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The Standard Atmosphere

Sometimes gentle, sometimes capricious, sometimes awful, never the same for two
moments together; almost human in its passions, almost spiritual in its tenderness,
almost divine in its infinity.

John Ruskin, The Sky

Aerospace vehicles can be divided into two basic categories: atmospheric
vehicles such as airplanes and helicopters, which always fly within the
sensible atmosphere, and space vehicles such as satellites, the Apollo

lunar vehicle, and deep-space probes, which operate outside the sensible atmo-
sphere. However, space vehicles do encounter the earth’s atmosphere during
their blastoffs from the earth’s surface and again during their reentries and
recoveries after completion of their missions. If the vehicle is a planetary probe,
then it may encounter the atmospheres of Venus, Mars, Jupiter, etc. Therefore,
during the design and performance of any aerospace vehicle, the properties of the
atmosphere must be taken into account.

The earth’s atmosphere is a dynamically changing system, constantly in a
state of flux. The pressure and temperature of the atmosphere depend on altitude,
location on the globe (longitude and latitude), time of day, season, and even solar
sunspot activity. To take all these variations into account when considering the
design and performance of flight vehicles is impractical. Therefore, a standard
atmosphere is defined in order to relate flight tests, wind tunnel results, and
general airplane design and performance to a common reference. The standard
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102 CHAPTER 3 The Standard Atmosphere

PREVIEW BOX

Before you jump into a strange water pond or dive
into an unfamiliar swimming pool, there are a few
things you might like to know. How cold is the
water? How clean is it? How deep is the water? These
are things that might influence your swimming per-
formance in the water, or even your decision to go
swimming at all. Similarly, before we can study the
performance of a flight vehicle speeding through the
air, we need to know something about the properties
of the air itself. Consider an airplane flying in the
atmosphere, or a space vehicle blasting through the
atmosphere on its way up to space, or a vehicle com-

ing back from space through the atmosphere. In all
these cases, the performance of the flight vehicle is
going to be dictated in part by the properties of the
atmosphere—the temperature, density, and pressure
of the atmosphere.

What are the properties of the atmosphere? We
know they change with altitude, but how do they
change? How do we find out? These are important
questions, and they are addressed in this chapter. Be-
fore you can go any further in your study of flight ve-
hicles, you need to know about the atmosphere. Here
is the story—please read on. 

atmosphere gives mean values of pressure, temperature, density, and other
properties as functions of altitude; these values are obtained from experimental
balloon and sounding-rocket measurements combined with a mathematical
model of the atmosphere. To a reasonable degree, the standard atmosphere re-
flects average atmospheric conditions, but this is not its main importance. Rather,
its main function is to provide tables of common reference conditions that can be
used in an organized fashion by aerospace engineers everywhere. The purpose of
this chapter is to give you some feeling for what the standard atmosphere is all
about and how it can be used for aerospace vehicle analyses.

We might pose the rather glib question: Just what is the standard atmo-
sphere? A rather glib answer is: The tables in Apps. A and B at the end of this
book. Take a look at these two appendixes. They tabulate the temperature, pres-
sure, and density for different altitudes. Appendix A is in SI units, and App. B is
in English engineering units. Where do these numbers come from? Were they
simply pulled out of thin air by somebody in the distant past? Absolutely not. The
numbers in these tables were obtained on a rational, scientific basis. One purpose
of this chapter is to develop this rational basis. Another purpose is to show you
how to use these tables.

The road map for this chapter is given in Fig. 3.1. We first run down the left
side of the road map, establishing some definitions and an equation from basic
physics (the hydrostatic equation) that are necessary tools for constructing the
numbers in the standard atmosphere tables. Then we move to the right side of the
road map and discuss how the numbers in the tables are actually obtained. We go
through the construction of the standard atmosphere in detail. Finally, we define
some terms that are derived from the numbers in the tables—the pressure, den-
sity, and temperature altitudes—which are in almost everyday use in aeronautics.

Finally, we note that the details of this chapter are focused on the determina-
tion of the standard atmosphere for earth. The tables in Apps. A and B are for the
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Figure 3.1 Road map for Chap. 3.

earth’s atmosphere. However, the physical principles and techniques discussed
in this chapter are also applicable to constructing model atmospheres for other
planets, such as Venus, Mars, and Jupiter. So the applicability of this chapter
reaches far beyond the earth.

It should be mentioned that several different standard atmospheres exist,
compiled by different agencies at different times, each using slightly different
experimental data in the models. For all practical purposes, the differences are
insignificant below 30 km (100,000 ft), which is the domain of contemporary air-
planes. A standard atmosphere in common use is the 1959 ARDC model
atmosphere. (ARDC stands for the U.S. Air Force’s previous Air Research and
Development Command, which is now the Air Force Research Laboratory.) The
atmospheric tables used in this book are taken from the 1959 ARDC model
atmosphere.

