd

Note that the stress concentration factors are sometimes considered optional for the
midrange components with ductile materials, because of the capacity of the ductile
material to yield locally at the discontinuity.

These equivalent alternating and midrange stresses can be evaluated using an
appropriate failure curve on the modified Goodman diagram (See Sec. 6—12, p. 295,
and Fig. 6-27). For example, the fatigue failure criteria for the modified Goodman
line as expressed previously in Eq. (6-46) is

1 o o

nSe Su
Substitution of ¢, and o,, from Egs. (7-5) and (7-6) results in
1 16 (1 1/2 1 1/2
— = — 1 —[4(K M) 4+ 3(K,T,)? — [4(KM,)? + 3(K 4, T)p)?
o nd3{S€[(.f AKRT) ] + - (4K M)” 4 3(K T

For design purposes, it is also desirable to solve the equation for the diameter.
This results in

16 1
= <7n {E [4(K M) + 3(K 1, ]

1 2 271/2 13
+ 5 [4(K;M,)* + 3(K s T)?] })
Similar expressions can be obtained for any of the common failure criteria by sub-
stituting the von Mises stresses from Eqs. (7-5) and (7-6) into any of the failure
criteria expressed by Eqs. (6—45) through (6-48), p. 298. The resulting equations
for several of the commonly used failure curves are summarized below. The names
given to each set of equations identifies the significant failure theory, followed by
a fatigue failure locus name. For example, DE-Gerber indicates the stresses are

combined using the distortion energy (DE) theory, and the Gerber locus is used for
the fatigue failure.

DE-Goodman

1 16 (1 1/2 1 172
— = — A (AR M)+ 3(K s T)> — [4(K s My)* + 3(K T
! mp{se[(f P30 4 o [ M+ 3K T

(7-7)

16n [ 1
d—= <_” {— [4(K; M) + 3(K s Tn)2]"°
T |S.
_l’_

1 2 27172 &
5 (4K M) + 3(K s T)’] (7-8)
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DE-Gerber
- 172
1 8A 2BS,\>
n ad3S, et (AS,,, > (7=9)
- -121\ '3
8nA 285\ 1"
d= e 1+ (14 AS (7-10)
e ut
where

A= \/4(KfMa)2 +3(KysTa)?

B — \/4(1<me)2 + (KT

DE-ASME Elliptic

116 KM\’ KT \° KM, \* KsTw\’ 2
=g L 3 =54 4 =L 32
n wd? |: ( S, ) + ( Se + Sy * Sy

(7-11)
12 1/3
a0 |y (KeMa) g (KnTa)' |y (KM )" 5 (KasT )’ /
T SE Se Sy Sy
(7-12)
DE-Soderberg
16n | 1 1
d= (7 {; [4(K M) +3(K;,T.)%]"
e
1 2\
+S_[4(Kme)2+3(KfsTm)2] }) (7-13)
yt
116 (1 a1 o
— = —{ — [4(KsM,)* + 3(Ky,T,)* — [4(KMy)* +3(K s Tp)?
. nd3{Sg[(‘f )+ 3(K s To)?] +Syt[(f )” +3(KsT)’]
(7-14)

For a rotating shaft with constant bending and torsion, the bending stress is com-
pletely reversed and the torsion is steady. Equations (7-7) through (7—-14) can be sim-
plified by setting M,, and T, equal to 0, which simply drops out some of the terms.

Note that in an analysis situation in which the diameter is known and the factor
of safety is desired, as an alternative to using the specialized equations above, it is
always still valid to calculate the alternating and mid-range stresses using Eqs. (7-5)
and (7-6), and substitute them into one of the equations for the failure criteria, Eqgs.
(6-45) through (6-48), and solve directly for n. In a design situation, however, hav-
ing the equations pre-solved for diameter is quite helpful.

It is always necessary to consider the possibility of static failure in the first load cycle.
The Soderberg criteria inherently guards against yielding, as can be seen by noting that
its failure curve is conservatively within the yield (Langer) line on Fig. 6-27, p. 297. The
ASME Elliptic also takes yielding into account, but is not entirely conservative
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EXAMPLE 7-1

Solution

throughout its entire range. This is evident by noting that it crosses the yield line in
Fig. 6-27. The Gerber and modified Goodman criteria do not guard against yielding,
requiring a separate check for yielding. A von Mises maximum stress is calculated for
this purpose.

Ot =[O + 027 + 3 (1w + 1)%]"°

B [(32Kf(Mm + Ma)>2 s (16fo (T + m)Tﬂ

wd? nd3

(7-15)

To check for yielding, this von Mises maximum stress is compared to the yield
strength, as usual.

(7-16)

ny=—
max

For a quick, conservative check, an estimate for o,,,, can be obtained by simply
adding o, and o,,. (o, + 0,,) will always be greater than or equal to o, ., and will

therefore be conservative.

ax’

At a machined shaft shoulder the small diameter d is 1.100 in, the large diameter D
is 1.65 in, and the fillet radius is 0.11 in. The bending moment is 1260 1bf - in and
the steady torsion moment is 1100 Ibf - in. The heat-treated steel shaft has an ultimate
strength of S,; = 105 kpsi and a yield strength of S, = 82 kpsi. The reliability goal
is 0.99.

(a) Determine the fatigue factor of safety of the design using each of the fatigue failure
criteria described in this section.

(b) Determine the yielding factor of safety.

(@) D/d =1.65/1.100 = 1.50, r/d = 0.11/1.100 = 0.10, K, = 1.68 (Fig. A~15-9),
K. = 1.42 (Fig. A-15-8), ¢ = 0.85 (Fig. 6-20), gshear = 0.92 (Fig. 6-21).

From Eq. (6-32),
K;=1+40.85(1.68 — 1) =1.58
Krs=1+092(1.42—-1) =1.39

Eq. (6-8): S/ = 0.5(105) = 52.5kpsi
Eq. (6-19): k, = 2.70(105)~0265 = .787
1,100\ ~0197
Eq. (6-20): ky = —— = 0.870
q. (6-20) b (0.3())

ke =hkyg=k; =1
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Answer
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Answer

Answer

Table 6-6
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k. = 0.814

S, = 0.787(0.870)0.814(52.5) = 29.3 kpsi

For a rotating shaft, the constant bending moment will create a completely reversed

bending stress.

M, = 1260 Ibf - in

T,, = 1100 Ibf - in

Applying Eq. (7-7) for the DE-Goodman criteria gives

16 [[401.58-1260)]"°

[3(1.39-1100)*]/

n w(l.1)3

n=1.62

29300

=0.61
105 000 ] 0615

DE-Goodman

Similarly, applying Eqs. (7-9), (7-11), and (7-13) for the other failure criteria,

n=1.87
n=1.88
n=1.56

DE-Gerber
DE-ASME Elliptic

DE-Soderberg

For comparison, consider an equivalent approach of calculating the stresses and apply-
ing the fatigue failure criteria directly. From Eqs. (7-5) and (7-6),

1/2

) 32.1.58-1260\2]" _

Ua = T = 15235pS1
T o

1/2
16-1.39 - 1100\
4 .

Taking, for example, the Goodman failure critera, application of Eq. (6-46)
gives

/ /
1_% _ % _

15235 10134

= =0.616
n S, S, 29300 105000
n=1.62

which is identical with the previous result. The same process could be used for the
other failure criteria.

(b) For the yielding factor of safety, determine an equivalent von Mises maximum
stress using Eq. (7-15).

2 2 1/2
. [(32(1.58)(1260)) +3<16(1.39)(1100)) } 15

max 7 (1.1)° 7 (1.1)°
S, 82000
ny = = — =
o/ 18300

max
For comparison, a quick and very conservative check on yielding can be obtained

by replacing o,,,, with o/, + o,,. This just saves the extra time of calculating o,
if o, and o, have already been determined. For this example,
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Sharp radius

Large radius undercut
Stress flow

Figure 7-9

G—

(@)

Sy, 82000 B
o, +o), 15235+10134

I’ly =

which is quite conservative compared with n, = 4.48.

Estimating Stress Concentrations

The stress analysis process for fatigue is highly dependent on stress concentrations.
Stress concentrations for shoulders and keyways are dependent on size specifications
that are not known the first time through the process. Fortunately, since these elements
are usually of standard proportions, it is possible to estimate the stress concentration
factors for initial design of the shaft. These stress concentrations will be fine-tuned in
successive iterations, once the details are known.

Shoulders for bearing and gear support should match the catalog recommenda-
tion for the specific bearing or gear. A look through bearing catalogs shows that a
typical bearing calls for the ratio of D/d to be between 1.2 and 1.5. For a first approx-
imation, the worst case of 1.5 can be assumed. Similarly, the fillet radius at the shoul-
der needs to be sized to avoid interference with the fillet radius of the mating com-
ponent. There is a significant variation in typical bearings in the ratio of fillet radius
versus bore diameter, with r/d typically ranging from around 0.02 to 0.06. A quick
look at the stress concentration charts (Figures A—15-8 and A—15-9) shows that the
stress concentrations for bending and torsion increase significantly in this range. For
example, with D/d = 1.5 for bending, K, =2.7 at r/d = 0.02, and reduces to
K, =2.1 at r/d = 0.05, and further down to K, = 1.7 at r/d = 0.1. This indicates
that this is an area where some attention to detail could make a significant difference.
Fortunately, in most cases the shear and bending moment diagrams show that bend-
ing moments are quite low near the bearings, since the bending moments from the
ground reaction forces are small.

