Current version

$a = 44.50 \pm 0.08 \text{ mm}$	$b = 19.05 \pm 0.02 \text{ mm}$
$c = 3.05 \pm 0.13 \text{ mm}$	$c = 22.23 \pm 0.02 \text{ mm}$

Corrected version

$a = 44.50 \pm 0.08 \text{ mm}$	$b = 19.05 \pm 0.02 \text{ mm}$
$c = 3.05 \pm 0.13 \text{ mm}$	$d = 22.23 \pm 0.02 \text{ mm}$

Current version

Thus, both clearance and interference are possible. (b) If w_{\min} is to be 0.08 mm, then, $\bar{w} = w_{\min} + t_w = 0.08 + 0.025 = 0.105$ mm. Thus,

 $\bar{d} = \bar{a} - \bar{b} - \bar{c} - \bar{w} = 44.50 - 19.05 - 3.05 - 0.105 = 22.30 \text{ mm}$

Corrected version

Thus, both clearance and interference are possible. (b) If w_{\min} is to be 0.08 mm, then, $\bar{w} = w_{\min} + t_w = 0.08 + 0.25 = 0.33$ mm. Thus,

 $\bar{d} = \bar{a} - \bar{b} - \bar{c} - \bar{w} = 44.50 - 19.05 - 3.05 - 0.33 = 22.07 \text{ mm}$

Page 32

Current version

$$f(x) = \frac{1}{17.9\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-438.3}{17.9}\right)^2\right]$$

where the mean stress is 438.3 MPa and the standard deviation is 17.9 MPa. A plot of f(x) is included in Fig. 2–5. The description of the strength S_{ut} is then expressed in terms of its statistical parameters and its distribution type. In this case $S_{ut} = N(438.3, 17.9)$ MPa.

Corrected version

$$f(x) = \frac{1}{18.16\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x - 445.4}{18.16}\right)^2\right]$$

where the mean stress is 445.4 MPa and the standard deviation is 18.16 MPa. A plot of f(x) is included in Fig. 2–5. The description of the strength S_{ut} is then expressed in terms of its statistical parameters and its distribution type. In this case $S_{ut} = N(445.4, 18.16)$ MPa.

Current version

However, the maximum stress due to the combined bending and direct shear stresses may be maximum at the point (76⁻, 32.9) that is just to the left of the applied load, where the web joins the flange. To simplify the calculations we assume a cross section with square corners (Fig. 3–19*c*). The normal stress at section *ab*, with x = 3 in, is

Corrected version

However, the maximum stress due to the combined bending and direct shear stresses may be maximum at the point (80⁻, 32.9) that is just to the left of the applied load, where the web joins the flange. To simplify the calculations we assume a cross section with square corners (Fig. 3–19*c*). The normal stress at section *ab*, with x = 0.08 m, is

Page 93

Current version

The principal stresses at the point can now be determined. Using Eq. (3–13), we find that at $x = 76^{-1}$ mm, y = 32.9 mm,

$$\sigma_1, \sigma_2 = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
$$= \frac{-5.24 + 0}{2} \pm \sqrt{\left(\frac{-5.24 - 0}{2}\right) + (-2.67)^2} = 1.12, -6.36 \text{ M} \text{ a}$$

For a point at $x = 76^{-1}$ mm, y = -32.9 mm, the principal stresses are σ_1 , $\sigma_2 = 6.36$, -1.12 MPa. Thus we see that the maximum principal stresses are ± 1200 psi, 21 percent higher than thought by the designer.

Corrected version

The principal stresses at the point can now be determined. Using Eq. (3–13), we find that at $x = 80^{-1}$ mm, y = 32.9 mm,

$$\sigma_{1}, \sigma_{2} = \frac{\sigma_{x} + \sigma_{y}}{2} \pm \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}$$
$$= \frac{-5.24 + 0}{2} \pm \sqrt{\left(\frac{-5.24 - 0}{2}\right) + (-2.67)^{2}} = 1.12, -6.36 \text{ M} \text{ a}$$

For a point at $x = 80^{-}$ mm, y = -32.9 mm, the principal stresses are σ_1 , $\sigma_2 = 6.36$, -1.12 MPa. Thus we see that the maximum principal stresses are ± 6.36 MPa, 5.1 percent higher than thought by the designer.

