CHAPTER

Surface Area

Get Ready XXX
Math Link XXX
5.1 Warm Up XXX
5.1 Views of Three-Dimensional Objects XXX
5.2 Warm Up XXX
5.2 Nets of Three-Dimensional Objects XXX
5.3 Warm Up XXX
5.3 Surface Area of a Prism XXX
5.4 Warm Up XXX
5.4 Surface Area of a Cylinder XXX
Graphic Organizer XXXChapter ReviewxxxXXXPractice TestXXXXXX
Math Games XXX
Challenge in Real Life XXX
Answers XXX
\qquad
\qquad

Get Ready

Three-Dimensional Objects

three-dimensional (3-D)

- an object that has length, width, and height
- you can describe a 3-D object by its faces, edges, and vertices

1. Write the name and the number of edges, faces, and vertices for each object.

Object	Name	Faces	Edges	Vertices

Circles

\qquad
\qquad
2. Find the circumference of each circle to the nearest tenth (one decimal place).
a)

b)

$$
C=\pi \times d
$$

$$
=3.14 \times
$$

\qquad

$$
=
$$

\qquad cm

$$
\begin{aligned}
C & =2 \times \pi \times r \\
& =2 \times \square \\
& =
\end{aligned}
$$

3. Find the area of each circle to the nearest tenth (one decimal place).
a)

b)

$$
\begin{aligned}
& A=\pi \times r^{2} \\
& A=\pi \times r \times r \\
&= \\
&= \\
& \times \quad \mathrm{cm}^{2}
\end{aligned}
$$

Area Formulas

Area of a rectangle $=l \times w \quad$ Area of a triangle $=b \times h \div 2 \quad$ Area of a parallelogram $=b \times h$
4. Find the area of each shape.
a)

\qquad

MATH LINK

City Planning
When city planners design communities, they
think about many things, such as:

- types of buildings
- width of streets
- where to put bus stops

Imagine you are a city planner for a miniature community.

1. A community needs different buildings. For example, food stores, banks, and hospitals are often on the main street of a community.

Use the table to organize information about the buildings a community needs.

Type of Building	Where the Building Is Located in the Community	Shapes of Its Faces
Bank	main street	square, rectangle

Discuss your answers to \#1 with a partner. Then, share youx ideas with the class.
2. What else does a community need? (e.g., streets, fire hydrants, and telephone wires)

3. Imagine you are in an airplane. Using grid paper, sketch part of an aerial view of a community. Draw the buildings, roads, and any other features from \#2 that are important.

\qquad
\qquad

5.1 Warm Up

1. Draw a square and a rectangle.
a) square
b) rectangle
2. Use isometric dot paper to make it easier to draw 3-D shapes. Follow the steps to draw each solid.

a) cube
.
.
b) rectangular prism

3. Draw the top, front, and side view of your cube and rectangular prism.
a) cube
top front side
4. Circle the diagran that shows a 90° clockwise rotation.
a)

b) rectangular prism

$$
\text { top } \quad \text { front } \quad \text { side }
$$

\qquad
\qquad

5.1 Views of Three-Dimensional Objects

Working Example 1: Draw and Label Top, Front, and Side Views

Draw the top, front, and side view of each item.
Label each view.
a) Tissue box

Solution

b) Compact disc case

Solution

\qquad
\qquad

Working Example 2: Sketch a Three-Dimensional Object When Given Views

An object made of six blocks has these views.
Sketch the object.

top

Solution

Sketch the object on isometric paper.

Show You Know

An object is made using five blocks.
The top, front, and side views are shown.

Sketch the object on isometric dot paper.
\qquad
\qquad

Working Example 3: Predict and Draw the Top, Front, and Side Views After a Rotation

The diagrams show the top, front, and side views of a computer tower.

Rotate the computer tower 90° clockwise on its base.

a) Which view will become the new front view after the rotation?

Solution

The side view will become the new front view after rotation.
b) Label the top, front, and side views after rotating the tower.

Solution

8 MHR • Chapter 5: Surface Area
\qquad
\qquad

Show You Know

Stand a book on your desk.
a) Draw the top, front, and side views.

b) Rotate the book 90° clockwise around its spine.

What will the top, front, and side views look like?
The \qquad view will only change its position after the rotation.

The \qquad view will become the side view after the rotation.

The \qquad view will become the front view after the rotation.
c) Draw the top, front, and side views after rotating the book.

\qquad
\qquad

Communicate the Ideas

1.

top

side

Are these views of a book correct? Circle YES or NO.
Give one reason for your answer.
\qquad

Check Your Understanding

Practise

2. Draw and label the top, front, and side views.
a)
 top

b)

front
side
\qquad
\qquad
3.

a) Circle the top view.
b) Put a square around the front view.
c) Put an X on the side view.
4. Draw each 3-D object using the views.

b) $\quad \begin{array}{r}\text { top } \\ \square\end{array}$

5. Circle the object that has this front view after a rotation of 90° clockwise onto its side.

\qquad
\qquad
6. A microwave has these views.

