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a 44.50 ± 0.08 mm b 19.05 ± 0.02 mm

c 3.05 ± 0.13 mm c 22.23 ± 0.02 mm

a 44.50 ± 0.08 mm b 19.05 ± 0.02 mm

c 3.05 ± 0.13 mm d 22.23 ± 0.02 mm

(b) If wmin is to be 0.08 mm, then, w̄ = wmin + tw = 0.08 + 0.25 = 0.33 mm. Thus,

d̄ = ā − b̄ − c̄ − w̄ = 44.50 − 19.05 − 3.05 − 0.33 = 22.07 mm

Thus, both clearance and interference are possible.

(b) If wmin is to be 0.08 mm, then, w̄ � wmin + tw = 0.08 + 0.025 = 0.105 mm. Thus,

d̄ = ā − b̄ − c̄ − w̄ = 44.50 − 19.05 − 3.05 − 0.105 = 22.30 mm

Thus, both clearance and interference are possible.
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where the mean stress is 438.3 MPa and the standard deviation is 17.9 MPa. A plot
of f (x) is included in Fig. 2–5. The description of the strength Sut is then
expressed in terms of its statistical parameters and its distribution type. In this case
Sut = N(438.3, 17.9) MPa.
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where the mean stress is 445.4 MPa and the standard deviation is 18.16 MPa. A
plot of f (x) is included in Fig. 2–5. The description of the strength Sut is then
expressed in terms of its statistical parameters and its distribution type. In this case
Sut = N(445.4, 18.16) MPa.
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However, the maximum stress due to the combined bending and direct shear
stresses may be maximum at the point (76−, 32.9) that is just to the left of the applied
load, where the web joins the flange. To simplify the calculations we assume a cross
section with square corners (Fig. 3–19c). The normal stress at section ab, with x = 3
in, is

However, the maximum stress due to the combined bending and direct shear
stresses may be maximum at the point (80−, 32.9) that is just to the left of the applied
load, where the web joins the flange. To simplify the calculations we assume a cross
section with square corners (Fig. 3–19c). The normal stress at section ab, with
x � 0.08 m, is

The principal stresses at the point can now be determined. Using Eq. (3–13), we
find that at x = 76− mm, y = 32.9 mm,

σ1, σ2 = σx + σy

2
± σx − σy

2

2

+ τ 2
xy

For a point at x = 76− mm, y = −32.9 mm, the principal stresses are σ1, σ2 = 6.36,
−1.12 MPa. Thus we see that the maximum principal stresses are ±1200 psi, 21 per-
cent higher than thought by the designer.

= −5.24 + 0
2

± −5.24 − 0
2

+ (−2.67)2 = 1.12, −6.36 M a

The principal stresses at the point can now be determined. Using Eq. (3–13), we
find that at x = 80− mm, y = 32.9 mm,

σ1, σ2 = σx + σy

2
± σx − σy

2

2

+ τ 2
xy

= −5.24 + 0
2

± −5.24 − 0
2

+ (−2.67)2 = 1.12, −6.36 M a

For a point at x = 80− mm, y = −32.9 mm, the principal stresses are σ1, σ2 = 6.36,
−1.12 MPa. Thus we see that the maximum principal stresses are ±6.36 MPa,
5.1 percent higher than thought by the designer.
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As presented in the table, Kt is a decreasing monotone. This rod end is similar to the
square-ended lug depicted in Fig. A–15-12 of appendix A.

As presented in the table, Kt is a decreasing monotone. This rod end is similar to the
square-ended lug depicted in Fig. A–13-12 of appendix A.

Compare Eqs. (a) and (b) with Eqs. (4–3) and (4–5). In Example 4–8, the bending strain
energy for a cantilever having a concentrated end load was found. According to
Castigliano’s theorem, the deflection at the end of the beam due to bending is

Compare Eqs. (a) and (b) with Eqs. (4–3) and (4–5). In Example 4–9, the bending strain
energy for a cantilever having a concentrated end load was found. According to
Castigliano’s theorem, the deflection at the end of the beam due to bending is

4–62 The steel beam ABC D shown is supported at C as shown and supported at B and D by steel bolts
each having a diameter of 8 mm. The lengths of B E and DF are 50 and 62 mm, respectively.
The beam has a second area moment of 20.8 × 10–9 m4. Prior to loading, the nuts are just in 
contact with the horizontal beam. A force of 2 kN is then applied at point A. Using procedure 2
of Sec. 4–10, determine the stresses in the bolts and the deflections of points A, B, and D. For
steel, let E = 207 GPa.