In cases where the shoulder at the bearing is found to be critical, the designer
should plan to select a bearing with generous fillet radius, or consider providing for
a larger fillet radius on the shaft by relieving it into the base of the shoulder as shown
in Fig. 7-9a. This effectively creates a dead zone in the shoulder area that does not
carry the bending stresses, as shown by the stress flow lines. A shoulder relief groove
as shown in Fig. 7-9b can accomplish a similar purpose. Another option is to cut a
large-radius relief groove into the small diameter of the shaft, as shown in Fig. 7-9c.

Shoulder Large-radius
relief groove relief groove

Bearing

Shaft

L

(b) ()

Techniques for reducing sfress concentration af a shoulder supporting a bearing with a sharp radius. (a) Large radius undercut

into the shoulder. (b) Large radius relief groove info the back of the shoulder. (c] Large radius relief groove into the small diameter



Table 7-1

First lteration Estimates
for Stress Concentration
Factors K.

Warning: These factors are
only estimates for use when
actual dimensions are not
yet determined. Do nof
use these once actual
dimensions are available.
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This has the disadvantage of reducing the cross-sectional area, but is often used in
cases where it is useful to provide a relief groove before the shoulder to prevent the
grinding or turning operation from having to go all the way to the shoulder.

For the standard shoulder fillet, for estimating K, values for the first iteration, an
r/d ratio should be selected so K; values can be obtained. For the worst end of the
spectrum, with r/d = 0.02 and D/d = 1.5, K, values from the stress concentration
charts for shoulders indicate 2.7 for bending, 2.2 for torsion, and 3.0 for axial.

A keyway will produce a stress concentration near a critical point where the load-
transmitting component is located. The stress concentration in an end-milled keyseat
is a function of the ratio of the radius r at the bottom of the groove and the shaft
diameter d. For early stages of the design process, it is possible to estimate the stress
concentration for keyways regardless of the actual shaft dimensions by assuming a
typical ratio of r/d = 0.02. This gives K, = 2.2 for bending and K,; = 3.0 for tor-
sion, assuming the key is in place.

Figures A-15-16 and A-15-17 give values for stress concentrations for flat-
bottomed grooves such as used for retaining rings. By examining typical retaining ring
specifications in vendor catalogs, it can be seen that the groove width is typically slightly
greater than the groove depth, and the radius at the bottom of the groove is around 1/10
of the groove width. From Figs. A—15-16 and A—15-17, stress concentration factors for
typical retaining ring dimensions are around 5 for bending and axial, and 3 for torsion.
Fortunately, the small radius will often lead to a smaller notch sensitivity, reducing K.

Table 7-1 summarizes some typical stress concentration factors for the first iter-
ation in the design of a shaft. Similar estimates can be made for other features. The
point is to notice that stress concentrations are essentially normalized so that they are
dependent on ratios of geometry features, not on the specific dimensions. Conse-
quently, by estimating the appropriate ratios, the first iteration values for stress con-
centrations can be obtained. These values can be used for initial design, then actual
values inserted once diameters have been determined.

Bending Torsional Axial

Shoulder fillet—sharp (r/d = 0.02) 2.7 2.2 3.0
Shoulder fillet—well rounded (r/d = 0.1) 1.7 1.5 1.9
End-mill keyseat (r/d = 0.02) 2.2 3.0 —
Sled runner keyseat 1.7 — —
Refaining ring groove 5.0 3.0 5.0

Missing values in the table are not readily available.

|
EXAMPLE 7-2

This example problem is part of a larger case study. See Chap. 18 for the full
context.

A double reduction gearbox design has developed to the point that the gen-
eral layout and axial dimensions of the countershaft carrying fwo spur gears
has been proposed, as shown in Fig. 7-10. The gears and bearings are located
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Figure 7-10

Shaft layout for Example 7-2.

and supported by shoulders, and held in place by retaining rings. The gears
transmit torque through keys. Gears have been specified as shown, allowing the
tangential and radial forces transmitted through the gears to the shaft to be
determined as follows.

Wi, = 540 Ibf Wi, = —24311bf
Wi, = —197Ibf WZ, = —885Ibf

where the superscripts t and r represent tangential and radial directions,
respectively; and, the subscripts 23 and 54 represent the forces exerted by
gears 2 and 5 (not shown) on gears 3 and 4, respectively.

Proceed with the next phase of the design, in which a suitable material is
selected, and appropriate diameters for each section of the shaft are
estimated, based on providing sufficient fatigue and static stress capacity for
infinite life of the shaft, with minimum safety factors of 1.5.

Solution
Perform free body diagram analysis to get reaction forces at the bearings.
Ry, = 115.01bf
R4y = 356.7 Ibf
Ry, = 1776.01bf
Rp, = 7253 Ibf

From M., find the torque in the shaft between the gears, T = Wi;(d3/2) =
540(12/2) = 32401bf - in

Generate shear-moment diagrams for two planes.

Combine orthogonal planes as vectors to get total moments, e.g.

V39962 + 1632 = 43161bf.

Start with Point I, where the bending moment is high, there is a stress con-
centration at the shoulder, and the torque is present.

At I, M, = 3651 Ibf-in, 7,, = 3240 Ibf-in, M,, =T, =0

Assume generous fillet radius for gear at I
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From Table 7-1, estimate K, = 1.7, K,; = 1.5. For quick, conservative first
pass, assume Ky = K;, Kp; = K.
Choose inexpensive steel, 1020 €D, with S, = 68 kpsi. For S,
Eq. (6-19) ko = aSt, = 2.7(68)70265 = 0.883
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Guess k, = 0.9. Check later when d is known.
ke=ks=k, =1
Eq. (6-18) S. = (0.883)(0.9)(0.5)(68) = 27.0kpsi.

For first estimate of the small diameter at the shoulder at point I, use the
DE-Goodman criterion of Eq. (7-8). This criterion is good for the initial design,
since it is simple and conservative. With M,, = T, = 0, Eq. (7-8) reduces to

21/2 1/3
ton (2(k,m) | [3(KnTn)’]

d =
4 S&' SLI[

4 27000 68 000

d =1.65in.

4 | 16a.s) (2(1.7) (651 {3101.5) (3240)]2}1/2>}1/3

All estimates have probably been conservative, so select the next standard size

below 1.65 in. and check, d = 1.625 in.
A typical D/d ratio for support at a shoulder is D/d = 1.2 in.,

D = 1.2(1.625) = 1.95 in. Increase to D = 2.0 in. A nominal 2 in. cold-drawn shaft

diameter can be used. Check if estimates were acceptable.
D/d =2/1.625 =1.23
Assume fillet radius r =d/10 = 0.16in. r/d = 0.1
K, = 1.6 (Fig. A-15-9), ¢ = 0.82 (Fig. 6-20)
Eq. (6-32) Ky =1+0.82(1.6-1)=1.49
K,; =135 (Fig. A-15-8), g, = 0.95 (Fig. 6-21)
Kig=1+0951.35—-1) =1.33
k, = 0.883 (no change)

1.625\ 17
Eq. (6-20) Kyl = <W) —0.835

S, = (0.883)(0.835)(0.5)(68) = 25.1 kpsi

,32K;M,  32(1.49)(3651)

Eq. (7- - — 12910 psi
9-(7=) %= nd 7(1.625)3 210psi
172
16K 4T \ > 3(16)(1.33)(3240
SN ol 5 (16T _ V/3(16)(1.33)(3240)
nd? m(1.625)3

Using Goodman criterion

o, o 12910 8859

ng S, Su 25100 + 68 000
ny = 1.55

Note that we could have used Eq. (7-7) directly.

= 8859 psi
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Check yielding.
S _ S _ 57000
ol o/ +a/ 12910 +8859

max

2.62

l’ly=

Also check this diameter at the end of the keyway, just to the right of point 7,
and at the groove at point K. From moment diagram, estimate M at end of
keyway to be M = 3750 Ibf-in.

Assume the radius at the bottom of the keyway will be the standard
r/d = 0.02, r = 0.02 d = 0.02 (1.625) = 0.0325 in.

K, = 2.14 (Fig. A-15-18), ¢ = 0.65 (Fig. 6-20)
Kp=1+0652.14—1) =174

K. = 3.0 (Fig. A~15-19), ¢, = 0.9 (Fig. 6-21)
Kiy=1+093—1)=238
_ 32KM,  32(1.74)(3750)

! = = 15490 psi
T 7(1.625)3 pst
KT ~/3(16)(2.8)(3240) ,
o = V36— 7 7(1.625)3 s
1 o, o), 15490 18650 g
ng Se  Su 25100 68000
nf = 112

The keyway turns out to be more critical than the shoulder. We can either
increase the diameter, or use a higher strength material. Unless the deflection
analysis shows a need for larger diameters, let us choose to increase the
strength. We started with a very low strength, and can afford to increase it
some to avoid larger sizes. Try 1050 CD, with S,; = 100 kpsi.

Recalculate factors affected by S, i.e. k, = S.; ¢ = Ky — 0o

ko = 2.7(100)7%2% = 0.797, S, = 0.797(0.835)(0.5)(100) = 33.3 kpsi
g =072 Kr=1+0722.14 1) = 1.82
| 32(1.82)(3750)

/ — 16200 psi
7(1.625) pst
1 16200 18650
- L i — 0673
n; 33300 ' 100000
nf = ]49

Since the Goodman criterion is conservative, we will accept this as close enough
to the requested 1.5.

Check at the groove at K, since K; for flat-bottomed grooves are often very
high. From the torque diagram, note that no torque is present at the groove.
From the moment diagram, M, = 2398 Ibf - in, M, =T, = T,, = 0. To quickly
check if this location is potentially critical just use Ky = K, = 5.0 as an
estimate, from Table 7-1.