3.1 DEFINITION OF ALTITUDE
Intuitively, we all know the meaning of altitude. We think of it as the distance
above the ground. But like so many other general terms, it must be more pre-
cisely defined for quantitative use in engineering. In fact, in the following sec-
tions we define and use six different altitudes: absolute, geometric, geopotential,
pressure, temperature, and density altitudes.

First, imagine that we are at Daytona Beach, Florida, where the ground is at
sea level. If we could fly straight up in a helicopter and drop a tape measure to
the ground, the measurement on the tape would be, by definition, the geometric
altitude hG , that is, the geometric height above sea level.

Now, if we bored a hole through the ground to the center of the earth and ex-
tended our tape measure until it hit the center, then the measurement on the tape
would be, by definition, the absolute altitude ha . If r is the radius of the earth,
then ha = hG + r . This is illustrated in Fig. 3.2.

The absolute altitude is important, especially for space flight, because the
local acceleration of gravity g varies with ha . From Newton’s law of gravitation,
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Figure 3.2 Definition of altitude.

g varies inversely as the square of the distance from the center of the earth. By
letting g0 be the gravitational acceleration at sea level, the local gravitational ac-
celeration g at a given absolute altitude ha is

g = g0

(
r

ha

)2

= g0

(
r

r + hG

)2

(3.1)

The variation of g with altitude must be taken into account when you are dealing
with mathematical models of the atmosphere, as discussed in the following
sections.

3.2 HYDROSTATIC EQUATION
We will now begin to piece together a model that will allow us to calculate
variations of p, ρ, and T as functions of altitude. The foundation of this model is
the hydrostatic equation, which is nothing more than a force balance on an ele-
ment of fluid at rest. Consider the small stationary fluid element of air shown in
Fig. 3.3. We take for convenience an element with rectangular faces, where the
top and bottom faces have sides of unit length and the side faces have an infini-
tesimally small height dhG . On the bottom face, the pressure p is felt, which
gives rise to an upward force of p × 1 × 1 exerted on the fluid element. The top
face is slightly higher in altitude (by the distance dhG ), and because pressure
varies with altitude, the pressure on the top face will be slightly different from
that on the bottom face, differing by the infinitesimally small value dp. Hence,
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3.2 Hydrostatic Equation 105

Figure 3.3 Force diagram for the hydrostatic equation.

on the top face, the pressure p + dp is felt. It gives rise to a downward force of
(p + dp)(1)(1) on the fluid element. Moreover, the volume of the fluid element
is (1)(1) dhG = dhG , and since ρ is the mass per unit volume, then the mass of
the fluid element is simply ρ(1)(1)dhG = ρ dhG . If the local acceleration of
gravity is g, then the weight of the fluid element is gρ dhG , as shown in Fig. 3.3.
The three forces shown in Fig. 3.3, pressure forces on the top and bottom, and the
weight must balance because the fluid element is not moving. Hence,

p = p + dp + ρg dhG

Thus, dp = −ρg dhG (3.2)

Equation (3.2) is the hydrostatic equation and applies to any fluid of density ρ,
for example, water in the ocean as well as air in the atmosphere.

Strictly speaking, Eq. (3.2) is a differential equation; that is, it relates an in-
finitesimally small change in pressure dp to a corresponding infinitesimally
small change in altitude dhG , where in the language of differential calculus, dp
and dhG are differentials. Also note that g is a variable in Eq. (3.2); g depends on
hG as given by Eq. (3.1).

To be made useful, Eq. (3.2) should be integrated to give what we want,
namely, the variation of pressure with altitude p = p(hG). To simplify the inte-
gration, we make the assumption that g is constant throughout the atmosphere,
equal to its value at sea level g0. This is something of a historical convention in
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106 CHAPTER 3 The Standard Atmosphere

aeronautics. Hence, we can write Eq. (3.2) as

dp = −ρg0 dh (3.3)
(

However, to make Eqs. (3.2) and (3.3) numerically identical, the altitude h in
Eq. (3.3) must be slightly different from hG in Eq. (3.2), to compensate for the
fact that g is slightly different from g0. Suddenly, we have defined a new altitude
h, which is called the geopotential altitude and which differs from the geometric
altitude. To better understand the concept of geopotential altitude, consider a
given geometric altitude, hG , where the value of pressure is p. Let us now in-
crease the geometric altitude by an infinitesimal amount, dhG , such that the new
geometric altitude is hG + dhG . At this new altitude, the pressure is p + dp,
where the value of dp is given by Eq. (3.2). Let us now put this same value of dp
in Eq. (3.3). Dividing Eq. (3.3) by (3.2), we have

1 =
(

g0

g

)(
dh

dhG

)

Clearly, since g0 and g are different, then dh and dhG must be different; that is,
the numerical values of dh and dhG that correspond to the same change in pres-
sure, dp, are different. As a consequence, the numerical values of h and hG that
correspond to the same actual physical location in the atmosphere are different
values.