Turn the microwave 90° counterclockwise.
Draw each new view.
top
front
side

Apply

7. Choose two 3-D objects from your classroom.

Draw the top, front, and side views of each one.
Object 1: \qquad
top front
\qquad
\qquad
8. Draw the top, front, and side views for each.
a)

top
front
side
b)

top
front
side
c)

top

side
\qquad
\qquad

MATH LINK

a) Choose one of the important buildings from your community in the Math Link on page $x x$.

Name of building: \qquad
Sketch a 3-D view of the building.
b) Draw and label the top, front, and side views.

\qquad
\qquad

5 Chapter Review

Key Words

Unscramble the letters for each puzzle. Use the clues to help you.

Puzzle	Clues	Solution
1. E T N	a flat diagram you can fold to make a 3-D object	
2. U S F A R E C E R A A	the sum of the areas of the faces of an object (2 words)	-
3. I R H T G R P M I S	a prism with sides perpendicular to its bases (2 words)	-
4. E C N I Y D R L	a 3-D object with two parallel circular bases	
5. I R A G N R U A L T S I M R P	a 3-D object with two parallel triangular bases (2 words)	-
6. L E U C A A N R G T R	a 3-D object with two parallel rectangular bases (2 words)	-

5.1 Views of Three-Dimensional Objects, pages xx-xx

7. Draw and label the top, front, and side views for these objects.
a)

front
side
\qquad
\qquad
8. Draw each 3-D object on the isometric grid.
a)

b)

9. The diagram shows the top, front, and side views of a filing cabinet.

\qquad
\qquad

5.2 Nets of Three-Dimensional Objects, pages xx-xx

10. Name the object formed by each net.
a)

b)

c)

d)

11. Draw the net for each object.
a)

\qquad
\qquad

5.3 Surface Area of a Prism, pages xx-xx

12. What is the surface area of the object?

This object is a \qquad All the faces are the same size.

There are \qquad faces.

Draw and label one face.

Area of one face:

Surface Area (S.A.) $=6 \times$ \qquad
\qquad
net of rectangular prism:
13. Calculate the surface area of the rectangular prism.

Draw and label the dimensions for each view.

\qquad
\qquad
14. a) Find the surface area of each triangular prism.

Label the dimensions from each view.

Area of triangle:
small rectangle (two are the same)

$\ldots \mathrm{cm}$
large rectangle

Area of large rectangle:
S.A. $=(2 \times$ area of triangle $)+(2 \times$ area of small rectangle $)+($ area of large rectangle $)$

$$
=(2 \times \square)+(2 \times \square
$$

$=$ \qquad $+$ \qquad $+$ \qquad

$$
=
$$

\qquad
b)

$S . A .=(2 \times$ area of triangle $)+(3 \times$ area of rectangle $)$
$=(\square)+(\square)$
$=$ \qquad
\qquad
\qquad

5.4 Surface Area of a Cylinder, pages xx-xx

15. Find the surface area of the cylinder.
\qquad
$r=$ \qquad $h=$ \qquad
Formula \rightarrow
Substitute \rightarrow

Solve \rightarrow
16. The candle on Kay's table has a diameter of 3.4 cm and is 7 cm tall. Calculate the surface area.

Sentence: \qquad
\qquad
\qquad

5 Practice Test

For \#1 to \#5, circle the best answer.

1. The shape of the top view of this container shows a
A circle
B square
C triangle
D rectangle

2. One face on a cube has an area of $50 \mathrm{~cm}^{2}$. What is the surface area of the cube?
A $350 \mathrm{~cm}^{2}$
B $300 \mathrm{~cm}^{2}$
C $200 \mathrm{~cm}^{2}$
D $150 \mathrm{~cm}^{2}$

3. What 3-D object has a net like this one?
A cube
B cylinder
C triangular prism
D rectangular prism

4. What is the surface area of this box?
A $550 \mathrm{~mm}^{2}$
B $900 \mathrm{~mm}^{2}$
C $1100 \mathrm{~mm}^{2}$
D $1800 \mathrm{~mm}^{2}$
5. What is the surface area of a cylinder that is 30 cm long
and has a radius of 4 cm ?
A $427.04 \mathrm{~cm}^{2}$
B $477.28 \mathrm{~cm}^{2}$
C $803.84 \mathrm{~cm}^{2}$
D $854.08 \mathrm{~cm}^{2}$

Short Answer

6. Label the top, front, and side views.

\qquad
\qquad
7. An object may have more than one net.

Draw two different nets for this cube.

Net 1:
Net 2:

8. A DVD case is 14 cm long, 12 cm wide, and 1 cm thick. Calculate the surface area to the nearest tenth (one decimal place).

Draw and label the dimensions for each view.
top
front or back
sides

Calculate the area of each view.

Sentence: \qquad
\qquad
\qquad
9. Find the surface area of the cylinder.

Use the formula S.A. $=2 \times\left(\pi \times r^{2}\right)+(\pi \times d \times h)$

Formula \rightarrow S.A. $=2 \times\left(\pi \times r^{2}\right)+(\pi \times d \times h)$

Substitute \rightarrow
$S . A .=$ \qquad
Solve \rightarrow

URAP IT UP!