Current version

As presented in the table, K_t is a decreasing monotone. This rod end is similar to the square-ended lug depicted in Fig. A-15-12 of appendix A.

Corrected version

As presented in the table, K_t is a decreasing monotone. This rod end is similar to the square-ended lug depicted in Fig. A-13-12 of appendix A.

Page 159

Current version

Compare Eqs. (a) and (b) with Eqs. (4-3) and (4-5). In Example 4–8, the bending strain energy for a cantilever having a concentrated end load was found. According to Castigliano's theorem, the deflection at the end of the beam due to bending is

Corrected version

Compare Eqs. (a) and (b) with Eqs. (4-3) and (4-5). In Example 4-9, the bending strain energy for a cantilever having a concentrated end load was found. According to Castigliano's theorem, the deflection at the end of the beam due to bending is

Page 197

Current version

4-62 The steel beam *ABCD* shown is supported at *C* as shown and supported at *B* and *D* by steel bolts each having a diameter of 8 mm. The lengths of *BE* and *DF* are 50 and 62 mm, respectively. The beam has a second area moment of 20.8×10^{-9} m⁴. Prior to loading, the nuts are just in contact with the horizontal beam. A force of 2 kN is then applied at point *A*. Using procedure 2 of Sec. 4–10, determine the stresses in the bolts and the deflections of points *A*, *B*, and *D*. For steel, let E = 207 GPa.

Corrected version

4-62 The steel beam *ABCD* is supported at *C* as shown and supported at *B* and *D* by steel shoulder bolts each having a diameter of 8 mm. The lengths of *BE* and *DF* are 50 and 62 mm, respectively. The beam has a second area moment of 20.8×10^{-9} m⁴. Prior to loading, the nuts are just in contact with the horizontal beam. A force of 2 kN is then applied at point *A*. Using procedure 2 of Sec. 4–10, determine the stresses in the bolts and the deflections of points *A*, *B*, and *D*. For steel, let E = 207 GPa.

Current version

The rationale can be expressed as follows. The worst-case scenario is that of an idealized non-strain-strengthening material shown in Fig. 5–6. The stress-strain curve rises linearly to the yield strength S_y , then proceeds at constant stress, which is equal to S_y . Consider a filleted rectangular bar as depicted in Fig. A–15–5, where the cross-section area of the small shank is 1 in². If the material is ductile, with a yield point of 280 MPa, and the theoretical stress-concentration factor (SCF) K_t is 2,

Corrected version

The rationale can be expressed as follows. The worst-case scenario is that of an idealized non-strain-strengthening material shown in Fig. 5–6. The stress-strain curve rises linearly to the yield strength S_y , then proceeds at constant stress, which is equal to S_y . Consider a filleted rectangular bar as depicted in Fig. A–13–5, where the cross-section area of the small shank is 643 mm². If the material is ductile, with a yield point of 280 MPa, and the theoretical stress-concentration factor (SCF) K_t is 2,

Page 276

Current version

 $(S'_f)_{10^3} = \sigma'_F (2.10^3)^b = f S_{ut}$

Corrected version

 $(S'_f)_{10^3} = \sigma'_F (2 \cdot 10^3)^b = f S_{ut}$

Page 338

Current version

ASME-elliptic $(\sigma_a/S_e)^2 + (\sigma_m/S_{ut})^2 = 1/n^2$ (6-47)

Corrected version

ASME-elliptic $(\sigma_a/S_e)^2 + (\sigma_m/S_y)^2 = 1/n^2$ (6-47)

Current version

$$\sigma = \frac{F}{A} = \frac{4F}{\pi d_r^2} \tag{8-8}$$

Corrected version

 $\sigma = -\frac{F}{A} = -\frac{4F}{\pi d_r^2} \tag{8-8}$

Page 423

Current version

$$T = \frac{F_i d_m}{2} \left(\frac{\tan \lambda + f \sec \alpha}{l - f \tan \lambda \sec \alpha} \right) + \frac{F_i f_c d_c}{2}$$
(b)

