CHAPTER

5

Surface Area

Get	Ready	XXX
Mat	th Link	xxx
5.1	Warm Up	xxx
5.1	Views of Three-Dimensional Objects	ххх
5.2	Warm Up	ххх
5.2	Nets of Three-Dimensional Objects	ххх
5.3	Warm Up	ххх
5.3	Surface Area of a Prism	ххх
5.4	Warm Up	ххх
5.4	Surface Area of a Cylinder	ххх
Gra	phic Organizer	ххх
Cha	apter Review	xxx
Pra	ctice Test	xxx
Wra	aplit Up!	xxx
Key	Word Builder	ххх
Mat	th Games	xxx
Cha	allenge in Real Life	xxx
Ans	swers	XXX

Three-Dimensional Objects

1. Write the name and the number of edges, faces, and vertices for each object.

Object	Name	Faces	Edges	Vertices

Circles

	 radius the distance from the centre of the circle to the outside edge r shows the radius
	• the radius is half the diameter: $r = d \div 2$ or $r = \frac{d}{2}$
FOLDABLES TW Study Tool	diameter • the distance across a circle through its centre • d shows the diameter • the diameter is twice the radius: $d = 2 \times r$ or $d = 2r$ circumference • the distance around a circle (the perimeter)
	• C shows the circumference • $C = 2 \times \pi \times r \text{ or } C = \pi \times d$ area
	• the number of square units needed to cover a two-dimensional shape
	• A shows the area • $A = \pi \times r^2$ or $A = \pi r^2$

2. Find the circumference of each circle to the nearest tenth (one decimal place).

3. Find the area of each circle to the nearest tenth (one decimal place).

Area Formulas

MATH LINK

City Planning

When city planners design communities, they think about many things, such as:

- types of buildings
- width of streets
- where to put bus stops

Imagine you are a city planner for a miniature community.

1. A community needs different buildings. For example, food stores, banks, and hospitals are often on the main street of a community.

Use the table to organize information about the buildings a community needs.

Type of Building	Where the Building Is Located in the Community	Shapes of Its Faces
Bank	main street	square, rectangle

Discuss your answers to #1 with a partner. Then, share your ideas with the class.

- 2. What else does a community need? (e.g., streets, fire hydrants, and telephone wires)
- **3.** Imagine you are in an airplane. Using grid paper, sketch part of an aerial view of a community. Draw the buildings, roads, and any other features from #2 that are important.

5.1 Warm Up

- **1.** Draw a square and a rectangle.
 - **a**) square

- **b**) rectangle
- **2.** Use isometric dot paper to make it easier to draw 3-D shapes. Follow the steps to draw each solid.
 - a) cube

b) rectangular prism

•	•	•	•	•	•	•	•	•	•		• []
· · ·	•	•	•	•	•	•	•	•	•	•	•
•	•		•	•	•	•	•	•	•	•	٠
• •	•			•	•		•	•	• •		•
•	•	•	•	•			•		•	• •	

3. Draw the top, front, and side view of your cube and rectangular prism.

	a)	cube		b)	rectangular prism	1	
		top	front	side	top	front	side
4.	Cir a)	rele the diagram	n that shows a 9 b)	0° clockwise rota		ation can be clockwise counterclockwise.	\sum

ът			
N	am	ρ	•
ΤA	am	C	•

5.1 Views of Three-Dimensional Objects

A 3-D object has length, width, and height.

Working Example 1: Draw and Label Top, Front, and Side Views

Draw the top, front, and side view of each item. Label each view.

a) Tissue box

Solution

____ Date:

Name:

Working Example 2: Sketch a Three-Dimensional Object When Given Views

An object made of six blocks has these views. Sketch the object.

Draw the same object on the grid.

Solution

Sketch the object on isometric paper.

Working Example 3: Predict and Draw the Top, Front, and Side Views After a Rotation

The diagrams show the top, front, and side views of a computer tower.

Rotate the computer tower 90° clockwise on its base.

a) Which view will become the new front view after the rotation?

Solution

The side view will become the new front view after rotation.

b) Label the top, front, and side views after rotating the tower.