For the practical mind, geopotential altitude is a “fictitious’’ altitude, defined
by Eq. (3.3) for ease of future calculations. However, many standard atmosphere
tables quote their results in terms of geopotential altitude, and care must be taken
to make the distinction. Again, geopotential altitude can be thought of as that ficti-
tious altitude that is physically compatible with the assumption of g = const = g0.

3.3 RELATION BETWEEN GEOPOTENTIAL
AND GEOMETRIC ALTITUDES

We still seek the variation of p with geometric altitude p = p(hG). However, our
calculations using Eq. (3.3) will give, instead, p = p(h). Therefore, we need to
relate h to hG , as follows. Dividing Eq. (3.3) by (3.2), we obtain

1 = g0

g

dh

dhG

or dh = g

g0
dhG (3.4)

We substitute Eq. (3.1) into (3.4):

dh = r2

(r + hG)2
dhG (3.5)

By convention, we set both h and hG equal to zero at sea level. Now, consider a
given point in the atmosphere. This point is at a certain geometric altitude hG ,
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3.4 Definition of the Standard Atmosphere 107

and associated with it is a certain value of h (different from hG ). Integrating
Eq. (3.5) between sea level and the given point, we have 

∫ h

0
dh =

∫ hG

0

r2

(r + hG)2
dhG = r2

∫ hG

0

dhG

(r + hG)2

h = r2

( −1

r + hG

)hG

0

= r2

( −1

r + hG
+ 1

r

)
= r2

(−r + r + hG

(r + hG)r

)

Thus, h = r

r + hG
hG (3.6)

where h is geopotential altitude and hG is geometric altitude. This is the desired
relation between the two altitudes. When we obtain relations such as p = p(h),
we can use Eq. (3.6) to subsequently relate p to hG .

A quick calculation using Eq. (3.6) shows that there is little difference be-
tween h and hG for low altitudes. For such a case, hG � r , r/(r + hG) ≈ 1;
hence, h ≈ hG . Putting in numbers, r = 6.356766 × 106 m (at a altitude of 45◦),
and if hG = 7 km (about 23,000 ft), then the corresponding value of h is, from
Eq. (3.6), h = 6.9923 km, about 0.1 of 1 percent difference! Only at altitudes
above 65 km (213,000 ft) does the difference exceed 1 percent. (Note that 65 km
is an altitude at which aerodynamic heating of NASA’s Space Shuttle becomes
important during reentry into the earth’s atmosphere from space.)

3.4 DEFINITION OF THE STANDARD ATMOSPHERE
We are now in a position to obtain p, T , and ρ as functions of h for the standard
atmosphere. The keystone of the standard atmosphere is a defined variation of
T with altitude, based on experimental evidence. This variation is shown in
Fig. 3.4. Note that it consists of a series of straight lines, some vertical (called the
constant-temperature, or isothermal, regions) and others inclined (called the
gradient regions). Given T = T (h) as defined by Fig. 3.4, then p = p(h) and
ρ = ρ(h) follow from the laws of physics, as shown in the following.

First, consider again Eq. (3.3):

dp = −ρg0 dh

Divide by the equation of state, Eq. (2.3):

dp

p
= −ρg0 dh

ρRT
= − g0

RT
dh (3.7)

Consider first the isothermal (constant-temperature) layers of the standard
atmosphere, as given by the vertical lines in Fig. 3.4 and sketched in Fig. 3.5. The
temperature, pressure, and density at the base of the isothermal layer shown in
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Figure 3.4 Temperature distribution in the standard atmosphere.

Fig. 3.5 are T1, p1, and ρ1, respectively. The base is located at a given geopoten-
tial altitude h1. Now consider a given point in the isothermal layer above the
base, where the altitude is h. The pressure p at h can be obtained by integrating
Eq. (3.7) between h1 and h.

∫ p

p1

dp

p
= − g0

RT

∫ h

h1

dh (3.8)
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3.4 Definition of the Standard Atmosphere 109

Figure 3.5 Isothermal layer.

Note that g0, R, and T are constants that can be taken outside the integral. (This
clearly demonstrates the simplification obtained by assuming that g = g0 =
const, and therefore dealing with geopotential altitude h in the analysis.) Per-
forming the integration in Eq. (3.8), we obtain

ln
p

p1
= − g0

RT
(h − h1)

or
p

p1
= e−[g0/(RT )](h−h1) (3.9)

From the equation of state,

p

p1
= ρT

ρ1T1
= ρ

ρ1

Thus,
ρ

ρ1
= e−[g0/(RT )](h−h1) (3.10)

Equations (3.9) and (3.10) give the variation of p and ρ versus geopotential alti-
tude for the isothermal layers of the standard atmosphere.

Considering the gradient layers, as sketched in Fig. 3.6, we find the temper-
ature variation is linear and is geometrically given as

T − T1

h − h1
= dT

dh
≡ a

where a is a specified constant for each layer obtained from the defined temper-
ature variation in Fig. 3.4. The value of a is sometimes called the lapse rate for
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Figure 3.6 Gradient layer.

the gradient layers.