Create your miniature community! Work in a group to draw an aerial view for your community.
a) In the table below, list

- the names of the students in your group
- the names of the two buildings that each student sketched in the Math Link on page xx.

Student	Building 1	Building 2

\qquad
\qquad
b) List the buildings that a community needs.

Police station, \qquad
\qquad ,
\qquad
\qquad
\qquad
c) What buildings from part b) are missing from the table in part a)?
d) Each student must choose a building from the list in part b).

Each student must:

- make a 3-D sketch on a sheet of isometric grid paper
- draw and label the net, including dimensions
- calculate the surface area of the walls and roof on a separate piece of paper
e) Draw the aerial view of your community with your group. Write a description.

Check off the list as you complete each part:

\square design all the required buildings
\square Each student has done:

- a 3-D sketch
- a net
- the surface area calculations for one new building (check each other's work)
\square streets to travel through the community
\square environmental areas such as water sources and parks
\square a written description of the community

\qquad
\qquad

Key Word Builder

Use the clues to write the key words in the crossword puzzle.

Across
3.

6.

9. The line segment where two faces meet.

Down

1. The number of square units needed to cover a 3-D object.
2.

4. The point where three or more edges meet.
5.

7.

8. The flat or curved surface of a prism.

\qquad
\qquad

Math Games

Let's Face It!

Play Let's Face It! with a partner or in a small group.

Rules:

- Remove the jacks, queens, kings, and jokers from the deck of cards.
- The aces equal 1.
- Take turns dealing the cards. Choose someone to deal first.
- Shuffle the cards and deal three cards, face up, to each player. The values of the cards are the dimensions of a rectangular prism.
- Calculate the surface area of your rectangular prism using pencil and paper.
- If you calculate your surface area correctly, you get a point (check each other's work).
- The player with the greatest surface area scores an extra point for that round.
- If there is a tie, each of the tied players scores a point.
- The first player to reach ten points wins the game.
- If there is a tie, continue playing until one person is ahead. If a player makes a mistake calculating the surface area and you

Materials

- deck of playing cards
- calculator per student catch it, you get an extra point!

Play a different version using these rules:

- Deal two cards to each player.
- Use the cards to describe the size of a cylinder.
- The first card gives the radius of each circle. The second card gives the height of the cylinder.
- Use a calculator to find the surface area of your cylinder. Use the formula S.A. $=2 \times\left(\pi \times r^{2}\right)+(\pi \times d \times h)$.
- Award points and decide the winner the same way as

\qquad
\qquad

Challenge in Real Life

Design a Bedroom

You be the interior designer.
Materials
Design your dream bedroom!

- grid paper

Draw a design for a bedroom that is 4 m wide, 5 m long, and 2.5 m high. Use a sheet of grid paper.

1. a) You need to place at least three objects in the room. If your bed is one, what are two others?
\qquad
b) Draw the top view of the room on your grid paper.
c) Use the chart to draw different views of your three objects.

| Object | Top, Front, and Side Views | 3-D Shape |
| :---: | :---: | :---: | :---: |
| Bed | | |
| | | |

\qquad
\qquad
2. You need to paint the walls and ceiling of your room.
a) Draw diagrams of the ceiling and walls. Label the dimensions. ceiling side walls end walls
b) Find the total surface area of the walls and ceiling.

Area of ceiling Area of side walls Area of end walls

Total surface area:

c) One can of paint covers $10 \mathrm{~m}^{2} / \mathrm{L}$.

How many cans do you need?

Sentence: \qquad

Answers

Get Ready, pages xx-xx

1.

Object	Faces	Edges	Vertices
Rectangular prism	6	12	8
Triangular prism	5	9	6
Cube	6	12	8

2. a) $18.8 \mathrm{~cm} \mathrm{b)} 12.6 \mathrm{~cm}$
3. a) $12.6 \mathrm{~cm}^{2}$ b) $78.5 \mathrm{~cm}^{2}$
4. a) $27 \mathrm{~cm}^{2}$ b) $55 \mathrm{~cm}^{2}$

Math Link

1. Answers may vary. Example:

Type of Building	Where the Building Is Located in the Community	Shapes of Its Faces
Bank	main street	square, rectangle
Church	near houses	square, rectangle, triangle
School	near houses	square, rectangle
Hospital	near main roads, or highway	square, rectangle
Grocery store	main street	square, rectangle

2. Answers may vary. Example: streets, houses, fire hydrants, sewers, parks
3. Answers will vary. Example:

5.1 Warm Up, page x

1. a)

2. a) .

3. a)

b)

4. Part a) shows a 90° clockwise rotation.
5.1 Views of Three-Dimensional Objects, pages xx-xx Working Example 1: Show You Know

Working Example 2: Show You Know

Working Example 3: Show You Know

a)

b) top, front, side

Communicate theldeas

1. No. Answers may vary. Example: The top is labelled incorrectly as the front.

Pract 2. a)
 a) t

3. a) D b) A c) B

