A Tour of Your Textbook

Chapter Opener

Each chapter begins with a two-page spread which introduces you to what you will learn in the chapter.

Foldables ${ }^{\text {TM }}$

FOLDABLES
Study Tool
Each chapter includes a Foldable to help you organize what you are learning and keep track of what you need to work on. Instructions on where and how to record information on the Foldable will help you use it as a study tool.

Math Link

Each chapter introduces a Math Link that helps you connect math and your own personal experiences. You will often revisit the Math Link at the end of a lesson. This is an opportunity for you to build concepts and understanding. The Math Link: Wrap It Up! at the end of each chapter gives you an opportunity to demonstrate your understanding of the chapter concepts.

Numbered Sections

The numbered sections often start with a visual to connect the topic to a real setting. The purpose of this introduction is to help you make connections between the math in the section and the real world, or to make connections to what you already know.

A three-part lesson follows.

Explore

- An activity is designed to help you build your own understanding of the new concept and lead toward answers to the key question. This activity is often related to the opening visual and introductory text in the section.

Explore Multiplying a Polynomial by a Monomial

 When a train's brakes are applied, the train travels a distance before it stops. After t seconds, the distance, in metres, that the train travels is given by the polynomial $2 t(20-t)$.1. What part of the diagram does $2 t(20-t)$ represent?
 A Lititeracy Link Apolynomial is made
up of terms connected by addition or
subtraction. Examples: Examples:
$x+5$
$2 d-2.4$ $2 d-2.4$
$x s^{2}+5 s-6$ $\frac{h^{2}}{2}-\frac{h}{4}$

What polynomial represents the unknown length in the diagram How did you determine this polynomial?

3. Find three rectangles in the diagram. What is an expression for the area of the largest rectan

What is the difference in area between the largest and smallest rectangles? Show two ways to find your answer.
5. Calculate the area of the medium-sized rectangle using the dimension you determined in $\# 2$.
Reflect and Check
6. Describe the steps you use
medium-sized rectangle
7. How is the area of the medium-sized rectangle related to the areas
of the large rectangle and the small rectangle?
8. How far does the train travel in 10 s? Show how you arrived at
your answer.

Link the Ideas

- Some of these sections start with a piece of text that will help you connect what you did in the Explore to the Examples.
- Examples and Solutions demonstrate how to use the concept.

Link the Ideas

Reading an inequality depends on the inequality symbol used.

CLiteracy Link

Inequalities can be

Verbally wing words
Forexample,all
Veroaly xasing word
Fumbers less than or
numbers less
equal to o.75:" $\underset{\substack{\text { equaptically ying } \\ \text { visualc, such as }}}{ }$ visuals such as
diagrams and graph

 \begin{tabular}{c:c:c}
1

\hline 0 \& 1.755

Algebraicaly using

mathematical

symbols. For

\hline
\end{tabular} example, $x \leq 0$

Example 1: Represent Inequalitie Many jobs pay people a higher rate for working overtime. Reema carns overtim pay
wek.
a) Give four possible valu
result in overtime pay.
b) Vesult in overtime pay.

Verbally express
that qualifies for overtime
as an inequality.
c) Express the inequality graphically.
d) Express the inequality algebraically. a) Represent the amount of time that does not qualify for overtime as a
inequality. Express the inequality verbally, graphically, and algebraical

Key Ideas

- You can represent the multiplication of a polynomial by a monomial using models.
- area model

$(3 x)(2 x+2)$
The product is represented by $A_{1}+A_{1}$
$(3 x)(2 x+2)=6 x^{2}+6 x$

$(2 x)(-2 x+3)$ There are 4 negative x^{2}-tiles and 6 positive x-tiles. $(2 x)(-2 x+3)=-4 x^{2}+6 x$
- To multiply a polynomial by a monomial algebraically, you can To multiply a polynomial by a monomial algebraically, you can
expand the expression using the distributive property. Multiply expand the expression using the distributive prope

$=(-1.2 x)(3 x)-(-1.2 x)(7)$
$=(-1.2 x)(3 x)-($
$=-3.6 x^{2}+8.4 x$

Check Your Understanding

- Communicate the Ideas: These questions let you talk or write about the concepts and assess whether you understand the ideas.
- Practise: These are questions to check your knowledge and understanding of what you have learned.
- Apply: In these questions, you need to apply what you have learned to solve problems.
- Extend: These questions may be more challenging and may make connections to other lessons.

How does MathLinks 9 help you learn?