Solution

Date:

Name:			Date:
Communicate t	he Ideas		
1. E			MathLinksS
	top	side	
Are these views of a b	oook correct? Circle	YES or NO.	
Give one reason for yo	our answer.		

Check Your Understanding

Practise

2. Draw and label the top, front, and side views.

Name:					Date:	
3.						
A	B	C	D	E	F	G

- a) Circle the top view.
- **b**) Put a square around the front view.
- c) Put an X on the side view.
- 4. Draw each 3-D object using the views.

5. Circle the object that has this front view after a rotation of 90° clockwise onto its *side*.

front

Date:

Turn the microwave 90° counterclockwise.

Draw each new view.

top

side

Apply

7. Choose two 3-D objects from your classroom.

Draw the top, front, and side views of each one.

Object 1:			
top	front	sid	le
Object 2: top	front	sid	le

Name: ____

8. Draw the top, front, and side views for each.

top

front

side

b)

top

front

side

MATH LINK

a) Choose one of the important buildings from your community in the Math Link on page xx.

Name of building:

Sketch a 3-D view of the building.

b) Draw and label the top, front, and side views.

top	front	side

${\bf 5}$ Chapter Review

Key Words

Unscramble the letters for each puzzle. Use the clues to help you.

Puzzle	Clues	Solution
1. E T N	a flat diagram you can fold to make a 3-D object	
2. U S F A R E C E R A A	the sum of the areas of the faces of an object (2 words)	
3. I R H T G R P M I S	a prism with sides perpendicular to its bases (2 words)	
4. E C N I Y D R L	a 3-D object with two parallel circular bases	
5. I R A G N R U A L T S I M R P	a 3-D object with two parallel triangular bases (2 words)	
6. LEUCAANRGTR IRMSP	a 3-D object with two parallel rectangular bases (2 words)	

5.1 Views of Three-Dimensional Objects, pages xx-xx

7. Draw and label the top, front, and side views for these objects.
a)
b)
b)
b)
c)
b)
c)
<lic)
c)
<lic)
c)
<lic)
<

Date:

8. Draw each 3-D object on the isometric grid.

9. The diagram shows the top, front, and side views of a filing cabinet.

5.2 Nets of Three-Dimensional Objects, pages xx-xx

10. Name the object formed by each net.

Date:

net of rectangular prism:

10 mm

5.3 Surface Area of a Prism, pages xx-xx

12. What is the surface area of the object?

This object is a _____. All the faces are the same size.

There are ______ faces.

Draw and label one face.

Area of one face:

Surface Area (S.A.) = $6 \times$ _____

13. Calculate the surface area of the rectangular prism.

=_____

Draw and label the dimensions for each view.

top or bottom	front or back	ends	27 mm	
				42 mm
Find the area of e	each view:			
Area of top and l	bottom Area oj	f front and back	Area o	of two ends
= 2 ×	= 2×_		= 2 ×	
=			=	
Surface Area = (area of front and back) +	(area of top and	bottom) + (area	of ends)
= 2	×+	+		
=_	*			

2 m

5.4 Surface Area of a Cylinder, pages xx-xx

15. Find the surface area of the cylinder.

16. The candle on Kay's table has a diameter of 3.4 cm and is 7 cm tall. Calculate the surface area.

RAF

Sentence:

5 Practice Test

For #1 to #5, circle the best answer.

Calculate the area of each view.

Sentence:

Name: _____

Date: _____

WRAP IT UP!

Create your miniature community! Work in a group to draw an aerial view for your community.

- a) In the table below, list
 - the names of the students in your group
 - the names of the two buildings that each student sketched in the Math Link on page xx.

Student	Building 1	Building 2

b)	List the buildings that a community needs.
	Police station,,,
	,,
c)	What buildings from part b) are missing from the table in part a)?
d)	Each student must choose a building from the list in part b). Each student must:
	 make a 3-D sketch on a sheet of isometric grid paper draw and label the net, including dimensions
	 calculate the surface area of the walls and roof on a separate piece of paper
e)	Draw the aerial view of your community with your group. Write a description.
	Check off the list as you complete each part:
	design all the required buildings
	Each student has done:
	 a 3-D sketch a net
	 the surface area calculations for one new building (check each other's work)
	streets to travel through the community
	environmental areas such as water sources and parks
	a written description of the community

Key Word Builder

Use the clues to write the key words in the crossword puzzle.