_ 32KpM,  32(5)(2398)
T omd® T 7(1.625)3

= 28460 psi

Oq
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This is low. We will look up data for a specific retaining ring to obtain K; more
accurately. With a quick on-line search of a retaining ring specification using
the website www.globalspec.com, appropriate groove specifications for a retain-
ing ring for a shaft diameter of 1.625 in. The following are obtained: width,

a = 0.0681in; depth, + = 0.0481in; and corner radius at bottom of groove,

r =0.0lin
) 0.01 0.068
ig. A-15-1 i t=——=0.208 t=——=142
From Fig. A-15-16, with r/ 0.048 ,and a/ 0.043

K, =43, g = 0.65 (Fig. 6-20)
K;=140.6543—1)=3.15

32K;M,  32(3.15)(2398 :
o | SERMa] 15205 9N Py L 17930 psi
wd? 7(1.625)

S. 33300
n = o T 1793b T 1 or
Quickly check if point M might be critical. Only bending is present, and the
moment is small, but the diameter is small and the stress concentration is high
for a sharp fillet required for a bearing. From the moment diagram,
M, = 959 Ibf - in,and M,, =T, =T, =0
Estimate K; = 2.7 from Table 7-1, d = 1.0 in, and fillet radius r to fit typical
bearing.

r/d = 0.02, r = 0.02(1) = 0.02
¢ = 0.7 (Fig. 6-20)
Ky =1+(0.7)(27—1)=2.19
| 32KpM,  32(2.19)(959)

L il — 21 390psi
g =7k (1)} pst
S, 33300
= o T 2139

Should be OK. Close enough to recheck after bearing is selected.

With the diameters specified for the critical locations, fill in trial values for
the rest of the diameters, taking into account typical shoulder heights for
bearing and gear support.

D, =D;=1.0in

Dy = Dg = 1.41in

D3 = Ds = 1.625 in

Dy =2.01n
The bending moments are much less on the left end of shaft, so D, D;, and D;
could be smaller. However, unless weight is an issue, there is little advantage to

requiring more material removal. Also, the extra rigidity may be needed to keep
deflections small.




Table 7-2

Typical Maximum
Ranges for Slopes and
Transverse Deflections

/=5
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0
°
D

Tapered roller 0.0005—0.0012 rad
Cylindrical roller 0.0008—0.0012 rad
Deep-groove ball 0.001—0.003 rad
Spherical ball 0.026—0.052 rad
Self-align ball 0.026—0.052 rad
Uncrowned spur gear < 0.0005 rad

0
D
D

0
D
D

0

Spur gears with P < 10 teeth/in 0.010in
Spur gears with 11 < P< 19 0.005 in
Spur gears with 20 < P < 50 0.003 in

Deflection Considerations

Deflection analysis at even a single point of interest requires complete geometry infor-
mation for the entire shaft. For this reason, it is desirable to design the dimensions at
critical locations to handle the stresses, and fill in reasonable estimates for all other
dimensions, before performing a deflection analysis. Deflection of the shaft, both lin-
ear and angular, should be checked at gears and bearings. Allowable deflections will
depend on many factors, and bearing and gear catalogs should be used for guidance
on allowable misalignment for specific bearings and gears. As a rough guideline, typ-
ical ranges for maximum slopes and transverse deflections of the shaft centerline are
given in Table 7-2. The allowable transverse deflections for spur gears are dependent
on the size of the teeth, as represented by the diametral pitch P = number of
teeth/pitch diameter.

In Sec. 44 several beam deflection methods are described. For shafts, where the
deflections may be sought at a number of different points, integration using either
singularity functions or numerical integration is practical. In a stepped shaft, the cross-
sectional properties change along the shaft at each step, increasing the complexity of
integration, since both M and / vary. Fortunately, only the gross geometric dimensions
need to be included, as the local factors such as fillets, grooves, and keyways do not
have much impact on deflection. Example 4-7 demonstrates the use of singularity
functions for a stepped shaft. Many shafts will include forces in multiple planes,
requiring either a three dimensional analysis, or the use of superposition to obtain
deflections in two planes which can then be summed as vectors.

A deflection analysis is straightforward, but it is lengthy and tedious to carry out
manually, particularly for multiple points of interest. Consequently, practically all
shaft deflection analysis will be evaluated with the assistance of software. Any
general-purpose finite-element software can readily handle a shaft problem (see
Chap. 19). This is practical if the designer is already familiar with using the software
and with how to properly model the shaft. Special-purpose software solutions for
3-D shaft analysis are available, but somewhat expensive if only used occasionally.
Software requiring very little training is readily available for planar beam analysis,
and can be downloaded from the internet. Example 7-3 demonstrates how to incor-
porate such a program for a shaft with forces in multiple planes.
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EXAMPLE 7-3 |

This example problem is part of a larger case study. See Chap. 18 for the full context.
In Example 7-2 a preliminary shaft geometry was obtained on the basis of
design for stress. The resulting shaft is shown in Fig. 7-10, with proposed
diameters of
D1 = D7 =1in

D2 = Ds =141in
D3 = D5 =1.625in
D4 =2.01in

Check that the deflections and slopes at the gears and bearings are acceptable.
If necessary, propose changes in the geometry to resolve any problems.

Solution

A simple planar beam analysis program will be used. By modeling the shaft
twice, with loads in tfwo orthogonal planes, and combining the results, the shaft
deflections can readily be obtained. For both planes, the material is selected
(steel with E = 30 Mpsi), the shaft lengths and diameters are entered, and the
bearing locations are specified. Local details like grooves and keyways are
ignored, as they will have insignificant effect on the deflections. Then the tan-
gential gear forces are entered in the horizontal xy plane model, and the radial
gear forces are entered in the vertical yz plane model. The software can calcu-
late the bearing reaction forces, and numerically integrate to generate plots
for shear, moment, slope, and deflection, as shown in Fig. 7-11.

Moment

- IR

Ibf

Shear

Moment

—

Shear

Xy plane xz plane

A A A A
[ 1 [ 1
Beam length: 11.5 in Beam length: 11.5 in
N / /

/ 1 / it
Deflection Deflection
deg \ T

Slope Slope

/\ Ibf-in /\ Ibf-in

Ibf

Figure 7-11

Shear, moment, slope, and deflection plots from two planes. (Source: Beam 2D Stress Analysis, Orand

Systems, Inc.)
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Point of interest xz plane xy plane Total
Left bearing slope 0.02263 deg 0.01770 deg 0.02872 deg
0.000501 rad
Right bearing slope 0.05711 deg 0.02599 deg 0.06274 deg
0.001095 rad
Left gear slope 0.02067 deg 0.01162 deg 0.02371 deg
0.000414 rad
Right gear slope 0.02155 deg 0.01149 deg 0.02442 deg
0.000426 rad
Left gear deflection 0.0007568 in 0.0005153 in 0.0009155 in
Right gear deflection 0.0015870 in 0.0007535 in 0.0017567 in

Table 7-3

Slope and Deflection Values at Key Locations

The deflections and slopes at points of inferest are obt

and combinhed with orthogonal vector addition, that is, § =

are shown in Table 7-3.

the plots,

ai
/8%, + 82%,. Results

Whether these values are acceptable will depend on the specific bearings
and gears selected, as well as the level of performance expected. According
to the guidelines in Table 7-2, all of the bearing slopes are well below typical
limits for ball bearings. The right bearing slope is within the typical range for
cylindrical bearings. Since the load on the right bearing is relatively high, a
cylindrical bearing might be used. This constraint should be checked against

the specific bearing specifications once the bearing is selected.

The gear slopes and deflections more than satisfy the limits recommended
in Table 7-2. It is recommended to proceed with the design, with an
awareness that changes that reduce rigidity should warrant another
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Once deflections at various points have been determined, if any value is larger

than the allowable deflection at that point, a new diameter can be found from

dnew =

1/4
nqYold

Yall

(7-17)

where y, is the allowable deflection at that station and n, is the design factor. Similarly,
if any slope is larger than the allowable slope 6,;, a new diameter can be found from
na(dy/dx)oa |

(slope)an
where (slope),; is the allowable slope. As a result of these calculations, determine the
largest dyew/doa ratio, then multiply all diameters by this ratio. The tight constraint
will be just tight, and all others will be loose. Don’t be too concerned about end jour-
nal sizes, as their influence is usually negligible. The beauty of the method is that the
deflections need to be completed just once and constraints can be rendered loose but
for one, with diameters all identified without reworking every deflection.

dnew = Uold (7_] 8)
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EXAMPLE 7-4

Solution

For the shaft in Example 7-3, it was noted that the slope at the right bearing is near
the limit for a cylindrical roller bearing. Determine an appropriate increase in diam-
eters to bring this slope down to 0.0005 rad.

Applying Eq. (7-17) to the deflection at the right bearing gives

1/4 1/4
oo = dgg|"@810PC01 | | (DO001095) |55 o
slopean (0.0005)
Multiplying all diameters by the ratio
w21
o _ 1216 _ 516
dold 1.0

gives a new set of diameters,
Dy = D;=1.2161in
D, = Dg = 1.702 in
D3 = Ds = 1.976 in
D, =2.432 in

Repeating the beam deflection analysis of Example 7-3 with these new diameters pro-
duces a slope at the right bearing of 0.0005 in, with all other deflections less than
their previous values.