Corrected version

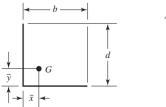
$$T = \frac{F_i d_m}{2} \left(\frac{\tan \lambda + f \sec \alpha}{1 - f \tan \lambda \sec \alpha} \right) + \frac{F_i f_c d_c}{2}$$
(b)

Page 466

Current version

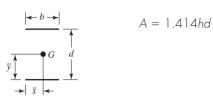


Corrected version

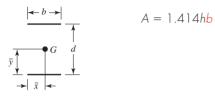


A = 0.707h(b + d)

Current version



Corrected version



Page 726

Current version

 P_d is the transverse diameteral pitch

Corrected version

 P_d is the transverse diametral pitch

Page 831

Current version

$$r_e = \frac{p_a \int_{r_i}^{r_o} r^2 dr}{p_a \int_{r_i}^{r_o} r dr} = \frac{r_o^3 - r_i^3}{3} \frac{2}{r_o^2 - r_i^2} = \frac{2}{3} \frac{r_o^3 - r_i^3}{r_o^2 - r_i^3}$$
(16-39)

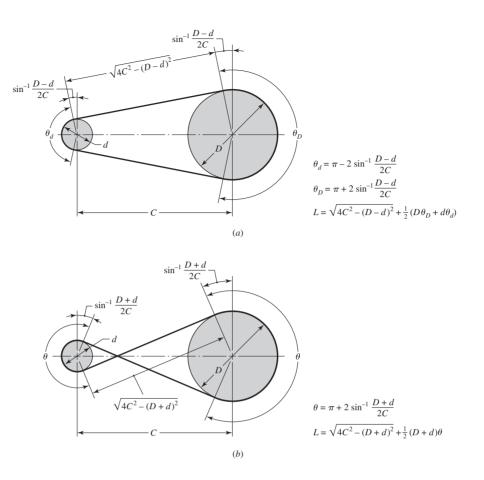
Corrected version

$$r_e = \frac{p_a \int_{r_i}^{r_o} r^2 dr}{p_a \int_{r_i}^{r_o} r dr} = \frac{r_o^3 - r_i^3}{3} \frac{2}{r_o^2 - r_i^2} = \frac{2}{3} \frac{r_o^3 - r_i^3}{r_o^2 - r_i^2}$$
(16-39)

Current version

Figure 17-1

Flat-belt geometry. (a) Open belt. (b) Crossed belt.



Corrected version

Figure 17-1

Flat-belt geometry. (a) Open belt. (b) Crossed belt.



Current version

$$F_1 = F_i + F_c + \Delta F' = F_i + F_c + T/D$$
 (f)

$$F_2 = F_i + F_c - \Delta F' = F_i + F_c - T/D$$
 (g)

where

 F_i = initial tension

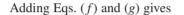
 F_c = hoop tension due to centrifugal force

 $\Delta F'$ = tension due to the transmitted torque T

D = diameter of the pulley

The difference between F_1 and F_2 is related to the pulley torque. Subtracting Eq. (g) from Eq. (f) gives

$$F_1 - F_2 = \frac{2T}{D} = \frac{T}{D/2}$$
(h)



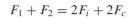


Figure 17-7 Forces and torques on a pulley.

 $F_1 = F_i + F_c + \Delta F' = F_i + F_c + T/d$ (f)

$$F_2 = F_i + F_c - \Delta F' = F_i + F_c - T/d$$
 (g)

where

 F_i = initial tension

 F_c = hoop tension due to centrifugal force

 $\Delta F'$ = tension due to the transmitted torque T

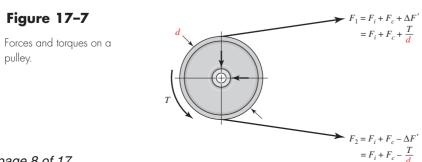
d = diameter of the pulley

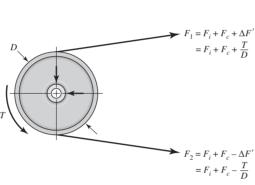
The difference between F_1 and F_2 is related to the pulley torque. Subtracting Eq. (g) from Eq. (f) gives

$$F_1 - F_2 = \frac{2T}{D} \tag{1}$$

Adding Eqs. (f) and (g) gives

 $F_1 + F_2 = 2F_i + 2F_c$





(h)