Thus, dh = 1

a
dT

We substitute this result into Eq. (3.7):

dp

p
= − g0

a R

dT

T
(3.11)

Integrating between the base of the gradient layer (shown in Fig. 3.6) and some
point at altitude h, also in the gradient layer, Eq. (3.11) yields

∫ p

p1

dp

p
= − g0

a R

∫ T

T1

dT

T

ln
p

p1
= − g0

a R
ln

T

T1

Thus, (3.12)
p

p1
=

(
T

T1

)−g0/(a R)

a ≡ dT

dh
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From the equation of state,

p

p1
= ρT

ρ1T1

Hence, Eq. (3.12) becomes

ρT

ρ1T1
=

(
T

T1

)−g0/(a R)

ρ

ρ1
=

(
T

T1

)−[g0/(a R)]−1

or
ρ

ρ1
=

(
T

T1

)−{[g0/(a R)]+1}
(3.13)

Recall that the variation of T is linear with altitude and is given the specified
relation

T = T1 + a(h − h1) (3.14)

Equation (3.14) gives T = T (h) for the gradient layers; when it is plugged into
Eq. (3.12), we obtain p = p(h); similarly from Eq. (3.13) we obtain ρ = ρ(h).

Now we can see how the standard atmosphere is pieced together. Looking at
Fig. 3.4, start at sea level (h = 0), where standard sea level values of pressure,
density, and temperature—ps , ρs , and Ts , respectively—are

These are the base values for the first gradient region. Use Eq. (3.14) to obtain
values of T as a function of h until T = 216.66 K, which occurs at h = 11.0 km.
With these values of T , use Eqs. (3.12) and (3.13) to obtain the corresponding
values of p and ρ in the first gradient layer. Next, starting at h = 11.0 km as the
base of the first isothermal region (see Fig. 3.4), use Eqs. (3.9) and (3.10) to cal-
culate values of p and ρ versus h, until h = 25 km, which is the base of the next
gradient region. In this manner, with Fig. 3.4 and Eqs. (3.9), (3.10), and (3.12) to
(3.14), a table of values for the standard atmosphere can be constructed.

Such a table is given in App. A for SI units and App. B for English engineer-
ing units. Look at these tables carefully and become familiar with them. They are
the standard atmosphere. The first column gives the geometric altitude, and the
second column gives the corresponding geopotential altitude obtained from
Eq. (3.6). The third through fifth columns give the corresponding standard values

ps = 1.01325 × 105 N/m2 = 2116.2 lb/ft2

ρs = 1.2250 kg/m3 = 0.002377 slug/ft3

Ts = 288.16 K = 518.69◦R
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EXAMPLE 3.2
DESIGN BOX

The first step in the design process of a new aircraft is
the determination of a set of specifications, or re-
quirements, for the new vehicle. These specifications
may include such performance aspects as a stipulated
maximum velocity at a given altitude or a stipulated
maximum rate of climb at a given altitude. These per-
formance parameters depend on the aerodynamic
characteristics of the vehicle, such as lift and drag. In
turn, the lift and drag depend on the properties of the

atmosphere. When the specifications dictate certain
performance at a given altitude, this altitude is taken
to be the standard altitude in the tables. Therefore, in
the preliminary design of an airplane, the designer
uses the standard atmosphere tables to define the
pressure, temperature, and density at the given alti-
tude. In this fashion, many calculations made during
the preliminary design of an airplane contain infor-
mation from the standard altitude tables.

of temperature, pressure, and density, respectively, for each altitude, obtained
from the previous discussion.

We emphasize again that the standard atmosphere is a reference atmo-
sphere only and certainly does not predict the actual atmospheric properties
that may exist at a given time and place. For example, App. A says that at an al-
titude (geometric) of 3 km, p = 0.70121 × 105 N/m2, T = 268.67 K, and ρ =
0.90926 kg/m3. In reality, situated where you are, if you could right now levitate
yourself to 3 km above sea level, you would most likely feel a p, T , and ρ dif-
ferent from the values obtained from App. A. The standard atmosphere allows us
only to reduce test data and calculations to a convenient, agreed-upon reference,
as will be seen in subsequent sections of this book.

Comment: Geometric and Geopotential Altitudes Revisited We now can
appreciate better the meaning and significance of the geometric altitude, hG , and
the geopotential altitude, h. The variation of the properties in the standard atmo-
sphere are calculated from Eqs. (3.9) to (3.14). These equations are derived using
the simplifying assumption of a constant value of the acceleration of gravity
equal to its value at sea level; that is, g = constant = g0. Consequently, the
altitude that appears in these equations is, by definition, the geopotential altitude,
h. Examine these equations again—you see g0 and h appearing in these equa-
tions, not g and hG . The simplification obtained by assuming a constant value of
g is the sole reason for defining the geopotential altitude. This is the only use of
geopotential altitude we will make in this book—for the calculation of the num-
bers that appear in Apps. A and B. Moreover, since h and hG are related via
Eq. (3.6), we can always obtain the geometric altitude, hG , that corresponds to a
specified value of geopotential altitude, h. The geometric altitude, hG , is the
actual height above sea level and therefore is more practical. That is why the first
column in Apps. A and B is hG , and the entries are in even intervals of hG . The
second column gives the corresponding values of h, and these are the values used
to generate the corresponding numbers for p, ρ, and T via Eqs. (3.9) to (3.14). 
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3.4 Definition of the Standard Atmosphere 113