The transverse shear V at a section of a beam in flexure imposes a shearing deflec-
tion, which is superposed on the bending deflection. Usually such shearing deflection
is less than 1 percent of the transverse bending deflection, and it is seldom evaluated.
However, when the shaft length-to-diameter ratio is less than 10, the shear compo-
nent of transverse deflection merits attention. There are many short shafts. A tabular
method is explained in detail, with examples elsewhere’.

For right-circular cylindrical shafts in torsion the angular deflection 6 is given in
Eq. (4-5). For a stepped shaft with individual cylinder length /; and torque 7;, the
angular deflection can be estimated from

Ti1;
o= Zei - Z G;J;

or, for a constant torque throughout homogeneous material, from

T I
h=—3 = 7-20
G (7-20)

This should be treated only as an estimate, since experimental evidence shows that
the actual ¢ is larger than given by Egs. (7-19) and (7-20).

(7-19)

’C.R. Mischke, “Tabular Method for Transverse Shear Deflection,” Sec. 17.3 in Joseph E. Shigley, Charles
R. Mischke, and Thomas H. Brown, Jr. (eds.), Standard Handbook of Machine Design, 3rd ed., McGraw-
Hill, New York, 2004.

3R. Bruce Hopkins, Design Analysis of Shafts and Beams, McGraw-Hill, New York, 1970, pp. 93-99.
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Figure 7-12

(a) A uniform-diameter shaft for
Eq. (7-22). (b) A segmented
uniform-diameter shaft for

Eq. (7-23).
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If torsional stiffness is defined as k; = 7;/6; and, since 6; = T;/k; and
0 =56, =>(T;/k;), for constant torque 6 = T > (1/k;), it follows that the tor-
sional stiffness of the shaft k in terms of segment stiffnesses is

1 1
Ezzk_ (7-21)

Critical Speeds for Shafts

When a shaft is turning, eccentricity causes a centrifugal force deflection, which is
resisted by the shaft’s flexural rigidity E7. As long as deflections are small, no harm
is done. Another potential problem, however, is called critical speeds: at certain speeds
the shaft is unstable, with deflections increasing without upper bound. It is fortunate
that although the dynamic deflection shape is unknown, using a static deflection curve
gives an excellent estimate of the lowest critical speed. Such a curve meets the bound-
ary condition of the differential equation (zero moment and deflection at both bear-
ings) and the shaft energy is not particularly sensitive to the exact shape of the deflec-
tion curve. Designers seek first critical speeds at least twice the operating speed.

The shaft, because of its own mass, has a critical speed. The ensemble of attach-
ments to a shaft likewise has a critical speed that is much lower than the shaft’s intrin-
sic critical speed. Estimating these critical speeds (and harmonics) is a task of the
designer. When geometry is simple, as in a shaft of uniform diameter, simply
supported, the task is easy. It can be expressed* as

x\* [El (=n\’ |gEI
=PV =05 7

where m is the mass per unit length, A the cross-sectional area, and y the specific
weight. For an ensemble of attachments, Rayleigh’s method for lumped masses gives®

o =[S (7-23)
Z w; y;

where w; is the weight of the ith location and y; is the deflection at the ith body loca-
tion. It is possible to use Eq. (7-23) for the case of Eq. (7-22) by partitioning the shaft
into segments and placing its weight force at the segment centroid as seen in Fig. 7-12.

y

(@)

(b)

“William T. Thomson and Marie Dillon Dahleh, Theory of Vibration with Applications, Prentice Hall,
Sthed., 1998, p. 273.

SThomson, op. cit., p. 357.
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Figure 7-1 3 y Unit load
\
) b, |
The influence coefficient 8;; is Kl !
the deflection at i due to a unit *xi*‘
load af j. (T X)) x
4 \

Computer assistance is often used to lessen the difficulty in finding transverse deflec-
tions of a stepped shaft. Rayleigh’s equation overestimates the critical speed.

To counter the increasing complexity of detail, we adopt a useful viewpoint. Inas-
much as the shaft is an elastic body, we can use influence coefficients. An influence
coefficient is the transverse deflection at location i on a shaft due to a unit load at
location j on the shaft. From Table A-9—6 we obtain, for a simply supported beam
with a single unit load as shown in Fig. 7-13,

bjxi (12 2 2)

6EI T i =4
8ii = 7-24
! M(zm —?—x))  x>a =24
6EIl A to

For three loads the influence coefficients may be displayed as

| In 312 313
2 821 822 823
3 I3 332 933

Maxwell’s reciprocity theorem® states that there is a symmetry about the main diag-
onal, composed of 811, 62, and 833, of the form §;; = §;;. This relation reduces the
work of finding the influence coefficients. From the influence coefficients above, one
can find the deflections y;, y», and y3 of Eq. (7-23) as follows:

yi = F1811 + F2é12 + F3613
v2 = F1821 + 2805 + F3623 (7-25)
y3 = F1831 + F283 + F3633

The forces F; can arise from weight attached w; or centrifugal forces m;w?y;. The
equation set (7-25) written with inertial forces can be displayed as

yi = mi@’y1811 + maw?y:81n + myw’y3dis
V2 = mi@y1821 + maw*y28y + myw’y3das

V3 = mi@’y1831 + maw*y283 + myw’ysdss

®Thomson, op. cit., p. 167.
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which can be rewritten as
(mi811 — 1/@*)y1 + (m2812)y2 + (m3813)y3 = 0
(m1821)y1 + (M2dyy — 1/@)ys + (m3823)y3 = 0 (a)
(m1831)y1 + (M2832) y2 + (m3833 — 1/w?)y; =0

Equation set (a) is three simultaneous equations in terms of y;, y,, and y;. To avoid
the trivial solution y; = y, = y3 = 0, the determinant of the coefficients of y;, y,, and
y3 must be zero (eigenvalue problem). Thus,

(m811 — 1/w?) my6812 m3d13
mié (m282 — 1/w?) m3623 =0 (7-2¢6)
mi 83 my83» (m3833 — 1/w?)

which says that a deflection other than zero exists only at three distinct values of w,
the critical speeds. Expanding the determinant, we obtain

1\ 1\?
(E) — (m1811 + mydy + m3833) (;) +---=0 (7-27)

The three roots of Eq. (7-27) can be expressed as 1/a)f, l/a)g, and l/a)g. Thus
Eq. (7-27) can be written in the form

LN (L N1 1y
o )\ )\ W)

or
1y’ 111 1)
(7) ‘(E*@*J&)(@) . 72
Comparing Eqgs. (7-27) and (7-28) we see that
1 1 1
— + — + — = midn + madn + m3d3 (7-29)

wp W, W

If we had only a single mass m; alone, the critical speed would be given by 1/w?* =
m18;1. Denote this critical speed as w;; (which considers only m; acting alone). Like-
wise for m, or mj3 acting alone, we similarly define the terms 1 /co%2 = my8y or
1/w3;, = m3833, respectively. Thus, Eq. (7-29) can be rewritten as

1 1 1 1 1 1

—2+—2+—2=—2+—2+—2 (7—30)

wy W, w3 W W) W3
If we order the critical speeds such that w; < w, < w3, then 1/w} > 1/w3, and 1/w3.
So the first, or fundamental, critical speed w; can be approximated by

1;1+1+1
%w%l wgz a)§3

(7-31)
1)

This idea can be extended to an n-body shaft:

1 "1
=Y — 7-32
p ; i (7-32)
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EXAMPLE 7-5

Solution

Figure 7-14

(a) A T-in uniform-diameter
shaft for Ex. 7-5.

(b Superposing of equivalent
loads at the center of the shaft
for the purpose of finding the
first critical speed.

This is called Dunkerley’s equation. By ignoring the higher mode term(s), the first
critical speed estimate is lower than actually is the case.

Since Eq. (7-32) has no loads appearing in the equation, it follows that if each
load could be placed at some convenient location transformed into an equivalent load,
then the critical speed of an array of loads could be found by summing the equiva-
lent loads, all placed at a single convenient location. For the load at station 1, placed
at the center of span, denoted with the subscript ¢, the equivalent load is found from

2 8 8
(,()1 = =
wid;p  Wiclee

or
St

Wi = Wi 3 (7-33)

Consider a simply supported steel shaft as depicted in Fig. 7-14, with 1 in diameter
and a 31-in span between bearings, carrying two gears weighing 35 and 55 1bf.

(a) Find the influence coefficients.

(b) Find Y wy and Y wy? and the first critical speed using Rayleigh’s equation,
Eq. (7-23).

(¢) From the influence coefficients, find w;; and wy;.

(d) Using Dunkerley’s equation, Eq. (7-32), estimate the first critical speed.

(e) Use superposition to estimate the first critical speed.

(f) Estimate the shaft’s intrinsic critical speed. Suggest a modification to Dunkerley’s
equation to include the effect of the shaft’s mass on the first critical speed of the
attachments.