Current version

$$\frac{F_i}{T/D} = \frac{(F_1 + F_2)/2 - F_c}{(F_1 - F_2)/2} = \frac{F_1 + F_2 - 2F_c}{F_1 - F_2} = \frac{(F_1 - F_c) + (F_2 - F_c)}{(F_1 - F_c) - (F_2 - F_c)}$$
$$= \frac{(F_1 - F_c)/(F_2 - F_c) + 1}{(F_1 - F_c)/(F_2 - F_c) - 1} = \frac{\exp(f\phi) + 1}{\exp(f\phi) - 1}$$

from which

$$F_{i} = \frac{T}{D} \frac{\exp(f\phi) + 1}{\exp(f\phi) - 1}$$
(17-9)

Corrected version

$$\frac{F_i}{T/d} = \frac{(F_1 + F_2)/2 - F_c}{(F_1 - F_2)/2} = \frac{F_1 + F_2 - 2F_c}{F_1 - F_2} = \frac{(F_1 - F_c) + (F_2 - F_c)}{(F_1 - F_c) - (F_2 - F_c)}$$
$$= \frac{(F_1 - F_c)/(F_2 - F_c) + 1}{(F_1 - F_c)/(F_2 - F_c) - 1} = \frac{\exp(f\phi) + 1}{\exp(f\phi) - 1}$$

from which

$$F_i = \frac{T}{d} \frac{\exp(f\phi) + 1}{\exp(f\phi) - 1}$$
(17-9)

Current version

$$F_{1} = F_{i} + F_{c} + \frac{T}{D} = F_{c} + F_{i} + F_{i} \frac{\exp(f\phi) - 1}{\exp(f\phi) + 1}$$
$$= F_{c} + \frac{F_{i}[\exp(f\phi) + 1] + F_{i}[\exp(f\phi) - 1]}{\exp(f\phi) + 1}$$

$$F_{1} = F_{c} + F_{i} \frac{2 \exp(f\phi)}{\exp(f\phi) + 1}$$
(17-10)

Corrected version

$$F_{1} = F_{i} + F_{c} + \frac{T}{d} = F_{c} + F_{i} + F_{i} \frac{\exp(f\phi) - 1}{\exp(f\phi) + 1}$$
$$= F_{c} + \frac{F_{i}[\exp(f\phi) + 1] + F_{i}[\exp(f\phi) - 1]}{\exp(f\phi) + 1}$$

$$F_{1} = F_{c} + F_{i} \frac{2 \exp(f\phi)}{\exp(f\phi) + 1}$$
(17-10)

Current version

$$F_{2} = F_{i} + F_{c} - \frac{T}{D} = F_{c} + F_{i} - F_{i} \frac{\exp(f\phi) - 1}{\exp(f\phi) + 1}$$
$$= F_{c} + \frac{F_{i}[\exp(f\phi) + 1] - F_{i}[\exp(f\phi) - 1]}{\exp(f\phi) + 1}$$
$$F_{2} = F_{c} + F_{i} \frac{2}{\exp(f\phi) + 1}$$
(17-11)

Corrected version

$$F_{2} = F_{i} + F_{c} - \frac{T}{d} = F_{c} + F_{i} - F_{i} \frac{\exp(f\phi) - 1}{\exp(f\phi) + 1}$$
$$= F_{c} + \frac{F_{i}[\exp(f\phi) + 1] - F_{i}[\exp(f\phi) - 1]}{\exp(f\phi) + 1}$$
$$F_{2} = F_{c} + F_{i} \frac{2}{\exp(f\phi) + 1}$$
(17-11)

Page 867

Current version

Equation (17–7) is called the *belting equation*, but Eqs. (17–9), (17–10), and (17–11) reveal how belting works. We plot Eqs. (17–10) and (17–11) as shown in Fig. 17–8 against F_i as abscissa. The initial tension needs to be sufficient so that the difference between the F_1 and F_2 curve is 2T/D. With no torque transmitted, the least possible belt tension is $F_1 = F_2 = F_c$.