EXAMPLE 3.1

In the subsequent chapters in this book, any dealings with altitude involv-
ing the use of the standard atmosphere tables in Apps. A and B will be couched
in terms of the geometric altitude, hG . For example, if reference is made to a
“standard altitude” of 5 km, it means a geometric altitude of hG = 5 km. Now
that we have seen how the standard atmosphere tables are generated, after
the present chapter we will have no reason to deal anymore with geopotential
altitude.

Hopefully, you now have a better understanding of the statement made at
the end of Sec. 3.2 that geopotential altitude is simply a “fictitious” altitude,
defined by Eq. (3.3) for the single purpose of simplifying the subsequent
derivations. 

Calculate the standard atmosphere values of T , p, and ρ at a geopotential altitude of 14 km.

■ Solution
Remember that T is a defined variation for the standard atmosphere. Hence, we can im-
mediately refer to Fig. 3.4 and find that at h = 14 km,

T = 216.66 K

To obtain p and ρ, we must use Eqs. (3.9) to (3.14), piecing together the different regions
from sea level up to the given altitude with which we are concerned. Beginning at sea
level, the first region (from Fig. 3.4) is a gradient region from h = 0 to h = 11.0 km. The
lapse rate is

a = dT

dh
= 216.66 − 288.16

11.0 − 0
= −6.5 K/km

or a = −0.0065 K/m

Therefore, using Eqs. (3.12) and (3.13), which are for a gradient region and where the
base of the region is sea level (hence p1 = 1.01 × 105 N/m2 and ρ1 = 1.23 kg/m3), we
find at h = 11.0 km

p = p1

(
T

T1

)−g0/(a R)

= (1.01 × 105)

(
216.66

288.16

)−9.8/[−0.0065(287)]

where g0 = 9.8 m/s2 in SI units. Hence, p (at h = 11.0 km) = 2.26 × 104 N/m2.

ρ = ρ1

(
T

T1

)−[g0/(a R)+1]

= (1.23)

(
216.66

288.16

)−{9.8/[−0.0065(287)]+1}

= 0.367 kg/m3 at h = 11.0 km
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The above values of p and ρ now form the base values for the first isothermal region
(see Fig. 3.4). The equations for the isothermal region are Eqs. (3.9) and (3.10),
where now p1 = 2.26 × 104 N/m2 and ρ1 = 0.367 kg/m3. For h = 14 km, h − h1 =
14 − 11 = 3 km = 3000 m. From Eq. (3.9),

From Eq. (3.10),
ρ

ρ1
= p

p1

Hence, ρ = ρ1
p

p1
= 0.367

1.41 × 104

2.26 × 104
=

These values check, within roundoff error, with the values given in App. A. Note: This
example demonstrates how the numbers in Apps. A and B are obtained!

3.5 PRESSURE, TEMPERATURE, AND
DENSITY ALTITUDES

With the tables of Apps. A and B in hand, we can now define three new
“altitudes’’—pressure, temperature, and density altitudes. This is best done
by example. Imagine that you are in an airplane flying at some real, geometric
altitude. The value of your actual altitude is immaterial for this discussion.
However, at this altitude, you measure the actual outside air pressure to be
6.16 × 104 N/m2. From App. A, you find that the standard altitude that corre-
sponds to a pressure of 6.16 × 104 N/m2 is 4 km. Therefore, by definition, you say
that you are flying at a pressure altitude of 4 km. Simultaneously, you measure
the actual outside air temperature to be 265.4 K. From App. A, you find that the
standard altitude that corresponds to a temperature of 265.4 K is 3.5 km. There-
fore, by definition, you say that you are flying at a temperature altitude of 3.5 km.
Thus, you are simultaneously flying at a pressure altitude of 4 km and a tem-
perature altitude of 3.5 km while your actual geometric altitude is yet a differ-
ent value. The definition of density altitude is made in the same vein. These
quantities—pressure, temperature, and density altitudes—are just convenient
numbers that, via App. A or B, are related to the actual p, T , and ρ for the actual
altitude at which you are flying.

If an airplane is flying at an altitude where the actual pressure and temperature are 4.72 ×
104 N/m2 and255.7K, respectively,whatare thepressure, temperature, anddensityaltitudes?