( ) wd JI(1) . 4

6E11 = 6(30)10°(0.049 09)31 = 0.2739(10°) 1bf - in®

w, =35 Ibf w,= 55 Ibf
<— 7 in 13 in 11 in —>
y y
X
3 3
31in
(a)
y wy, | 17.11bf
\
15.5in 15.5in
Wy, 46.1 1bf

(b)
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From Eq. set (7-24),
5 _ DG 24 7
= 0.2739(10°)
1120)(312 = 112 — 20%)
8 = 3
0.2739(10%)
11(7)(31% = 112 — 72)
0.2739(10%)

=2.061(107%) in/Ibf

= 3.534(10~%) in/Ibf

S =26 = = 2.224(107%) in/Ibf

Answer

1 p

] 2.061(1074) 2.224(1074)
2 2.224(1074) 3.534(1074)

yi = widi + wrdin = 35(2.061)10~% + 55(2.224)10~* = 0.01945 in
¥ = wida1 + wady = 35(2.224)107* + 55(3.534)10~* = 0.027 22 in
(b) > wiyi = 35(0.01945) + 55(0.02722) = 2.178 Ibf - in
Answer > wiy? = 35(0.01945)> + 55(0.02722)* = 0.05399 Ibf - in’

Answer ST 124.8 rad/ 1192 rev/mi
= —_— = .0 rad/s T T min
@ 0.05399 » 0 v

g 386.1 .
Wi = = 231.4 rad/s, or 2210 rev/min
w1811 35(2.061)10—

[ 3861
Answer won == is — = 555,530y 705 = 1409 rads, or 1346 rev/min

(©)

Answer

1 1 1 1
d =y - 6905107
@ w% Z ‘0121 231.42 + 140.92 ( )
. 1 .
Answer w; = .| ——— = 120.3 rad/s, or 1149 rev/min
6.905(10-5)

which is less than part b, as expected.
(e) From Eq. (7-24),

beexee(I” = b2, — x7.)  15.5(15.5)(312 — 15.5* — 15.5%)
6E1l N 0.2739(10%)
= 4.215(107%) in/Ibf

800 =

375

ey
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Answer

Answer

Answer

Answer

/=7

From Eq. (7-33),
811 2.061(107%)
wie = wi5— =35 —————
Bce 4.215(10~%)
8 . 3.534(107%)

Wae = W2 = 2 o 15(10-%)

1
o — L I 386 — 120.4 rad/s, or 1150 rev/min
See > wie | 421510-H(17.11 + 46.11)

which, except for rounding, agrees with part d, as expected.
(f) For the shaft, E = 30(10°) psi, y = 0.282 Ibf/in®, and A = 7(1?)/4 = 0.7854 in*.
Considering the shaft alone, the critical speed, from Eq. (7-22), is

7\* [gEI 7\ /386.1(30)10(0.049 09)
a)sz — - = -
I Ay 31 0.7854(0.282)

= 520.4 rad/s, or 4970 rev/min

= 17.11 Ibf

=46.11 Ibf

We can simply add 1/w? to the right side of Dunkerley’s equation, Eq. (1), to include
the shaft’s contribution,

1 1
— = 4 6.905(107%) = 7.274(107
w? 52042 + (10 a0

w = 117.3 rad/s, or 1120 rev/min

which is slightly less than part d, as expected.
The shaft’s first critical speed w; is just one more single effect to add to Dunker-
ley’s equation. Since it does not fit into the summation, it is usually written up front.

1 .1 £
w—%=—2+z—2 (7—34)

s i=1 il

Common shafts are complicated by the stepped-cylinder geometry, which makes the
influence-coefficient determination part of a numerical solution.

Miscellaneous Shaft Components

Setscrews

Unlike bolts and cap screws, which depend on tension to develop a clamping force, the
setscrew depends on compression to develop the clamping force. The resistance to axial
motion of the collar or hub relative to the shaft is called holding power. This holding
power, which is really a force resistance, is due to frictional resistance of the contacting
portions of the collar and shaft as well as any slight penetration of the setscrew into the
shaft.



Figure 7-15

Socket setscrews: (a) flat point;

(b] cup point; (c] oval point;
(d) cone point; (e half-dog
point.

Table 7-4

Typical Holding Power
(Force) for Socket
Sefscrews ™

Source: Unbrako Division, SPS
Technologies, Jenkintown, Pa.
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Figure 7-15 shows the point types available with socket setscrews. These are also
manufactured with screwdriver slots and with square heads.
Table 7—4 lists values of the seating torque and the corresponding holding power
for inch-series setscrews. The values listed apply to both axial holding power, for

Seating

Torque,

Ibf - in

#0 1.0

#1 1.8

#2 1.8
#3 5
#4 5
#5 10
#6 10
#8 20
#10 36
1 87
f% 165
% 290
{% 430
% 620
{% 620
g 1325
% 2400
g 5200
] 7200

Holding
Power,

Ibf

50
65
85
120
160
200
250
385
540

1000
1500
2000
2500
3000
3500
4000
5000
6000
7000

*Based on alloy-steel screw against steel shaft, class 3A coarse or
fine threads in class 2B holes, and cup-point socket setscrews.
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Figure 7-16

(a) Square key; (b) round key;
(c and d) round pins; (e] taper
pin; [f] split tubular spring pin.
The pins in parts (e] and

(f) are shown longer than
necessary, fo illustrate the
chamfer on the ends, but their
lengths should be kept smaller
than the hub diameters to
prevent injuries due to
projections on rofating parts.

Table 7-5

Dimensions at Large End
of Some Standard Taper
Pins—Inch Series

resisting thrust, and the tangential holding power, for resisting torsion. Typical factors

of safety are 1.5 to 2.0 for static loads and 4 to 8 for various dynamic loads.
Setscrews should have a length of about half of the shaft diameter. Note that this

practice also provides a rough rule for the radial thickness of a hub or collar.

Keys and Pins

Keys and pins are used on shafts to secure rotating elements, such as gears, pulleys,
or other wheels. Keys are used to enable the transmission of torque from the shaft to
the shaft-supported element. Pins are used for axial positioning and for the transfer
of torque or thrust or both.

Figure 7-16 shows a variety of keys and pins. Pins are useful when the princi-
pal loading is shear and when both torsion and thrust are present. Taper pins are sized
according to the diameter at the large end. Some of the most useful sizes of these are
listed in Table 7-5. The diameter at the small end is

d =D —0.0208L (7-35)

where d = diameter at small end, in

D = diameter at large end, in

L = length, in




Table 7-6

Inch Dimensions for
Some Standard Square-
and RectangularKey
Applications

Source: Joseph E. Shigley,
"Unthreaded Fasteners,”
Chap. 24 in Joseph E.
Shigley, Charles R. Mischke,
and Thomas H. Brown, Jr.
leds.), Standard Handbook of
Machine Design, 3rd ed.,
McGraw-Hill, New York,
2004.
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Shaft Diameter

Key Size

5 z 3 3 3
16 16 32 32 64
z 9 1 3 3
16 16 8 32 64
1 1 1

8 8 16

9 7 3 1 1
16 8 16 8 16
3 3 3

16 16 32

7 11 1 3 3
8 4 4 16 32
1 1 1

4 4 8

11 13 5 1 1
4 8 16 4 8

5 5 5

16 16 32

13 13 3 1 1
8 4 8 4 8

3 3 3

8 8 16

3 1 1 3 3

17 27 z 8 76
1 1 1

2 2 4

1 3 5 7 7

2 2% § 16 %
5 5 5

8 8 16

3 1 3 1 1

23 37 i z 7}
3 3 3

4 4 8

For less important applications, a dowel pin or a drive pin can be used. A large
variety of these are listed in manufacturers’ catalogs.’

The square key, shown in Fig. 7-16aq, is also available in rectangular sizes. Stan-
dard sizes of these, together with the range of applicable shaft diameters, are listed in
Table 7-6. The shaft diameter determines standard sizes for width, height, and key depth.
The designer chooses an appropriate key length to carry the torsional load. Failure of
the key can be by direct shear, or by bearing stress. Example 7-6 demonstrates the
process to size the length of a key. The maximum length of a key is limited by the hub
length of the attached element, and should generally not exceed about 1.5 times the
shaft diameter to avoid excessive twisting with the angular deflection of the shaft. Mul-
tiple keys may be used as necessary to carry greater loads, typically oriented at 90° from
one another. Excessive safety factors should be avoided in key design, since it is desir-
able in an overload situation for the key to fail, rather than more costly components.

Stock key material is typically made from low carbon cold-rolled steel, and is
manufactured such that its dimensions never exceed the nominal dimension. This
allows standard cutter sizes to be used for the keyseats. A setscrew is sometimes used
along with a key to hold the hub axially, and to minimize rotational backlash when
the shaft rotates in both directions.

"See also Joseph E. Shigley, “Unthreaded Fasteners,” Chap. 24. In Joseph E. Shigley, Charles R. Mischke, and
Thomas H. Brown, Jr. (eds.), Standard Handbook of Machine Design, 3rd ed., McGraw-Hill, New York, 2004.
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Figure 7-17

(a) Gib-head key;
(b] Woodruff key.

Taper %” in 12"
%_(J F\LLJ =l
A
h

(a)

(b)

The gib-head key, in Fig. 7-17a, is tapered so that, when firmly driven, it acts to
prevent relative axial motion. This also gives the advantage that the hub position can
be adjusted for the best axial location. The head makes removal possible without
access to the other end, but the projection may be hazardous.

The Woodruff key, shown in Fig. 7-17b, is of general usefulness, especially when a
wheel is to be positioned against a shaft shoulder, since the keyslot need not be machined
into the shoulder stress-concentration region. The use of the Woodruff key also yields
better concentricity after assembly of the wheel and shaft. This is especially important at
high speeds, as, for example, with a turbine wheel and shaft. Woodruff keys are partic-
ularly useful in smaller shafts where their deeper penetration helps prevent key rolling.
Dimensions for some standard Woodruff key sizes can be found in Table 7-7, and Table
7-8 gives the shaft diameters for which the different keyseat widths are suitable.