4–62 The steel beam ABC D is supported at C as shown and supported at B and D by steel shoulder
bolts each having a diameter of 8 mm. The lengths of B E and DF are 50 and 62 mm, 
respectively. The beam has a second area moment of 20.8 × 10–9 m4. Prior to loading, the nuts
are just in contact with the horizontal beam. A force of 2 kN is then applied at point A. Using
procedure 2 of Sec. 4–10, determine the stresses in the bolts and the deflections of points A, B,
and D. For steel, let E = 207 GPa.
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The rationale can be expressed as follows. The worst-case scenario is that of an
idealized non–strain-strengthening material shown in Fig. 5–6. The stress-strain curve
rises linearly to the yield strength Sy , then proceeds at constant stress, which is equal to
Sy . Consider a filleted rectangular bar as depicted in Fig. A–15–5, where the cross-
section area of the small shank is 1 in2. If the material is ductile, with a yield point of
280 MPa, and the theoretical stress-concentration factor (SCF) Kt is 2,

The rationale can be expressed as follows. The worst-case scenario is that of an
idealized non–strain-strengthening material shown in Fig. 5–6. The stress-strain curve
rises linearly to the yield strength Sy , then proceeds at constant stress, which is equal 
to Sy . Consider a filleted rectangular bar as depicted in Fig. A–13–5, where the cross-
section area of the small shank is 643 mm2. If the material is ductile, with a yield point
of 280 MPa, and the theoretical stress-concentration factor (SCF) Kt is 2,

(Sf )103 = σF(2.103)b = f Sut

(Sf )103 = σF�2(103�b � f Sut(2 . 103)b f Sut

ASME-elliptic (σa/Se)2 + (σm/Sut )
2 = 1/n2 (6–47)

ASME-elliptic (σa/Se)2 + = 1/n2 (6–47)(σm/Sy )2
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(8–8)σ = F

A
= 4F

πd2
r

(8–8)σ = − F

A
= − 4F

πd2
r

(b)T = Fi dm

2

tan λ + f sec α

l − f tan λ sec α
+ Fi fcdc

2

(b)T = Fi dm

2

tan λ + f sec α

1− f tan λ sec α
+ Fi fcdc
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Pd is the transverse diameteral pitch

Pd is the transverse diametral pitch

re =
pa

ro

ri

r2 dr

pa

ro

ri

r dr
=

r3
o − r3

i

3

2

r2
o − r2

i

= 2

3

r3
o − r3

i

r2
o − r3

i

(16–39)

re =
pa

ro

ri

r2 dr

pa

ro

ri

r dr
=

r3
o − r3

i

3

2

r2
o − r2

i

= 2

3

r3
o − r3

i

r2
o − r2

i

(16–39)



page 7 of 17

 Page 861

Current version

Corrected version

d D
d

sin–1

2C
D – d

2C
D + d

2C
D – d

2C
D – d

2C
D + d

2C
D + d

2C
D – d

sin–1

d =  – 2 sin–1

D =  + 2 sin–1

L = 1
2

sin–1

sin–1

4C
2 ( – D  – d)2

D

D

C

C

d

4C2 – (D + d)2

4C2 – (D – d )2 + (D D + d d)

 =  + 2 sin–1

L = 1
24C2 – (D + d)2 + (D + d)

(a)

(b)

Figure 17–1

Flat-belt geometry. (a) Open
belt. (b) Crossed belt.
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F1 = Fi + Fc + F = Fi + Fc + T/D (f )

F2 = Fi + Fc − F = Fi + Fc − T/D (g)

where Fi = initial tension

Fc = hoop tension due to centrifugal force

F = tension due to the transmitted torque T

D = diameter of the pulley

The difference between F1 and F2 is related to the pulley torque. Subtracting Eq. (g)
from Eq. ( f ) gives

F1 − F2 = 2T

D
= T

D/2
(h)

Adding Eqs. ( f ) and (g) gives

F1 + F2 = 2Fi + 2Fc

D

T

F1 = Fi + Fc + ∆F'

= Fi + Fc +
T
D

F2 = Fi + Fc – ∆F'

= Fi + Fc –
T
D

Figure 17–7

Forces and torques on a
pulley.