The transmitted power is given by

Corrected version

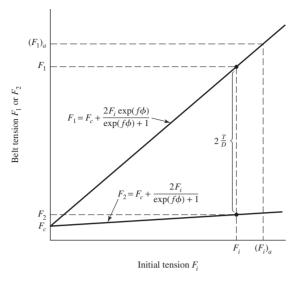
Equation (17–7) is called the *belting equation*, but Eqs. (17–9), (17–10), and (17–11) reveal how belting works. We plot Eqs. (17–10) and (17–11) as shown in Fig. 17–8 against F_i as abscissa. The initial tension needs to be sufficient so that the difference between the F_1 and F_2 curve is 2T/d. With no torque transmitted, the least possible belt tension is $F_1 = F_2 = F_c$.

The transmitted power is given by

Current version

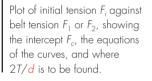
Figure 17-8

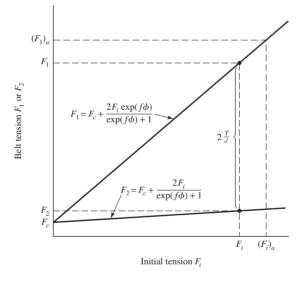
Plot of initial tension F_i against belt tension F_1 or F_2 , showing the intercept F_c , the equations of the curves, and where 2T/D is to be found.



Corrected version

Figure 17-8





Page 868

Current version

4 From torque *T* find the necessary $(F_1)_a - F_2 = 2T/D$

Corrected version

4 From torque *T* find the necessary $(F_1)_a - F_2 = 2T/d$

Current version

$$d = \frac{L^2 w}{8F_i} \tag{17-13}$$

where d = dip, m

L = center-to-center distance, m

w = weight per foot of the belt, N/m

 F_i = initial tension, N

In Ex. 17-1 the dip corresponding to a 1240-N initial tension is

$$d = \frac{(2.4)^2 \, 5.4}{8(1240)} = 0.0032 \, \mathrm{m} = 3.2 \, \mathrm{mm}$$

Corrected version

$$dip = \frac{L^2 w}{8F_i} \tag{17-13}$$

where dip = dip, m

L = center-to-center distance, m

w = weight per unit volume of the belt, N/m³

 F_i = initial tension, N

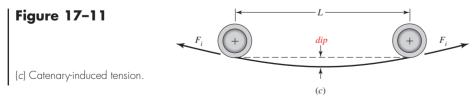
In Ex. 17-1 the dip corresponding to a 1240-N initial tension is

$$\frac{dip}{8(1240)} = \frac{(2.4)^2 \, 5.4}{8(1240)} = 0.0032 \, \mathrm{m} = 3.2 \, \mathrm{mm}$$

Current version



Corrected version



Current version

$$d = \frac{L^2 w}{8F_i} = \frac{4.8^2 (37.6)0.25}{8(2420)} = 0.011 \text{ m} = 11 \text{ mm}$$

Corrected version

 $\frac{dip}{8F_i} = \frac{L^2 w}{8F_i} = \frac{4.8^2 (37.6)0.25}{8(2420)} = 0.011 \text{ m} = 11 \text{ mm}$

Page 880

Current version

$H_a = K_1 K_2 H_{\text{tab}}$	(17–17)
$n_a = n_1 n_2 n_{ab}$	

where H_a = allowable power, per belt, Table 17–12

Corrected version

$$H_a = K_1 K_2 H_{\text{tab}}$$
 (17–17)

where H_a = allowable power, per belt

Page 908

Current version

(c) Estimate the rated (allowable) power that would appear in Table 17–20 for a 20 000-h life.

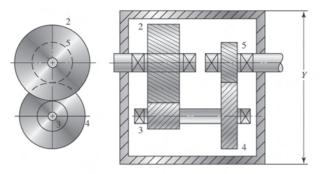
Corrected version

(c) Estimate the allowable horsepower for a 20 000-h life.