Pilkey® gives values for stress concentrations in an end-milled keyseat, as a func-
tion of the ratio of the radius r at the bottom of the groove and the shaft diameter d.
For fillets cut by standard milling-machine cutters, with a ratio of r/d = 0.02,
Peterson’s charts give K, = 2.14 for bending and K,; = 2.62 for torsion without the
key in place, or K;; = 3.0 for torsion with the key in place. The stress concentration
at the end of the keyseat can be reduced somewhat by using a sled-runner keyseat,
eliminating the abrupt end to the keyseat, as shown in Fig. 7-17. It does, however,
still have the sharp radius in the bottom of the groove on the sides. The sled-runner
keyseat can only be used when definite longitudinal key positioning is not necessary.
It is also not as suitable near a shoulder. Keeping the end of a keyseat at least a distance

SW. D. Pilkey, Peterson’s Stress Concentration Factors, 2nd ed., John Wiley & Sons, New York, 1997,
pp. 408-409.



Table 7-7

Dimensions of Woodruff
Keys—Inch Series

Table 7-8

Sizes of Woodruff Keys
Suitable for Various
Shaft Diameters

Key Size

g

o=

wlw mlw glo glo glo M= m— m— Gl e gle Go Go Yo o= cl— cl— Geo Geo G -

O

— ol — oo\ Mo oo\ Aw ooln Mo colbr N|— oolin Nj— oofwo ool N—

A=

Height
b

0.109
0.172
0.172
0.203
0.250
0.203
0.250
0.313
0.250
0.313
0.375
0.313
0.375
0.438
0.375
0.438
0.547
0.438
0.547
0.641

0.547
0.641

Offset

(-]

&N Rlor &N Rler 5= Rl 51= &= 51— &= &= 51— &= 51— &l— &= Rl &= Rl R— 1= &—
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Keyseat Depth

Shaft

0.0728
0.1358
0.1202
0.1511
0.1981
0.1355
0.1825
0.2455
0.1669
0.2299
0.2919
0.2143
0.2763
0.3393
0.2450
0.3080
0.4170
0.2768
0.3858
0.4798
0.3545
0.4485

Hub

0.0372
0.0372
0.0529
0.0529
0.0529
0.0685
0.0685
0.0685
0.0841
0.0841
0.0841
0.0997
0.0997
0.0997
0.1310
0.1310
0.1310
0.1622
0.1622
0.1622
0.1935
0.1935

Keyseat
Width, in

leo o o= Yoo 51—

o

coleo Flon Bl—

Shaft Diameter, in

From

[0 NI— wle cles o

Z o

— Nw 5:‘

To (inclusive)

1
2
z
8
1
2
3
8
2

N NN
ol ool N—
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Figure 7-18

Typical uses for retaining rings.
(a) External ring and (b} its
application; (c) infernal ring
and (d) its application.

EXAMPLE 7-6

Solution

| Figure 7-19

e

BN
/‘E,E"

Retaining ring

(@) (b) (©) (d)

of d/10 from the start of the shoulder fillet will prevent the two stress concentrations
from combining with each other.’

Retaining Rings

A retaining ring is frequently used instead of a shaft shoulder or a sleeve to axially
position a component on a shaft or in a housing bore. As shown in Fig. 718, a groove
is cut in the shaft or bore to receive the spring retainer. For sizes, dimensions, and
axial load ratings, the manufacturers’ catalogs should be consulted.

Appendix Tables A—15-16 and A—15-17 give values for stress concentration fac-
tors for flat-bottomed grooves in shafts, suitable for retaining rings. For the rings to
seat nicely in the bottom of the groove, and support axial loads against the sides of
the groove, the radius in the bottom of the groove must be reasonably sharp, typically
about one-tenth of the groove width. This causes comparatively high values for stress
concentration factors, around 5 for bending and axial, and 3 for torsion. Care should
be taken in using retaining rings, particularly in locations with high bending stresses.

“Ibid, p. 381.

A UNS G10350 steel shaft, heat-treated to a minimum yield strength of 75 kpsi, has
a diameter of 1% in. The shaft rotates at 600 rev/min and transmits 40 hp through a
gear. Select an appropriate key for the gear.

A %-in square key is selected, UNS G10200 cold-drawn steel being used. The design
will be based on a yield strength of 65 kpsi. A factor of safety of 2.80 will be
employed in the absence of exact information about the nature of the load.

The torque is obtained from the horsepower equation

_ 63025H _ (63025)(40)

= 42001bf - in
n 600
From Fig. 7-19, the force F at the surface of the shaft is
= Z = ﬂ = 5850 Ibf
r 1.4375/2

By the distortion-energy theory, the shear strength is
Ssy = 0.577S, = (0.577)(65) = 37.5 kpsi



/=8
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Failure by shear across the area ab will create a stress of T = F/tl. Substituting the
strength divided by the factor of safety for 7 gives
Sy F 37.5(10) 5850

= — or =
n tl 2.80 0.3751

or [ = 1.16 in. To resist crushing, the area of one-half the face of the key is used:

S, F 65(10)° 5850

= — or =
n o 1)2 280  0.3751/2

and / = 1.34 in. The hub length of a gear is usually greater than the shaft diameter,
for stability. If the key, in this example, is made equal in length to the hub, it would
therefore have ample strength, since it would probably be 1% in or longer.

Limits and Fits

The designer is free to adopt any geometry of fit for shafts and holes that will ensure
the intended function. There is sufficient accumulated experience with commonly recur-
ring situations to make standards useful. There are two standards for limits and fits in
the United States, one based on inch units and the other based on metric units.'® These
differ in nomenclature, definitions, and organization. No point would be served by sep-
arately studying each of the two systems. The metric version is the newer of the two
and is well organized, and so here we present only the metric version but include a set
of inch conversions to enable the same system to be used with either system of units.

In using the standard, capital letters always refer to the hole; lowercase letters
are used for the shaft.

The definitions illustrated in Fig. 7-20 are explained as follows:

* Basic size is the size to which limits or deviations are assigned and is the same for
both members of the fit.
* Deviation is the algebraic difference between a size and the corresponding basic size.

e Upper deviation is the algebraic difference between the maximum limit and the
corresponding basic size.

* Lower deviation is the algebraic difference between the minimum limit and the
corresponding basic size.

e Fundamental deviation is either the upper or the lower deviation, depending on
which is closer to the basic size.

e Tolerance is the difference between the maximum and minimum size limits of a part.

e [International tolerance grade numbers (IT) designate groups of tolerances such that
the tolerances for a particular IT number have the same relative level of accuracy
but vary depending on the basic size.

* Hole basis represents a system of fits corresponding to a basic hole size. The fun-
damental deviation is H.

Preferred Limits and Fits for Cylindrical Parts, ANSI B4.1-1967. Preferred Metric Limits and Fits, ANSI
B4.2-1978.
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Figure 7-20

Definitions applied to a
cylindrical fit.

Upper deviation, 8, —>| |<— Max. size, d,,,

Lower deviation, 8§, —| h Min. size, d,;, —>|

International tolerance o
grade, A d (IT number)

Fundamental deviation, —=
o (letter)

f<— Basic size, D(d) —>
Lower deviation, 8, —»| j<—
Upper deviation, §, — <~

> yf Fundamental deviation,
International tolerance - o (letter)
grade, A D (IT number)

f<—— Min. size, D_. —>|

min

(«<—— Max. size, D, —>|

e Shaft basis represents a system of fits corresponding to a basic shaft size. The
fundamental deviation is h. The shaft-basis system is not included here.

The magnitude of the tolerance zone is the variation in part size and is the same
for both the internal and the external dimensions. The tolerance zones are specified
in international tolerance grade numbers, called IT numbers. The smaller grade num-
bers specify a smaller tolerance zone. These range from ITO to IT16, but only grades
IT6 to IT11 are needed for the preferred fits. These are listed in Tables A—11 to A—13
for basic sizes up to 16 in or 400 mm.

The standard uses tolerance position letters, with capital letters for internal dimen-
sions (holes) and lowercase letters for external dimensions (shafts). As shown in Fig. 7-20,
the fundamental deviation locates the tolerance zone relative to the basic size.

Table 7-9 shows how the letters are combined with the tolerance grades to estab-
lish a preferred fit. The ISO symbol for the hole for a sliding fit with a basic size of
32 mm is 32H7. Inch units are not a part of the standard. However, the designation
(1% in) H7 includes the same information and is recommended for use here. In both
cases, the capital letter H establishes the fundamental deviation and the number 7
defines a tolerance grade of IT7.

For the sliding fit, the corresponding shaft dimensions are defined by the symbol
32g6 [(12 in)g6].