Across

9. The line segment where two faces meet.

Down

1. The number of square units needed to cover a 3-D object.

4. The point where three or more edges meet.

Math Games

Let's Face It!

Play Let's Face It! with a partner or in a small group.

Rules:

- Remove the jacks, queens, kings, and jokers from the deck of cards.
- The aces equal 1.
- Take turns dealing the cards. Choose someone to deal first.
- Shuffle the cards and deal three cards, face up, to each player. The values of the cards are the dimensions of a rectangular prism.
- Calculate the surface area of your rectangular prism using pencil and paper.
- If you calculate your surface area correctly, you get a point (check each other's work).
- The player with the greatest surface area scores an extra point for that round.
- If there is a tie, each of the tied players scores a point.
- The first player to reach ten points wins the game.
- If there is a tie, continue playing until one person is ahead. If a player makes a mistake calculating the surface area and you catch it, you get an extra point!

Play a different version using these rules:

- Deal two cards to each player.
- Use the cards to describe the size of a cylinder.
- The first card gives the radius of each circle. The second card gives the height of the cylinder.
- Use a calculator to find the surface area of your cylinder. Use the formula $S.A. = 2 \times (\pi \times r^2) + (\pi \times d \times h)$.
- Award points and decide the winner the same way as before.

- deck of playing cards
- calculator per student

My cards are a 5 of clubs, a 3 of hearts, and an 8 of spades. My rectangular prism has edges of 5 cm, 3 cm, and 8 cm.

3 cm 8 cm 5 cm

My cards are a 4 of clubs and a 6 of clubs. The radius of each circle is 4 cm. The height of the cylinder is 6 cm.

4 cm

6 cm

Date: _____

Challenge in Real Life

Design a Bedroom

You be the interior designer. Design your dream bedroom! Draw a design for a bedroom that is 4 m wide, 5 m long, and 2.5 m high. Use a sheet of grid paper.

1. a) You need to place at least three objects in the room. If your bed is one, what are two others?

- **b**) Draw the top view of the room on your grid paper.
- c) Use the chart to draw different views of your three objects.

Materials

Object	Top, Front, and Side Views	3-D Shape
Bed		
	2 AF	
	V	

Nar	me:	Date:
2.	You need to paint the walls and ceiling of your room.a) Draw diagrams of the ceiling and walls. Label the dimensions.	

b) Find the total surface area of the walls and ceiling.

Area of ceiling

Area of side walls

Area of end walls

Total surface area:

c)	One can of paint covers 10 m ² /L. How many cans do you need?
	$\frac{\text{total surface area}}{10} = \underbrace{10}$ $= \underbrace{10}$ $You \text{ cannot buy} \text{ part of a can.}$
Se	ntence:

Answers

Get Ready, pages xx-xx

1.

Object	Faces	Edges	Vertices
Rectangular prism	6	12	8
Triangular prism	5	9	6
Cube	6	12	8

- **2.** a) 18.8 cm b) 12.6 cm
- **3.** a) 12.6 cm² b) 78.5 cm²
- **4.** a) 27 cm² b) 55 cm²

Math Link

1. Answers may vary. Example:

Type of Building	Where the Building Is Located in the Community	Shapes of Its Faces
Bank	main street	square, rectangle
Church	near houses	square, rectangle, triangle
School	near houses	square, rectangle
Hospital	near main roads, or highway	square, rectangle
Grocery store	main street	square, rectangle

- 2. Answers may vary. Example: streets, houses, fire hydrants, sewers, parks
- 3. Answers will vary. Example:

4. Part a) shows a 90° clockwise rotation.

5.1 Views of Three-Dimensional Objects, pages xx-xx Working Example 1: Show You Know

Working Example 2: Show You Know

Working Example 3: Show You Know

a)	top		T
		front	side

Communicate the Ideas

1. No. Answers may vary. Example: The top is labelled incorrectly as the front.