Current version

Figure 18-1

A compound reverted gear train.



Corrected version

Figure 18-1 2 A compound reverted

Page 922

gear train.

Current version

$$\sigma_c = 2300 \sqrt{\frac{2431(1.18)(1.21)}{12(2)(0.1315)}} = 76\ 280\ \text{psi}$$

$$\sigma = (2431)(1.18) \left(\frac{6}{2}\right) \left(\frac{1.21}{0.41}\right) = 25\ 400\ \text{psi}$$

Choose a Grade 1 steel, through-hardened to 250 $H_B.$ From Fig. 14-2, p. 727 , $S_t=32\,000$ psi and from Fig. 14-5, p. 730, $S_c=110\,000$ psi.

Corrected version

$$\sigma_c = 2300 \sqrt{\frac{2431(1.18)(1.21)}{2.67(2)(0.1315)}} = 161\ 700\ \text{psi}$$
$$\sigma = (2431)(1.18) \left(\frac{6}{2}\right) \left(\frac{1.21}{0.41}\right) = 25\ 400\ \text{psi}$$

Choose Grade 2 carburized and hardened, the same as gear 4.

Current version

Gear 3 Wear and Bending

$$J = 0(41 Y_N = 0.9 Z_N = 0.9$$

$$\sigma_c = 2300 \sqrt{\frac{(539.7)(1.37)(1.19)}{12(1.5)(0.1315)}} = 44\ 340\ \text{psi}$$

$$\sigma = 539.7(1.37)\frac{(6)(1.19)}{1.5(0.41)} = 8584\ \text{psi}$$

Try Grade 1 steel, through-hardened to 200 H_B . From Fig. 14-2, p. 727, $S_t = 28\ 000$ psi and from Fig. 14-5, p. 730, $S_c = 90\ 000$ psi.

$$n_c = \frac{90\ 000(0.9)}{44\ 340} = 1.83$$
$$n = \frac{\sigma_{\text{all}}}{\sigma} = \frac{28\ 000(0.9)}{8584} = 2.94$$

In summary, the resulting gear specifications are:

All gears,
$$P = 6$$
 teeth/in
Gear 2, Grade 1 flame-hardened, $S_c = 170\ 000$ psi and $S_t = 45\ 000$ psi
 $d_2 = 2.67$ in, face width $= 1.5$ in
Gear 3, Grade 1 through-hardened to $200\ H_B$, $S_c = 90\ 000$ psi and $S_t = 28\ 000$ psi
 $d_3 = 12.0$ in, face width $= 1.5$ in
Gear 4, Grade 2 carburized and hardened, $S_c = 225\ 000$ psi and $S_t = 65\ 000$ psi
 $d_4 = 2.67$ in, face width $= 2.0$ in
Gear 5, Grade 1 through-hardened to $250\ H_B$, $S_c = 110\ 000$ psi and $S_t = 31\ 000$ psi
 $d_5 = 12.0$ in, face width $= 2.0$ in

Corrected version

Gear 3 Wear and Bending

$$J = 0(41 Y_N = 0.9 Z_N = 0.9$$

$$\sigma_c = 2300 \sqrt{\frac{(539.7)(1.37)(1.19)}{2.67(1.5)(0.1315)}} = 94\ 000\ \text{psi}$$

$$\sigma = 539.7(1.37)\frac{(6)(1.19)}{1.5(0.41)} = 8584\ \text{psi}$$

Try Grade 1 steel, through-hardened to 300 H_B . From Fig. 14-2, p. 727, $S_t = 36\ 000$ psi and from Fig. 14-5, p. 730, $S_c = 126\ 000$ psi.

$$n_c = \frac{126\ 000(0.9)}{94\ 000} = 1.21$$
$$n = \frac{\sigma_{\text{all}}}{\sigma} = \frac{36\ 000(0.9)}{8584} = 3.77$$

In summary, the resulting gear specifications are:

All gears, P = 6 teeth/in Gear 2, Grade 1 flame-hardened, $S_c = 170\ 000$ psi and $S_t = 45\ 000$ psi $d_2 = 2.67$ in, face width = 1.5 in Gear 3, Grade 1 through-hardened to $300\ H_B$, $S_c = 126\ 000$ psi and $S_t = 36\ 000$ psi $d_3 = 12.0$ in, face width = 1.5 in Gear 4, Grade 2 carburized and hardened, $S_c = 225\ 000$ psi and $S_t = 65\ 000$ psi $d_4 = 2.67$ in, face width = 2.0 in Gear 5, Grade 2 carburized and hardened, $S_c = 225\ 000$ psi and $S_t = 65\ 000$ psi $d_5 = 12.0$ in, face width = 2.0 in

Current version

$$\begin{cases} f_{1:1} \\ f_{2:1} + f_{2:2} \\ f_{3} \end{cases} = \begin{cases} F_1 \\ F_2 \\ F_3 \end{cases} = \begin{cases} k_1 & -k_1 & 0 \\ -k_1 & (k_1 + k_2) & -k_2 \\ 0 & -k_2 & k_2 \end{cases} \begin{cases} u_1 \\ u_2 \\ u_3 \end{cases}$$
(19-5)

Corrected version

$$\begin{cases} f_{1 < 1} \\ f_{2 < 1} + f_{2 < 2} \\ f_{3} \end{cases} = \begin{cases} F_1 \\ F_2 \\ F_3 \end{cases} = \begin{bmatrix} k_1 & -k_1 & 0 \\ -k_1 & (k_1 + k_2) & -k_2 \\ 0 & -k_2 & k_2 \end{bmatrix} \begin{cases} u_1 \\ u_2 \\ u_3 \end{cases}$$
(19-5)

Page 941

Current version

With $u_1 = 0$, $F_2 = 4500$ N and the assumption that $u_3 = \epsilon = 0.05$ mm, Eq. (19.5) becomes

$$\begin{cases} F_1 \\ 4500 \\ F_3 \end{cases} = 10^3 \begin{cases} 17(802 - 17.802 & 0 \\ -17(802 & 40.066 & -22.264 \\ 0 & -22.264 & 22.264 \end{cases} \begin{cases} 0 \\ u_2 \\ 0.05 \end{cases}$$
(1)

Corrected version

With $u_1 = 0$, $F_2 = 4500$ N and the assumption that $u_3 = \epsilon = 0.05$ mm, Eq. (19-5) becomes

$$\begin{cases} F_1 \\ 4500 \\ F_3 \end{cases} = 10^3 \begin{bmatrix} 17(802 - 17.802 & 0 \\ -17(802 & 40.066 - 22.264 \\ 0 & -22.264 & 22.264 \end{bmatrix} \begin{cases} 0 \\ u_2 \\ 0.05 \end{cases}$$
(1)

Current version

$$y_c = -\frac{Fa^2}{3EI}(l+a)$$

Corrected version

$$\mathbf{y_C} = -\frac{Fa^2}{3EI}(l+a)$$

Page 1036

Current version

6–12 Yield: $n_y = 1.18$. Fatigue: (a) $n_f = 1.06$, (b) $n_f = 1.31$, (c) $n_f = 1.32$

Corrected version

6–12 Yield: $n_y = 1.67$. Fatigue: (a) $n_f = 1.06$, (b) $n_f = 1.31$, (c) $n_f = 1.32$

Page 1037

Current version

9–8 *F* = 49.2 kN

Corrected version

9–8 *F* = **49.7** kN

Additional Erratum

Shigley's Mechanical Engineering Design November 2009

Page 505

Current version

can be employed to obtain the torsional yield strength ($S_{ys} = 0.577S_y$). This approach results in the range

$$0.35S_{ut} \le S_{sy} \le 0.52 \ S_{ut} \tag{10-15}$$

for steels.

Corrected version

can be employed to obtain the torsional yield strength ($S_{sy} = 0.577S_y$). This approach results in the range

$$0.35S_{ut} \le S_{sy} \le 0.52 \ S_{ut} \tag{10-15}$$

for steels.