The fundamental deviations for shafts are given in Tables A—11 and A—13. For
letter codes c, d, f, g, and h,

Upper deviation = fundamental deviation
Lower deviation = upper deviation — tolerance grade

For letter codes k, n, p, s, and u, the deviations for shafts are

Lower deviation = fundamental deviation
Upper deviation = lower deviation + tolerance grade



Table 7-9

Descriptions of Preferred
Fits Using the Basic
Hole System

Source: Preferred Metric Limits
and Fits, ANSI B4.2-1978.
See also BS 4500.
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Type of Fit Description

Clearance loose running fit: for wide commercial tolerances or
allowances on external members

Free running fit: not for use where accuracy is
essential, but good for large temperature variations,
high running speeds, or heavy journal pressures

Close running fit: for running on accurafe machines
and for accurate location af moderate speeds and
journal pressures

Sliding fit: where parts are not intended fo run freely,
but must move and turn freely and locate accurately

locational clearance fit: provides snug fit for location
of stationary parts, but can be freely assembled and
disassembled

Transition Llocational transition fit for accurate location, a
compromise between clearance and interference

Locational transition fit for more accurate location
where greater interference is permissible

Inferference Locational interference fit: for parts requiring rigidity
and alignment with prime accuracy of location but
without special bore pressure requirements

Medium drive fit: for ordinary steel parts or shrink fits on

light sections, the tightest fit usable with cast iron

Force fit: suitable for parts that can be highly stressed

or for shrink fits where the heavy pressing forces required

are impractical

Symbol
H11/c11

H%/d9

H8/f7

H7 /g6

H7/h6

H7 /k6

H7/n6

H7/p6

H7/s6

H7 /u6

The lower deviation H (for holes) is zero. For these, the upper deviation equals the

tolerance grade.
As shown in Fig. 7-20, we use the following notation:

D = basic size of hole
d = basic size of shaft
8, = upper deviation
8; = lower deviation
ér = fundamental deviation
AD = tolerance grade for hole
Ad = tolerance grade for shaft

Note that these quantities are all deterministic. Thus, for the hole,
Dyox = D + AD Dyin =D
For shafts with clearance fits c, d, f, g, and h,
dmax =d + 6 dmin =d +8p — Ad
For shafts with interference fits k, n, p, s, and u,

dmin =d + 6F dpax =d +0p + Ad

(7-36)

(7-37)

(7-38)
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EXAMPLE 7-7

Solution

Answer

Answer

Answer

Answer

EXAMPLE 7-8

Solution

Answer

Answer

Answer

Answer

Find the shaft and hole dimensions for a loose running fit with a 34-mm basic size.

From Table 7-9, the ISO symbol is 34H11/c11. From Table A-11, we find that tol-
erance grade ITI1 is 0.160 mm. The symbol 34H11/cl1 therefore says that
AD = Ad = 0.160 mm. Using Eq. (7-36) for the hole, we get

Duax = D + AD = 34 +0.160 = 34.160 mm

Dyin = D = 34.000 mm
The shaft is designated as a 34cl1 shaft. From Table A—12, the fundamental devia-
tion is 87 = —0.120 mm. Using Eq. (7-37), we get for the shaft dimensions
dpax =d + 8 =34 + (—0.120) = 33.880 mm

dpin = d + 8 — Ad =34 4 (—0.120) — 0.160 = 33.720 mm

Find the hole and shaft limits for a medium drive fit using a basic hole size of 2 in.

The symbol for the fit, from Table 7-8, in inch units is (2 in)H7/s6. For the hole, we
use Table A—13 and find the IT7 grade to be AD = 0.0010 in. Thus, from Eq. (7-36),

Dyox = D+ AD =2+0.0010 = 2.0010 in

Dyin = D = 2.0000 in

The IT6 tolerance for the shaft is Ad = 0.0006 in. Also, from Table A—14, the
fundamental deviation is §z = 0.0017 in. Using Eq. (7-38), we get for the shaft that

dmin =d +6p =2+ 0.0017 = 2.0017 in

dmax =d +8p + Ad =2+ 0.0017 + 0.0006 = 2.0023 in

Stress and Torque Capacity in Interference Fits

Interference fits between a shaft and its components can sometimes be used effec-
tively to minimize the need for shoulders and keyways. The stresses due to an inter-
ference fit can be obtained by treating the shaft as a cylinder with a uniform external
pressure, and the hub as a hollow cylinder with a uniform internal pressure. Stress
equations for these situations were developed in Sec. 3—16, and will be converted here
from radius terms into diameter terms to match the terminology of this section.
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The pressure p generated at the interface of the interference fit, from Eq. (3—56)
converted into terms of diameters, is given by

8

= 7-39
P=" Grd N, d(Prd (7-39)
— ot —5—5 v
E, \d? — d? E; \d* — d}
or, in the case where both members are of the same material,
ES [ (d?> —d»(d* - d?
L _ B3 [ = dd —dp) 7-40)
2d? d —d?

where d is the nominal shaft diameter, d; is the inside diameter (if any) of the shaft,
d, is the outside diameter of the hub, E is Young’s modulus, and v is Poisson’s ratio,
with subscripts o and i for the outer member (hub) and inner member (shaft), respec-
tively. § is the diametral interference between the shaft and hub, that is, the differ-
ence between the shaft outside diameter and the hub inside diameter.

8 = dshate — dnup (7-41)

Since there will be tolerances on both diameters, the maximum and minimum
pressures can be found by applying the maximum and minimum interferences. Adopt-
ing the notation from Fig. 7-20, we write

Smin = dmin — Dmax (7_42)
Smax = dmax — Dmin (7_43)

where the diameter terms are defined in Eqgs. (7-36) and (7-38). The maximum inter-
ference should be used in Eq. (7-39) or (7-40) to determine the maximum pressure
to check for excessive stress.

From Eqgs. (3-58) and (3-59), with radii converted to diameters, the tangential
stresses at the interface of the shaft and hub are

d* +d;?
O, shaft = —Pm (7-44)
d,* +d*
Ot hub = Ph (7-45)
The radial stresses at the interface are simply
Oy, shaft = — P (7_46)
Or hub = —P (7_47)

The tangential and radial stresses are orthogonal, and should be combined using a
failure theory to compare with the yield strength. If either the shaft or hub yields dur-
ing assembly, the full pressure will not be achieved, diminishing the torque that can be
transmitted. The interaction of the stresses due to the interference fit with the other
stresses in the shaft due to shaft loading is not trivial. Finite-element analysis of the
interface would be appropriate when warranted. A stress element on the surface of a
rotating shaft will experience a completely reversed bending stress in the longitudinal
direction, as well as the steady compressive stresses in the tangential and radial direc-
tions. This is a three-dimensional stress element. Shear stress due to torsion in shaft
may also be present. Since the stresses due to the press fit are compressive, the fatigue
situation is usually actually improved. For this reason, it may be acceptable to simplify
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7-2

Problem 7-2

Section of a shaft confaining a
grinding-relief groove. Unless
otherwise specified, the diameter at
the root of the groove d, = d — 2r,
and though the section of diameter d
is ground, the root of the groove is
still o machined surface.

the shaft analysis by ignoring the steady compressive stresses due to the press fit. There
is, however, a stress concentration effect in the shaft bending stress near the ends of the
hub, due to the sudden change from compressed to uncompressed material. The design
of the hub geometry, and therefore its uniformity and rigidity, can have a significant
effect on the specific value of the stress concentration factor, making it difficult to report
generalized values. For first estimates, values are typically not greater than 2.

The amount of torque that can be transmitted through an interference fit can be
estimated with a simple friction analysis at the interface. The friction force is the prod-
uct of the coefficient of friction f and the normal force acting at the interface. The
normal force can be represented by the product of the pressure p and the surface area
A of interface. Therefore, the friction force Fy is

Fr=fN=f(pA) = flp2r(d/2)l] = fpr dl (7-48)

where [ is the length of the hub. This friction force is acting with a moment arm of
d/2 to provide the torque capacity of the joint, so

T = Fpd/2 = fpr di(d/2)
T = (7/2) fpld? (7-49)

The minimum interference, from Eq. (7-42), should be used to determine the
minimum pressure to check for the maximum amount of torque that the joint should
be designed to transmit without slipping.

PROBLEMS

A shaft is loaded in bending and torsion such that M, = 600 Ibf - in, 7, = 400 Ibf - in, M,, =
5001bf - in, and 7,, = 300 Ibf - in. For the shaft, S, = 100 kpsi and S, = 80 kpsi, and a fully
corrected endurance limit of S, = 30 kpsi is assumed. Let K; = 2.2 and Ky, = 1.8. With a
design factor of 2.0 determine the minimum acceptable diameter of the shaft using the

(a) DE-Gerber criterion.

(b) DE-elliptic criterion.

(c) DE-Soderberg criterion.

(d) DE-Goodman criterion.

Discuss and compare the results.

The section of shaft shown in the figure is to be designed to approximate relative sizes of
d = 0.75D and r = D /20 with diameter d conforming to that of standard metric rolling-bearing
bore sizes. The shaft is to be made of SAE 2340 steel, heat-treated to obtain minimum strengths
in the shoulder area of 1226-MPa ultimate tensile strength and 1130-MPa yield strength with a
Brinell hardness not less than 368. At the shoulder the shaft is subjected to a completely reversed
bending moment of 70 N - m, accompanied by a steady torsion of 45 N - m. Use a design factor
of 2.5 and size the shaft for an infinite life.

T
SR E=




Problem 7-3

Problem 7-4

Material moves under the roll.
Dimensions in inches.

7-5
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The rotating solid steel shaft is simply supported by bearings at points B and C and is driven
by a gear (not shown) which meshes with the spur gear at D, which has a 6-in pitch diameter.
The force F from the drive gear acts at a pressure angle of 20°. The shaft transmits a torque
to point A of T4 = 3000 Ibf - in. The shaft is machined from steel with Sy, = 60 kpsi and
Su: = 80 kpsi. Using a factor of safety of 2.5, determine the minimum allowable diameter of

the 10 in section of the shaft based on (a) a static yield analysis using the distortion energy
theory and (b) a fatigue-failure analysis. Assume sharp fillet radii at the bearing shoulders for
estimating stress concentration factors.

A geared industrial roll shown in the figure is driven at 300 rev/min by a force F acting on a
3-in-diameter pitch circle as shown. The roll exerts a normal force of 30 Ibf/in of roll length
on the material being pulled through. The material passes under the roll. The coefficient of fric-
tion is 0.40. Develop the moment and shear diagrams for the shaft modeling the roll force as
(a) a concentrated force at the center of the roll, and (b) a uniformly distributed force along
the roll. These diagrams will appear on two orthogonal planes.