F1 = Fi + Fc + F = Fi + Fc + T/d (f )

F2 = Fi + Fc − F = Fi + Fc − T/d (g)

where Fi = initial tension

Fc = hoop tension due to centrifugal force

F = tension due to the transmitted torque T

d = diameter of the pulley

The difference between F1 and F2 is related to the pulley torque. Subtracting Eq. (g)
from Eq. ( f ) gives

F1 − F2 = 2T

D
(h)

Adding Eqs. ( f ) and (g) gives

F1 + F2 = 2Fi + 2Fc

d

T

F1 = Fi + Fc + ∆F'

= Fi + Fc +
T
d

F2 = Fi + Fc – ∆F'

= Fi + Fc –
T
d

Figure 17–7

Forces and torques on a
pulley.
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Fi

T/D
= (F1 + F2)/2 − Fc

(F1 − F2)/2
= F1 + F2 − 2Fc

F1 − F2
= (F1 − Fc) + (F2 − Fc)

(F1 − Fc) − (F2 − Fc)

= (F1 − Fc)/(F2 − Fc) + 1

(F1 − Fc)/(F2 − Fc) − 1
= exp( f φ) + 1

exp( f φ) − 1

from which

Fi = T

D

exp( f φ) + 1

exp( f φ) − 1
(17–9)

Fi

T/d
= (F1 + F2)/2 − Fc

(F1 − F2)/2
= F1 + F2 − 2Fc

F1 − F2
= (F1 − Fc) + (F2 − Fc)

(F1 − Fc) − (F2 − Fc)

= (F1 − Fc)/(F2 − Fc) + 1

(F1 − Fc)/(F2 − Fc) − 1
= exp( f φ) + 1

exp( f φ) − 1

from which

Fi = T

d

exp( f φ) + 1

exp( f φ) − 1
(17–9)

F1 � Fi + Fc + T

D
� Fc + Fi + Fi

exp( f φ) − 1

exp( f φ) + 1

� Fc + Fi [exp( f φ) + 1] + Fi [exp( f φ) − 1]

exp( f φ) + 1

F1 = Fc + Fi
2 exp( f φ)

exp( f φ) + 1
(17–10)

F1 � Fi + Fc + T

d
� Fc + Fi + Fi

exp( f φ) − 1

exp( f φ) + 1

� Fc + Fi [exp( f φ) + 1] + Fi [exp( f φ) − 1]

exp( f φ) + 1

F1 = Fc + Fi
2 exp( f φ)

exp( f φ) + 1
(17–10)
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F2 = Fi + Fc − T

D
= Fc + Fi − Fi

exp( f φ) − 1

exp( f φ) + 1

= Fc + Fi [exp( f φ) + 1] − Fi [exp( f φ) − 1]

exp( f φ) + 1

F2 = Fc + Fi
2

exp( f φ) + 1
(17–11)

F2 = Fi + Fc − T

d
= Fc + Fi − Fi

exp( f φ) − 1

exp( f φ) + 1

= Fc + Fi [exp( f φ) + 1] − Fi [exp( f φ) − 1]

exp( f φ) + 1

F2 = Fc + Fi
2

exp( f φ) + 1
(17–11)

Equation (17–7) is called the belting equation, but Eqs. (17–9), (17–10), and (17–11)
reveal how belting works. We plot Eqs. (17–10) and (17–11) as shown in Fig. 17–8
against Fi as abscissa. The initial tension needs to be sufficient so that the difference
between the F1 and F2 curve is 2T/D. With no torque transmitted, the least possible
belt tension is F1 = F2 = Fc .