Understanding Vocabulary

Key Words are listed on the Chapter Opener. Perhaps you already know the meaning of some of them. Great! If not, watch for these terms the first time they are used in the

Other Literacy Links throughout the chapter assist you in reading and interpreting items in math. These tips will help you in other subjects as well.
A Literacy Link at the beginning of each chapter provides tips to help you read and interpret the chapter content. in. Leave enough space to draw additional lines. A you work through the chapter, complete the

- Use the boxes to record the key ideas for each section.
- Use the lines to explain the key ideas by recording definitions, examples, and strategies. Where possible, include a visual to support your definition.

CD Literacy Link Parentheses is another name for brackets. They can be used in place of a multiplication sign. For example, $-4 \times 1.5=-4(1.5)$

Understanding Concepts

The Explore activities are designed to help you construct your own understanding of new concepts. The key question tells you what the activity is about. Short steps, with illustrations, lead you to make some conclusions in the Reflect and Check question(s).

The Examples and their worked Solutions include several tools to help you understand the work.

- Notes in a speech bubble help you think through the steps.
- Sometimes different methods of solving the same problem are shown. One way may make more sense to you than the other. Or, you may develop another way that means more to you.
- Problem Solving Strategies are pointed out.
- Calculator key press sequences are shown where appropriate.
- Most Examples are followed by a Show You Know. These questions help you check that you understand
 the skill covered in the Example.

The Check Your Understanding exercises begin with Communicate the Ideas. These questions focus your thinking on the Key Ideas you developed in Link the Ideas. By discussing these questions in a group, or doing the action called for, you can see whether you understand the main points of the lesson.

The first few questions in the Practise can often be done by following one of the worked Examples.

Problem Solving

At the beginning of the student resource there is an overview of the four steps you can use to approach Problem Solving. Samples of problem solving strategies are shown. You can refer back to this section if you need help choosing a strategy to solve a problem. You are also encouraged to use your own strategies.

Mental Math and Estimation

How does the number $\quad{ }^{\top} E$ line show the estimate?

Other Features

(6) Did You Know?

The Métis flag shown in part a) is a white infinity symbol on a blue background. The infinity symbol can represent that the Métis nation will go on forever. It can also be interpreted as two conjoined circles, representing the joining of two cultures: European and First Nations.

Did You Know?

These are interesting facts related to math topics you are learning.

WWW Web Link
 To explore more about symmetry, go to www.mathlinks9.ca and follow the links.

Web Links

You can find extra information related to some questions on the Internet. Log on to www.mathlinks9.ca and you will be able to link to recommended Web sites.

(D) Tech Link

 The key for entering a negative sign may look different on different calculators for example, $+\approx-$ $+/-$ or $(-)$. It is not the subtraction key, Experiment with calculations involving negative signs on your calculator.
Tech Links

Some Tech Links show what calculator keys to use for certain types of questions. Keys and key sequences may vary depending on the calculator make and model. Experiment to find out what works on yours.

Other Tech Links suggest that you could use computer applications to do certain activities.

Still other Tech Links refer you to the MathLinks 9 Online Learning Centre where you can use software to extend your understanding of a concept.

(3) Tech Link You can use a spreadsheet program to create the graph.

Chapter Review and Practice Test

There is a Chapter Review and a Practice Test at the end of each chapter. The chapter review is organized by section number so you can look back if you need help with a question. The test includes the different types of questions that you will find on provincial tests: multiple choice, numerical response, short answer, and extended response.

Cumulative Review

To help you reinforce what you have learned, there is a review of the previous four chapters at the end of Chapters 4, 7 , and 11. The reviews at the end of Chapters 4 and 7 are followed by a Task.

Task

These tasks require you to use skills from more than one chapter. You will also need to use your creativity.

Challenges

The last two pages of each chapter provide Challenges. The Challenges provide interesting problems that show how the math you learned in the chapter relates to jobs, careers, or daily life. Some Challenges are games you can play, or make and play, with your friends and family.

Answers

Answers are provided for all Practise, Apply, Extend, and Review questions. Sample answers are given for questions that have a variety of possible answers or that involve communication. If you need help, read the sample and then try to give an alternative response. Answers are omitted for the Math Link questions and for Practice Tests because teachers may use these questions to assess your progress.

Glossary

Refer to the illustrated Glossary at the back of the student resource if you need to check the exact meaning of mathematical terms.

Index

If you want to find a particular math topic in MathLinks 9, look it up in the index, which is at the back of the student resource. The index provides page references that may help you review that topic.