0.23 kg/m3

p = p1e−[g0/(RT )](h−h1) = (2.26 × 104)e−[9.8/287(216.66)](3000)

p = 1.41 × 104 N/m2

EXAMPLE 3.2
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■ Solution
For the pressure altitude, look in App. A for the standard altitude value corresponding to
p = 4.72 × 104 N/m2. This is 6000 m. Hence,

Pressure altitude = 6000 m = 6 km

For the temperature altitude, look in App. A for the standard altitude value corresponding
to T = 255.7 K. This is 5000 m. Hence,

Temperature altitude = 5000 m = 5 km

For the density altitude, we must first calculate ρ from the equation of state:

ρ = p

RT
= 4.72 × 104

287(255.7)
= 0.643 kg/m3

Looking in App. A and interpolating between 6.2 and 6.3 km, we find that the standard al-
titude value corresponding to ρ = 0.643 kg/m3 is about 6.240 m. Hence,

Density altitude = 6240 m = 6.24 km

Note that temperature altitude is not a unique value. The answer for temperature altitude
could equally well be 5.0, 38.2, or 59.5 km because of the multivalued nature of the
altitude-versus-temperature function. In this section, only the lowest value of temperature
altitude is used.

The flight test data for a given airplane refer to a level-flight maximum-velocity run made
at an altitude that simultaneously corresponded to a pressure altitude of 30,000 ft and
density altitude of 28,500 ft. Calculate the temperature of the air at the altitude at which
the airplane was flying for the test.

■ Solution
From App. B:
For pressure altitude = 30,000 ft:

p = 629.66 lb/ft2

For density altitude = 28,500 ft:

ρ = 0.9408 × 10−3 slug/ft3

These are the values of p and ρ that simultaneously existed at the altitude at which the
airplane was flying. Therefore, from the equation of state,

T = p

ρR
= 629.66

(0.94082 × 10−3)(1716)
=

Consider an airplane flying at some real, geometric altitude. The outside (ambient) pres-
sure and temperature are 5.3 × 104 N/m2 and 253 K, respectively. Calculate the pressure
and density altitudes at which this airplane is flying.

390◦R

EXAMPLE 3.3

EXAMPLE 3.4
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■ Solution
Consider the ambient pressure of 5.3 × 104 N/m2. In App. A, there is not a precise entry for
this number. It lies between the value p1 = 5.331 × 104 N/m2 at altitude hG,1 =5100 m and
p2 = 5.2621 × 104 N/m2 at altitude hG,2 = 5200m. We have at least two choices. We could
simply use the nearest entry in the table, which is for an altitude hG,2 = 5100 m, and say that
the answer for pressure altitude is 5100 m. This is acceptable if we are making only approx-
imate calculations. However, if we need greater accuracy, we can interpolate between en-
tries. Using linear interpolation, the value of hG corresponding to p = 5.3 × 104 N/m2 is

The pressure altitude at which the airplane is flying is 5146.6 m. (Note that in this example
and in Examples 3.2 and 3.3, we are interpreting the word altitude in the tables to be the
geometric altitude hG rather than the geopotential altitude h. This is for convenience, be-
cause hG is tabulated in round numbers, in contrast to the column for h. Again, at the alti-
tudes for conventional flight, the difference between hG and h is not significant.)

To obtain the density altitude, calculate the density from the equation of state.

ρ = p

RT
= 5.3 × 104

(287)(253)
= 0.72992 kg/m3

Once again we note that this value of ρ falls between two entries in the table. It falls be-
tween hG,1 = 5000 m where ρ1 = 0.73643 kg/m3 and hG,2 = 5100 m where ρ2 =
0.72851 kg/m3. (Note that these subscripts denote different lines in the table from those
used in the first part of this example. It is good never to become a slave to subscripts and
symbols. Just always keep in mind the significance of what you are doing.) We could take
the nearest entry, which is for an altitude hG = 5100 m, and say that the answer for the
density altitude is 5100 m. However, for greater accuracy, let us linearly interpolate be-
tween the two entries.

The density altitude at which the airplane is flying is 5082.2 m.

hG = hG,1 + (hG,2 − hG,1)

(
ρ1 − ρ

ρ1 − ρ2

)

= 5000 + (5100 − 5000)

(
0.73643 − 0.72992

0.73643 − 0.72851

)

= 5000 + 100(0.82197) = 5082.2 m

hG = hG,1 + (hG,2 − hG,1)

(
p1 − p

p1 − p2

)

hG = 5100 + (5200 − 5100)

(
5.331 − 5.3

5.331 − 5.2621

)

= 5100 + 100(0.4662) = 5146.6 m
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3.6 HISTORICAL NOTE: THE STANDARD
ATMOSPHERE

With the advent of ballooning in 1783 (see Chap. 1), people suddenly became in-
terested in acquiring a greater understanding of the properties of the atmosphere
above ground level. However, a compelling reason for such knowledge did not
arise until the coming of heavier-than-air flight in the 20th century. As we shall
see in subsequent chapters, the flight performance of aircraft is dependent upon
such properties as the pressure and density of the air. Thus, a knowledge of these
properties, or at least some agreed-upon standard for worldwide reference, is ab-
solutely necessary for intelligent aeronautical engineering.