The transmitted power is given by

Equation (17–7) is called the belting equation, but Eqs. (17–9), (17–10), and (17–11)
reveal how belting works. We plot Eqs. (17–10) and (17–11) as shown in Fig. 17–8
against Fi as abscissa. The initial tension needs to be sufficient so that the difference
between the F1 and F2 curve is 2T/d. With no torque transmitted, the least possible belt
tension is F1 = F2 = Fc .

The transmitted power is given by
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Fi (Fi)a

Fc

F2

F1

(F1)a

2 T
D

F2 = Fc +
2Fi

exp( f ) + 1

F1 = Fc +
2Fi exp( f )
exp( f ) + 1

Initial tension Fi

 noi snet tle
B

F 1
 ro 
F

2

Figure 17–8

Plot of initial tension Fi against
belt tension F1 or F2, showing
the intercept Fc, the equations
of the curves, and where
2T/D is to be found.

Fi (Fi)a

Fc

F2

F1

(F1)a

2 T
d

F2 = Fc +
2Fi

exp( f ) + 1

F1 = Fc +
2Fi exp( f )
exp( f ) + 1

Initial tension Fi

 noi snet tle
B

F 1
 ro 
F

2

Figure 17–8

Plot of initial tension Fi against
belt tension F1 or F2, showing
the intercept Fc, the equations
of the curves, and where
2T/d is to be found.

4 From torque T find the necessary (F1)a − F2 = 2T/D

4 From torque T find the necessary (F1)a − F2 = 2T/d
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where d � dip, m

L � center-to-center distance, m

w � weight per foot of the belt, N/m

Fi � initial tension, N

In Ex. 17–1 the dip corresponding to a 1240-N initial tension is

d = (2.4)2 5.4

8(1240)
= 0.0032 m = 3.2 mm

(17–13)d � L2w

8Fi

(17–13)

where dip � dip, m

L � center-to-center distance, m

w � weight per unit volume of the belt, N/m3

Fi � initial tension, N

In Ex. 17–1 the dip corresponding to a 1240-N initial tension is

dip � L2w

8Fi

dip � (2.4)2 5.4

8(1240)
� 0.0032 m � 3.2 mm

Fi Fi

L

d

(c)

Figure 17–11

(c) Catenary-induced tension.

Fi Fi

L

dip

(c)

Figure 17–11

(c) Catenary-induced tension.
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d = L2w

8Fi
= 4.82(37.6)0.25

8(2420)
= 0.011 m = 11 mm

dip = L2w

8Fi
= 4.82(37.6)0.25

8(2420)
= 0.011 m = 11 mm

Ha = K1 K2 Htab (17–17)

where Ha = allowable power, per belt, Table 17–12

Ha = K1 K2 Htab (17–17)

where Ha = allowable power, per belt

(c) Estimate the rated (allowable) power that would appear in Table 17–20 for a 20 000-h life.

(c) Estimate the allowable horsepower for a 20 000-h life.
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Figure 18–1

A compound reverted 
gear train.

Figure 18–1

A compound reverted 
gear train.

σc = 2300
2431(1.18)(1.21)

12(2)(0.1315)
= 76 280 psi

Choose a Grade 1 steel, through-hardened to 250 HB . From Fig. 14–2, p. 727 ,
St = 32 000 psi and from Fig. 14–5, p. 730, Sc = 110 000 psi.

σ � (2431)(1.18)
6

2

1.21

0.41
� 25 400 psi

σ � (2431)(1.18)
6

2

1.21

0.41
� 25 400 psi

Choose Grade 2 carburized and hardened, the same as gear 4.

σc = 2300
2431(1.18)(1.21)

2.67(2)(0.1315)
� 161 700 psi
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σc = 2300
(539.7)(1.37)(1.19)

12(1.5)(0.1315)
= 44 340 psi

Try Grade 1 steel, through-hardened to 200 HB . From Fig. 14–2, p. 727, 
St = 28 000 psi and from Fig. 14–5, p. 730, Sc = 90 000 psi.

nc = 90 000(0.9)

44 340
= 1.83

n = σall

σ
= 28 000(0.9)

8584
= 2.94

In summary, the resulting gear specifications are:

All gears, P = 6 teeth/in

Gear 2, Grade 1 flame-hardened, Sc = 170 000 psi and St = 45 000 psi
d2 = 2.67 in, face width = 1.5 in

Gear 3, Grade 1 through-hardened to 200 HB, Sc = 90 000 psi and St = 28 000 psi
d3 = 12.0 in, face width = 1.5 in

Gear 4, Grade 2 carburized and hardened, Sc = 225 000 psi and St = 65 000 psi
d4 = 2.67 in, face width = 2.0 in

Gear 5, Grade 1 through-hardened to 250 HB, Sc = 110 000 psi and St = 31 000 psi
d5 = 12.0 in, face width = 2.0 in

σ = 539.7(1.37)
(6)(1.19)

1.5(0.41)
= 8584 psi

Gear 3 Wear and Bending
J � 0(41 YN � 0.9 Z N � 0.9

Gear 3 Wear and Bending
J � 0(41 YN � 0.9 Z N � 0.9

σc � 2300
(539.7)(1.37)(1.19)

2.67(1.5)(0.1315)
� 94 000 psi

Try Grade 1 steel, through-hardened to 300 HB . From Fig. 14–2, p. 727, 
St = 36 000 psi and from Fig. 14–5, p. 730, Sc � 126 000 psi.

nc � 126 000(0.9)

94 000
� 1.21

n � σall

σ
� 36 000(0.9)

8584
� 3.77

In summary, the resulting gear specifications are:

All gears, P = 6 teeth/in

Gear 2, Grade 1 flame-hardened, Sc � 170 000 psi and St � 45 000 psi
d2 � 2.67 in, face width � 1.5 in

Gear 3, Grade 1 through-hardened to 300 HB, Sc � 126 000 psi and St � 36 000 psi
d3 � 12.0 in, face width � 1.5 in

Gear 4, Grade 2 carburized and hardened, Sc � 225 000 psi and St � 65 000 psi
d4 � 2.67 in, face width � 2.0 in

Gear 5, Grade 2 carburized and hardened, Sc � 225 000 psi and St � 65 000 psi 
d5 � 12.0 in, face width � 2.0 in

σ = 539.7(1.37)
(6)(1.19)

1.5(0.41)
= 8584 psi



page 16 of 17

Page 940

Current version

Corrected version

Page 941

Current version

Corrected version

f1�1

f2�1 + f2�2

f3

=
F1

F2

F3

=
k1 − k1 0

−k1 (k1 + k2) − k2

0 − k2 k2

u1

u2

u3

(19–5)

f1�1

f2�1 + f2�2

f3

=
F1

F2

F3

=
k1 − k1 0

−k1 (k1 + k2) − k2

0 − k2 k2

u1

u2

u3

(19–5)

With u1 = 0, F2 = 4500 N and the assumption that u3 = = 0.05 mm, Eq. (19.5)
becomes

(1)
F1

4500
F3

= 103
17(802 − 17.802 0

−17(802 40.066 − 22.264
0 − 22.264 22.264

0
u2

0.05

With u1 = 0, F2 = 4500 N and the assumption that u3 = = 0.05 mm, Eq. (19-5)
becomes

(1)
F1

4500
F3

= 103
17(802 − 17.802 0

−17(802 40.066 − 22.264
0 − 22.264 22.264

0
u2

0.05
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3E I
(l + a)

yC = − Fa2

3E I
(l + a)
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6–12 Yield: ny = 1.18. Fatigue: (a) n f = 1.06,
(b) n f = 1.31, (c) n f = 1.32

6–12 Yield: ny = 1.67. Fatigue: (a) n f = 1.06,
(b) n f = 1.31, (c) n f = 1.32

9–8 F = 49.2 kN

9–8 F = 49.7 kN
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can be employed to obtain the torsional yield strength (Sys = 0.577Sy). This approach 
results in the range 
 

0.35Sut ≤ Ssy ≤ 0.52 Sut (10–15) 
 
for steels. 
 
 
 
Corrected version 
 
can be employed to obtain the torsional yield strength (Ssy = 0.577Sy). This approach 
results in the range 
 

0.35Sut ≤ Ssy ≤ 0.52 Sut (10–15) 
 
for steels. 
 