Gear 4
3 dia.

Design a shaft for the situation of the industrial roll of Prob. 7-4 with a design factor of 2 and
a reliability goal of 0.999 against fatigue failure. Plan for a ball bearing on the left and a cylin-
drical roller on the right. For deformation use a factor of safety of 2.
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7-6

Problem 7-6

Bearing shoulder fillets 0.030 in,
others % in. Sled-runner keyway is
3% in long. Dimensions in inches.

7-7

Problem 7-7

Dimensions in inches.

7-8

The figure shows a proposed design for the industrial roll shaft of Prob. 7-4. Hydrodynamic film
bearings are to be used. All surfaces are machined except the journals, which are ground and pol-
ished. The material is 1035 HR steel. Perform a design assessment. Is the design satisfactory?
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In the double-reduction gear train shown, shaft a is driven by a motor attached by a flexible

coupling attached to the overhang. The motor provides a torque of 2500 Ibf - in at a speed of

1200 rpm. The gears have 20° pressure angles, with diameters shown on the figure. Use an

AISI 1020 cold-drawn steel. Design one of the shafts (as specified by the instructor) with a

design factor of 1.5 by performing the following tasks.

(a) Sketch a general shaft layout, including means to locate the gears and bearings, and to trans-
mit the torque.

(b) Perform a force analysis to find the bearing reaction forces, and generate shear and bend-
ing moment diagrams.

(c) Determine potential critical locations for stress design.

(d) Determine critical diameters of the shaft based on fatigue and static stresses at the critical
locations.

(e) Make any other dimensional decisions necessary to specify all diameters and axial dimen-
sions. Sketch the shaft to scale, showing all proposed dimensions.

(f) Check the deflection at the gear, and the slopes at the gear and the bearings for satisfaction
of the recommended limits in Table 7-2.

(g) If any of the deflections exceed the recommended limits, make appropriate changes to bring
them all within the limits.

[=)}

In the figure is a proposed shaft design to be used for the input shaft @ in Prob. 7-7. A ball

bearing is planned for the left bearing, and a cylindrical roller bearing for the right.

(a) Determine the minimum fatigue factor of safety by evaluating at any critical locations. Use a
fatigue failure criteria that is considered to be typical of the failure data, rather than one that
is considered conservative. Also ensure that the shaft does not yield in the first load cycle.



Problem 7-8

Shoulder fillets at bearing seat
0.030-in radius, others %-In radius,
except righthand bearing seat

transition, % in. The material is

1030 HR. Keyways 3 in wide by
3 in deep. Dimensions in inches.

16

7-9

Problem 7-9

Dimensions in inches.

7-10

Problem 7-10

Dimensions in millimeters.
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(b) Check the design for adequacy with respect to deformation, according to the recommenda-

tions in Table 7-2.

8
73
— ’4— 0.354
1.875
1574 PN ¥ v
o ‘
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P 1.574 T 1.500

11

The shaft shown in the figure is driven by a gear at the right keyway, drives a fan at the left
keyway, and is supported by two deep-groove ball bearings. The shaft is made from AISI 1020
cold-drawn steel. At steady-state speed, the gear transmits a radial load of 230 1bf and a tan-
gential load of 633 1bf at a pitch diameter of 8 in.
(a) Determine fatigue factors of safety at any potentially critical locations.

(b) Check that deflections satisfy the suggested minimums for bearings and gears.

11
7 X g keyway 1

12.87
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An AIST 1020 cold-drawn steel shaft with the geometry shown in the figure carries a transverse
load of 7 kN and a torque of 107 N - m. Examine the shaft for strength and deflection. If the
largest allowable slope at the bearings is 0.001 rad and at the gear mesh is 0.0005 rad, what

30 20
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7-11

Problem 7-11

Dimensions in inches.

7-12

Problem 7-12

Dimensions in inches.

7-13

is the factor of safety guarding against damaging distortion? What is the factor of safety guard-
ing against a fatigue failure? If the shaft turns out to be unsatisfactory, what would you rec-
ommend to correct the problem?

A shaft is to be designed to support the spur pinion and helical gear shown in the figure on
two bearings spaced 28 in center-to-center. Bearing A is a cylindrical roller and is to take only
radial load; bearing B is to take the thrust load of 220 Ibf produced by the helical gear and its
share of the radial load. The bearing at B can be a ball bearing. The radial loads of both gears
are in the same plane, and are 660 Ibf for the pinion and 220 Ibf for the gear. The shaft speed
is 1150 rev/min. Design the shaft. Make a sketch to scale of the shaft showing all fillet sizes,
keyways, shoulders, and diameters. Specify the material and its heat treatment.

& brg 5 G brg
iy

_— S/ N —

A heat-treated steel shaft is to be designed to support the spur gear and the overhanging worm
shown in the figure. A bearing at A takes pure radial load. The bearing at B takes the worm-
thrust load for either direction of rotation. The dimensions and the loading are shown in the
figure; note that the radial loads are in the same plane. Make a complete design of the shaft,
including a sketch of the shaft showing all dimensions. Identify the material and its heat treat-
ment (if necessary). Provide an assessment of your final design. The shaft speed is 310 rev/min.
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A bevel-gear shaft mounted on two 40-mm 02-series ball bearings is driven at 1720 rev/min
by a motor connected through a flexible coupling. The figure shows the shaft, the gear, and the
bearings. The shaft has been giving trouble—in fact, two of them have already failed—and the
down time on the machine is so expensive that you have decided to redesign the shaft your-
self rather than order replacements. A hardness check of the two shafts in the vicinity of the frac-
ture of the two shafts showed an average of 198 Bhn for one and 204 Bhn of the other. As closely
as you can estimate the two shafts failed at a life measure between 600 000 and 1 200 000 cycles



Problem 7-13

Dimensions in inches.

7-14

7-15

7-16

7-17
7-18

Problem 7-18

Dimensions in inches.

7-19
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of operation. The surfaces of the shaft were machined, but not ground. The fillet sizes were not
measured, but they correspond with the recommendations for the ball bearings used. You know
that the load is a pulsating or shock-type load, but you have no idea of the magnitude, because
the shaft drives an indexing mechanism, and the forces are inertial. The keyways are % in wide
by % in deep. The straight-toothed bevel pinion drives a 48-tooth bevel gear. Specify a new

shaft in sufficient detail to ensure a long and trouble-free life.

13 dia. 15 dia.

]

o~

A l-in-diameter uniform steel shaft is 24 in long between bearings.
(a) Find the lowest critical speed of the shaft.

(b) If the goal is to double the critical speed, find the new diameter.
(c) A half-size model of the original shaft has what critical speed?

Demonstrate how rapidly Rayleigh’s method converges for the uniform-diameter solid shaft of
Prob. 7-14, by partitioning the shaft into first one, then two, and finally three elements.

Compare Eq. (7-27) for the angular frequency of a two-disk shaft with Eq. (7-28), and note
that the constants in the two equations are equal.

(a) Develop an expression for the second critical speed.

(b) Estimate the second critical speed of the shaft addressed in Ex. 7-5, parts a and b.

For a uniform-diameter shaft, does hollowing the shaft increase or decrease the critical speed?

The shaft shown in the figure carries a 20-1bf gear on the left and a 35-1bf gear on the right.
Estimate the first critical speed due to the loads, the shaft’s critical speed without the loads,
and the critical speed of the combination.

20 Ibf 35 Ibf
2.000 l 2'172 2‘163 l 2.000
Y v
- 1 ﬂ
<2
9
14
15
16

A transverse drilled and reamed hole can be used in a solid shaft to hold a pin that locates and
holds a mechanical element, such as the hub of a gear, in axial position, and allows for the
transmission of torque. Since a small-diameter hole introduces high stress concentration, and a
larger diameter hole erodes the area resisting bending and torsion, investigate the existence of
a pin diameter with minimum adverse affect on the shaft. Then formulate a design rule. (Hint:
Use Table A-16.)
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7-20

7-21

7-22

7-23

7-24

A guide pin is required to align the assembly of a two-part fixture. The nominal size of the pin
is 15 mm. Make the dimensional decisions for a 15-mm basic size locational clearance fit.

An interference fit of a cast-iron hub of a gear on a steel shaft is required. Make the dimen-
sional decisions for a 45-mm basic size medium drive fit.

A pin is required for forming a linkage pivot. Find the dimensions required for a 50-mm basic
size pin and clevis with a sliding fit.

A journal bearing and bushing need to be described. The nominal size is 1 in. What dimen-
sions are needed for a 1-in basic size with a close running fit if this is a lightly loaded journal
and bushing assembly?

A gear and shaft with nominal diameter of 1.5 in are to be assembled with a medium drive fit,

as specified in Table 7-9. The gear has a hub, with an outside diameter of 2.5 in, and an over-

all length of 2 in. The shaft is made from AISI 1020 CD steel, and the gear is made from steel

that has been through hardened to provide S, = 100 kpsi and S, = 85 kpsi.

(a) Specify dimensions with tolerances for the shaft and gear bore to achieve the desired fit.

(b) Determine the minimum and maximum pressures that could be experienced at the interface
with the specified tolerances.

(c) Determine the worst-case static factors of safety guarding against yielding at assembly for
the shaft and the gear based on the distortion energy failure theory.

(d) Determine the maximum torque that the joint should be expected to transmit without slip-
ping, i.e., when the interference pressure is at a minimum for the specified tolerances.