The situation in 1915 was summarized by C. F. Marvin, Chief of the U.S.
Weather Bureau and chairman of an NACAsubcommittee to investigate and report
upon the existing status of atmospheric data and knowledge. In his “Preliminary
Report on the Problem of the Atmosphere in Relation to Aeronautics,’’ NACA
Report No. 4, 1915, Marvin writes:

The Weather Bureau is already in possession of an immense amount of data con-
cerning atmospheric conditions, including wind movements at the earth’s surface.
This information is no doubt of distinct value to aeronautical operations, but it needs
to be collected and put in form to meet the requirements of aviation.

The following four years saw such efforts to collect and organize atmospheric
data for use by aeronautical engineers. In 1920, the Frenchman A. Toussaint,
director of the Aerodynamic Laboratory at Saint-Cyr-l’Ecole, France, suggested
the following formula for the temperature decrease with height:

T = 15 − 0.0065h

where T is in degrees Celsius and h is the geopotential altitude in meters.
Toussaint’s formula was formally adopted by France and Italy with the Draft of
Inter-Allied Agreement on Law Adopted for the Decrease of Temperature with
Increase of Altitude, issued by the Ministere de la Guerre, Aeronautique
Militaire, Section Technique, in March 1920. One year later, England followed
suit. The United States was close behind. Since Marvin’s report in 1915, the
U.S. Weather Bureau had compiled measurements of the temperature distribu-
tion and found Toussaint’s formula to be a reasonable representation of the
observed mean annual values. Therefore, at its executive committee meeting of
December 17, 1921, NACA adopted Toussaint’s formula for airplane perfor-
mance testing, with the statement: “The subcommittee on aerodynamics recom-
mends that for the sake of uniform practice in different countries that Tous-
saint’s formula be adopted in determining the standard atmosphere up to 10 km
(33,000 ft). . . .’’

Much of the technical data base that supported Toussaint’s formula was re-
ported in NACAReport No. 147, “StandardAtmosphere,’’by Willis Ray Gregg in
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1922. Based on free-flight tests at McCook Field in Dayton, Ohio, and at Langley
Field in Hampton, Virginia, and on the other flights at Washington, District of
Columbia, as well as artillery data from Aberdeen, Maryland, and Dahlgren,
Virginia, and sounding-balloon observations at Fort Omaha, Nebraska, and
St. Louis, Missouri, Gregg was able to compile a table of mean annual atmo-
spheric properties. An example of his results follows:

Mean Annual Temperature
Temperature in from Toussaint’s

Altitude, United States, Formula,
m K K

0 284.5 288
1,000 281.0 281.5
2,000 277.0 275.0
5,000 260.0 255.5

10,000 228.5 223.0

Clearly, Toussaint’s formula provided a simple and reasonable representation of
the mean annual results in the United States. This was the primary message in
Gregg’s report in 1922. However, the report neither gave extensive tables nor at-
tempted to provide a document for engineering use.

Thus, it fell to Walter S. Diehl (who later became a well-known aerodynam-
icist and airplane designer as a captain in the Naval Bureau of Aeronautics) to
provide the first practical tables for a standard atmosphere for aeronautical use.
In 1925, in NACA Report No. TR 218, entitled (again) “Standard Atmosphere,’’
Diehl presented extensive tables of standard atmospheric properties in both met-
ric and English units. The tables were in increments of 50 m up to an altitude of
10 km and then in increments of 100 m up to 20 km. In English units, the tables
were in increments of 100 ft up to 32,000 ft and then in increments of 200 ft up
to a maximum altitude of 65,000 ft. Considering the aircraft of that day
(see Fig. 1.31), these tables were certainly sufficient. Moreover, starting from
Toussaint’s formula for T up to 10,769 m, then assuming T = const = −55◦C
above 10,769 m, Diehl obtained p and ρ in precisely the same fashion as
described in the previous sections of this chapter.

The 1940s saw the beginning of serious rocket flights, with the German V-2
and the initiation of sounding rockets. Moreover, airplanes were flying higher
than ever. Then, with the advent of intercontinental ballistic missiles in the 1950s
and space flight in the 1960s, altitudes began to be quoted in terms of hundreds
of miles rather than feet. Therefore, new tables of the standard atmosphere were
created, mainly extending the old tables to higher altitudes. Popular among the
various tables is the ARDC 1959 Standard Atmosphere, which is used in this
book and is given in Apps. A and B. For all practical purposes, the old and new
tables agree for altitudes of greatest interest. Indeed, it is interesting to compare

and25693_ch03.qxd  1/28/04  9:50 PM  Page 118



3.7 Summary 119

values, as shown in the following:

T from T from
Altitude, Diehl, 1925, ARDC, 1959,

m K K

0 288 288.16
1,000 281.5 281.66
2,000 275.0 275.16
5,000 255.5 255.69

10,000 223.0 223.26
10,800 218.0 218.03
11,100 218.0 216.66
20,000 218.0 216.66

So Diehl’s standard atmosphere from 1925, at least up to 20 km, is just as
good as the values today.

3.7 Summary
Some of the major ideas of this chapter are listed as follows.

1. The standard atmosphere is defined in order to relate flight tests, wind tunnel
results, and general airplane design and performance to a common reference.

2. The definitions of the standard atmospheric properties are based on a given
temperature variation with altitude, representing a mean of experimental data. In
turn, the pressure and density variations with altitude are obtained from this
empirical temperature variation by using the laws of physics. One of these laws is
the hydrostatic equation:

dp = −ρg dhG (3.2)

3. In the isothermal regions of the standard atmosphere, the pressure and density
variations are given by

p

p1
= ρ

ρ1
= e−[g0/(RT )](h−h1) (3.9) and (3.10)

4. In the gradient regions of the standard atmosphere, the pressure and density
variations are given by, respectively,

p

p1
=

(
T

T1

)−g0/(a R)

(3.12)

ρ

ρ1
=

(
T

T1

)−{[(g0/(a R)]+1}
(3.13)

where T = T1 + a(h − h1) and a is the given lapse rate.
5. The pressure altitude is that altitude in the standard atmosphere that corresponds to

the actual ambient pressure encountered in flight or laboratory experiments. For
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example, if the ambient pressure of a flow, no matter where it is or what it is doing,
is 393.12 lb/ft2, the flow is said to correspond to a pressure altitude of 40,000 ft
(see App. B). The same idea can be used to define density and temperature
altitudes.
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Problems
3.1 At 12 km in the standard atmosphere, the pressure, density, and temperature are

1.9399 × 104 N/m2, 3.1194 × 10−1 kg/m3, and 216.66 K, respectively. Using
these values, calculate the standard atmospheric values of pressure, density, and
temperature at an altitude of 18 km, and check with the standard altitude tables.

3.2 Consider an airplane flying at some real altitude. The outside pressure and
temperature are 2.65 × 104 N/m2 and 220 K, respectively. What are the pressure
and density altitudes?

3.3 During a flight test of a new airplane, the pilot radios to the ground that she is in
level flight at a standard altitude of 35,000 ft. What is the ambient air pressure far
ahead of the airplane?

3.4 Consider an airplane flying at a pressure altitude of 33,500 ft and a density altitude
of 32,000 ft. Calculate the outside air temperature.

3.5 At what value of the geometric altitude is the difference h − hG equal to 2 percent
of the geopotential altitude, h?

3.6 Using Toussaint’s formula, calculate the pressure at a geopotential altitude of 5 km.
3.7 The atmosphere of Jupiter is essentially made up of hydrogen, H2. For H2, the

specific gas constant is 4157 J/(kg)(K). The acceleration of gravity of Jupiter is
24.9 m/s2. Assuming an isothermal atmosphere with a temperature of 150 K and
assuming that Jupiter has a definable surface, calculate the altitude above that
surface where the pressure is one-half the surface pressure.

3.8 An F-15 supersonic fighter aircraft is in a rapid climb. At the instant it passes
through a standard altitude of 25,000 ft, its time rate of change of altitude is
500 ft/s, which by definition is the rate of climb, discussed in Chap. 6.
Corresponding to this rate of climb at 25,000 ft is a time rate of change of ambient
pressure. Calculate this rate of change of pressure in units of pounds per square
foot per second.

3.9 Assume that you are ascending in an elevator at sea level. Your eardrums are very
sensitive to minute changes in pressure. In this case, you are feeling a 1-percent
decrease in pressure per minute. Calculate the upward speed of the elevator in
meters per minute.

3.10 Consider an airplane flying at an altitude where the pressure and temperature are
530 lb/ft2 and 390◦R, respectively. Calculate the pressure and density altitudes at
which the airplane is flying.
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3.11 Consider a large rectangular-shaped tank of water open to the atmosphere, 10 ft
deep, with walls of length 30 ft each. When the tank is filled to the top with water,
calculate the force (in tons) exerted on the side of each wall in contact with the
water. The tank is located at sea level. (Note: The specific weight of water is
62.4 lbf /ft

3, and 1 ton = 2000 lbf .) (Hint: Use the hydrostatic equation.)
3.12 A discussion of the entry of a space vehicle into the earth’s atmosphere after it has

completed its mission in space is given in Chap. 8. An approximate analysis of the
vehicle motion and aerodynamic heating during atmospheric entry assumes an
approximate atmospheric model called the “exponential atmosphere,” where the
air density variation with altitude is assumed to be

ρ

ρ0
= e−g0h/(RT )

where ρ0 is the sea-level density and h is the altitude measured above sea level.
This equation is only an approximation for the density variation with altitude
throughout the whole atmosphere, but its simple form makes it very useful for
approximate analyses. Using this equation, calculate the density at an altitude of
45 km. Compare your result with the actual value of density from the standard
altitude tables. In the preceding equation, assume T = 240 K (a reasonable
representation for the value of the temperature between sea level and 45 km,
which you can see by scanning down the standard atmosphere table).
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